Programmed fluorine binding engineering in anion-pillared metal-organic framework for record trace acetylene capture from ethylene
Porous physisorbents are attractive candidates for selective capture of trace gas or volatile compounds due to their low energy footprints. However, many physisorbents suffer from insufficient sorbate-sorbent interactions, resulting in low uptake or inadequate selectivity when gases are present at t...
Gespeichert in:
Veröffentlicht in: | Science advances 2023-08, Vol.9 (31), p.eadh0135-eadh0135 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | eadh0135 |
---|---|
container_issue | 31 |
container_start_page | eadh0135 |
container_title | Science advances |
container_volume | 9 |
creator | Gu, Xiao-Wen Wu, Enyu Wang, Jia-Xin Wen, Hui-Min Chen, Banglin Li, Bin Qian, Guodong |
description | Porous physisorbents are attractive candidates for selective capture of trace gas or volatile compounds due to their low energy footprints. However, many physisorbents suffer from insufficient sorbate-sorbent interactions, resulting in low uptake or inadequate selectivity when gases are present at trace levels. Here, we report a strategy of programmed fluorine binding engineering in anion-pillared metal-organic frameworks to maximize C
H
binding affinity for benchmark trace C
H
capture from C
H
. A robust material (ZJU-300a) was elaborately designed to provide multiple-site fluorine binding model, resulting in an ultrastrong C
H
binding affinity. ZJU-300a exhibits a record-high C
H
uptake of 3.23 millimoles per gram (at 0.01 bar and 296 kelvin) and one of the highest C
H
/C
H
selectivity (1672). The adsorption binding of C
H
and C
H
was visualized by gas-loaded ZJU-300a structures. The separation capacity was confirmed by breakthrough experiments for 1/99 C
H
/C
H
mixtures, affording the maximal dynamic selectivity (264) and C
H
productivity of 436.7 millimoles per gram. |
doi_str_mv | 10.1126/sciadv.adh0135 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10403210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2846925658</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-4404ba6550159362d4b664b2c9dac87402aac8cc475da8fe7506e51d5db351113</originalsourceid><addsrcrecordid>eNpVUU1P3DAQtVArQJQrx8rHXrLYju1NTgihfiAhtYdythx7knVJ7GWcgLjyy2vYLaKH0Yxn3jzPzCPkjLMV50KfZxesf1hZv2G8VgfkWNRrVQklmw_v4iNymvMfxhiXWiveHpKjUpJsLdkxef6FaUA7TeBpPy4JQwTahehDHCjEoTwBX-IQqY0hxWobxtFigU8w27FKOJS8o30hgceEd7RPSBFcQk9ntA5osflphELs7HZeEAo4TRTmzWv2E_nY2zHD6d6fkNtvX39f_ahufn6_vrq8qVzd8rmSksnOaqUYV22thZed1rITrvXWNWUZYYt3Tq6Vt00Pa8U0KO6V72rFOa9PyMWOd7t0ZV0HsYw3mi2GyeKTSTaY_ysxbMyQHgxnktWCs8LwZc-A6X6BPJspZAflHhHSko1opG6F0qop0NUO6jDljNC__cOZeRHP7MQze_FKw-f3073B_0lV_wVPAJtA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2846925658</pqid></control><display><type>article</type><title>Programmed fluorine binding engineering in anion-pillared metal-organic framework for record trace acetylene capture from ethylene</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Gu, Xiao-Wen ; Wu, Enyu ; Wang, Jia-Xin ; Wen, Hui-Min ; Chen, Banglin ; Li, Bin ; Qian, Guodong</creator><creatorcontrib>Gu, Xiao-Wen ; Wu, Enyu ; Wang, Jia-Xin ; Wen, Hui-Min ; Chen, Banglin ; Li, Bin ; Qian, Guodong</creatorcontrib><description>Porous physisorbents are attractive candidates for selective capture of trace gas or volatile compounds due to their low energy footprints. However, many physisorbents suffer from insufficient sorbate-sorbent interactions, resulting in low uptake or inadequate selectivity when gases are present at trace levels. Here, we report a strategy of programmed fluorine binding engineering in anion-pillared metal-organic frameworks to maximize C
H
binding affinity for benchmark trace C
H
capture from C
H
. A robust material (ZJU-300a) was elaborately designed to provide multiple-site fluