Programmed fluorine binding engineering in anion-pillared metal-organic framework for record trace acetylene capture from ethylene

Porous physisorbents are attractive candidates for selective capture of trace gas or volatile compounds due to their low energy footprints. However, many physisorbents suffer from insufficient sorbate-sorbent interactions, resulting in low uptake or inadequate selectivity when gases are present at t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2023-08, Vol.9 (31), p.eadh0135-eadh0135
Hauptverfasser: Gu, Xiao-Wen, Wu, Enyu, Wang, Jia-Xin, Wen, Hui-Min, Chen, Banglin, Li, Bin, Qian, Guodong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page eadh0135
container_issue 31
container_start_page eadh0135
container_title Science advances
container_volume 9
creator Gu, Xiao-Wen
Wu, Enyu
Wang, Jia-Xin
Wen, Hui-Min
Chen, Banglin
Li, Bin
Qian, Guodong
description Porous physisorbents are attractive candidates for selective capture of trace gas or volatile compounds due to their low energy footprints. However, many physisorbents suffer from insufficient sorbate-sorbent interactions, resulting in low uptake or inadequate selectivity when gases are present at trace levels. Here, we report a strategy of programmed fluorine binding engineering in anion-pillared metal-organic frameworks to maximize C H binding affinity for benchmark trace C H capture from C H . A robust material (ZJU-300a) was elaborately designed to provide multiple-site fluorine binding model, resulting in an ultrastrong C H binding affinity. ZJU-300a exhibits a record-high C H uptake of 3.23 millimoles per gram (at 0.01 bar and 296 kelvin) and one of the highest C H /C H selectivity (1672). The adsorption binding of C H and C H was visualized by gas-loaded ZJU-300a structures. The separation capacity was confirmed by breakthrough experiments for 1/99 C H /C H mixtures, affording the maximal dynamic selectivity (264) and C H productivity of 436.7 millimoles per gram.
doi_str_mv 10.1126/sciadv.adh0135
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10403210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2846925658</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-4404ba6550159362d4b664b2c9dac87402aac8cc475da8fe7506e51d5db351113</originalsourceid><addsrcrecordid>eNpVUU1P3DAQtVArQJQrx8rHXrLYju1NTgihfiAhtYdythx7knVJ7GWcgLjyy2vYLaKH0Yxn3jzPzCPkjLMV50KfZxesf1hZv2G8VgfkWNRrVQklmw_v4iNymvMfxhiXWiveHpKjUpJsLdkxef6FaUA7TeBpPy4JQwTahehDHCjEoTwBX-IQqY0hxWobxtFigU8w27FKOJS8o30hgceEd7RPSBFcQk9ntA5osflphELs7HZeEAo4TRTmzWv2E_nY2zHD6d6fkNtvX39f_ahufn6_vrq8qVzd8rmSksnOaqUYV22thZed1rITrvXWNWUZYYt3Tq6Vt00Pa8U0KO6V72rFOa9PyMWOd7t0ZV0HsYw3mi2GyeKTSTaY_ysxbMyQHgxnktWCs8LwZc-A6X6BPJspZAflHhHSko1opG6F0qop0NUO6jDljNC__cOZeRHP7MQze_FKw-f3073B_0lV_wVPAJtA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2846925658</pqid></control><display><type>article</type><title>Programmed fluorine binding engineering in anion-pillared metal-organic framework for record trace acetylene capture from ethylene</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Gu, Xiao-Wen ; Wu, Enyu ; Wang, Jia-Xin ; Wen, Hui-Min ; Chen, Banglin ; Li, Bin ; Qian, Guodong</creator><creatorcontrib>Gu, Xiao-Wen ; Wu, Enyu ; Wang, Jia-Xin ; Wen, Hui-Min ; Chen, Banglin ; Li, Bin ; Qian, Guodong</creatorcontrib><description>Porous physisorbents are attractive candidates for selective capture of trace gas or volatile compounds due to their low energy footprints. However, many physisorbents suffer from insufficient sorbate-sorbent interactions, resulting in low uptake or inadequate selectivity when gases are present at trace levels. Here, we report a strategy of programmed fluorine binding engineering in anion-pillared metal-organic frameworks to maximize C H binding affinity for benchmark trace C H capture from C H . A robust material (ZJU-300a) was elaborately designed to provide multiple-site fluorine binding model, resulting in an ultrastrong C H binding affinity. ZJU-300a exhibits a record-high C H uptake of 3.23 millimoles per gram (at 0.01 bar and 296 kelvin) and one of the highest C H /C H selectivity (1672). The adsorption binding of C H and C H was visualized by gas-loaded ZJU-300a structures. The separation capacity was confirmed by breakthrough experiments for 1/99 C H /C H mixtures, affording the maximal dynamic selectivity (264) and C H productivity of 436.7 millimoles per gram.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.adh0135</identifier><identifier>PMID: 37540740</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Chemistry ; Materials Science ; Physical and Materials Sciences ; SciAdv r-articles</subject><ispartof>Science advances, 2023-08, Vol.9 (31), p.eadh0135-eadh0135</ispartof><rights>Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-4404ba6550159362d4b664b2c9dac87402aac8cc475da8fe7506e51d5db351113</citedby><cites>FETCH-LOGICAL-c391t-4404ba6550159362d4b664b2c9dac87402aac8cc475da8fe7506e51d5db351113</cites><orcidid>0000-0003-2973-4107 ; 0000-0002-3531-3379 ; 0000-0002-7774-5452 ; 0009-0006-9077-7092 ; 0000-0001-8296-8696 ; 0000-0001-8707-8115</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10403210/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10403210/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37540740$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gu, Xiao-Wen</creatorcontrib><creatorcontrib>Wu, Enyu</creatorcontrib><creatorcontrib>Wang, Jia-Xin</creatorcontrib><creatorcontrib>Wen, Hui-Min</creatorcontrib><creatorcontrib>Chen, Banglin</creatorcontrib><creatorcontrib>Li, Bin</creatorcontrib><creatorcontrib>Qian, Guodong</creatorcontrib><title>Programmed fluorine binding engineering in anion-pillared metal-organic framework for record trace acetylene capture from ethylene</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>Porous physisorbents are attractive candidates for selective capture of trace gas or volatile compounds due to their low energy footprints. However, many physisorbents suffer from insufficient sorbate-sorbent interactions, resulting in low uptake or inadequate selectivity when gases are present at trace levels. Here, we report a strategy of programmed fluorine binding engineering in anion-pillared metal-organic frameworks to maximize C H binding affinity for benchmark trace C H capture from C H . A robust material (ZJU-300a) was elaborately designed to provide multiple-site fluorine binding model, resulting in an ultrastrong C H binding affinity. ZJU-300a exhibits a record-high C H uptake of 3.23 millimoles per gram (at 0.01 bar and 296 kelvin) and one of the highest C H /C H selectivity (1672). The adsorption binding of C H and C H was visualized by gas-loaded ZJU-300a structures. The separation capacity was confirmed by breakthrough experiments for 1/99 C H /C H mixtures, affording the maximal dynamic selectivity (264) and C H productivity of 436.7 millimoles per gram.</description><subject>Chemistry</subject><subject>Materials Science</subject><subject>Physical and Materials Sciences</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpVUU1P3DAQtVArQJQrx8rHXrLYju1NTgihfiAhtYdythx7knVJ7GWcgLjyy2vYLaKH0Yxn3jzPzCPkjLMV50KfZxesf1hZv2G8VgfkWNRrVQklmw_v4iNymvMfxhiXWiveHpKjUpJsLdkxef6FaUA7TeBpPy4JQwTahehDHCjEoTwBX-IQqY0hxWobxtFigU8w27FKOJS8o30hgceEd7RPSBFcQk9ntA5osflphELs7HZeEAo4TRTmzWv2E_nY2zHD6d6fkNtvX39f_ahufn6_vrq8qVzd8rmSksnOaqUYV22thZed1rITrvXWNWUZYYt3Tq6Vt00Pa8U0KO6V72rFOa9PyMWOd7t0ZV0HsYw3mi2GyeKTSTaY_ysxbMyQHgxnktWCs8LwZc-A6X6BPJspZAflHhHSko1opG6F0qop0NUO6jDljNC__cOZeRHP7MQze_FKw-f3073B_0lV_wVPAJtA</recordid><startdate>20230804</startdate><enddate>20230804</enddate><creator>Gu, Xiao-Wen</creator><creator>Wu, Enyu</creator><creator>Wang, Jia-Xin</creator><creator>Wen, Hui-Min</creator><creator>Chen, Banglin</creator><creator>Li, Bin</creator><creator>Qian, Guodong</creator><general>American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2973-4107</orcidid><orcidid>https://orcid.org/0000-0002-3531-3379</orcidid><orcidid>https://orcid.org/0000-0002-7774-5452</orcidid><orcidid>https://orcid.org/0009-0006-9077-7092</orcidid><orcidid>https://orcid.org/0000-0001-8296-8696</orcidid><orcidid>https://orcid.org/0000-0001-8707-8115</orcidid></search><sort><creationdate>20230804</creationdate><title>Programmed fluorine binding engineering in anion-pillared metal-organic framework for record trace acetylene capture from ethylene</title><author>Gu, Xiao-Wen ; Wu, Enyu ; Wang, Jia-Xin ; Wen, Hui-Min ; Chen, Banglin ; Li, Bin ; Qian, Guodong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-4404ba6550159362d4b664b2c9dac87402aac8cc475da8fe7506e51d5db351113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chemistry</topic><topic>Materials Science</topic><topic>Physical and Materials Sciences</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gu, Xiao-Wen</creatorcontrib><creatorcontrib>Wu, Enyu</creatorcontrib><creatorcontrib>Wang, Jia-Xin</creatorcontrib><creatorcontrib>Wen, Hui-Min</creatorcontrib><creatorcontrib>Chen, Banglin</creatorcontrib><creatorcontrib>Li, Bin</creatorcontrib><creatorcontrib>Qian, Guodong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gu, Xiao-Wen</au><au>Wu, Enyu</au><au>Wang, Jia-Xin</au><au>Wen, Hui-Min</au><au>Chen, Banglin</au><au>Li, Bin</au><au>Qian, Guodong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Programmed fluorine binding engineering in anion-pillared metal-organic framework for record trace acetylene capture from ethylene</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2023-08-04</date><risdate>2023</risdate><volume>9</volume><issue>31</issue><spage>eadh0135</spage><epage>eadh0135</epage><pages>eadh0135-eadh0135</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Porous physisorbents are attractive candidates for selective capture of trace gas or volatile compounds due to their low energy footprints. However, many physisorbents suffer from insufficient sorbate-sorbent interactions, resulting in low uptake or inadequate selectivity when gases are present at trace levels. Here, we report a strategy of programmed fluorine binding engineering in anion-pillared metal-organic frameworks to maximize C H binding affinity for benchmark trace C H capture from C H . A robust material (ZJU-300a) was elaborately designed to provide multiple-site fluorine binding model, resulting in an ultrastrong C H binding affinity. ZJU-300a exhibits a record-high C H uptake of 3.23 millimoles per gram (at 0.01 bar and 296 kelvin) and one of the highest C H /C H selectivity (1672). The adsorption binding of C H and C H was visualized by gas-loaded ZJU-300a structures. The separation capacity was confirmed by breakthrough experiments for 1/99 C H /C H mixtures, affording the maximal dynamic selectivity (264) and C H productivity of 436.7 millimoles per gram.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>37540740</pmid><doi>10.1126/sciadv.adh0135</doi><orcidid>https://orcid.org/0000-0003-2973-4107</orcidid><orcidid>https://orcid.org/0000-0002-3531-3379</orcidid><orcidid>https://orcid.org/0000-0002-7774-5452</orcidid><orcidid>https://orcid.org/0009-0006-9077-7092</orcidid><orcidid>https://orcid.org/0000-0001-8296-8696</orcidid><orcidid>https://orcid.org/0000-0001-8707-8115</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2375-2548
ispartof Science advances, 2023-08, Vol.9 (31), p.eadh0135-eadh0135
issn 2375-2548
2375-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10403210
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Chemistry
Materials Science
Physical and Materials Sciences
SciAdv r-articles
title Programmed fluorine binding engineering in anion-pillared metal-organic framework for record trace acetylene capture from ethylene
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A40%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Programmed%20fluorine%20binding%20engineering%20in%20anion-pillared%20metal-organic%20framework%20for%20record%20trace%20acetylene%20capture%20from%20ethylene&rft.jtitle=Science%20advances&rft.au=Gu,%20Xiao-Wen&rft.date=2023-08-04&rft.volume=9&rft.issue=31&rft.spage=eadh0135&rft.epage=eadh0135&rft.pages=eadh0135-eadh0135&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.adh0135&rft_dat=%3Cproquest_pubme%3E2846925658%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2846925658&rft_id=info:pmid/37540740&rfr_iscdi=true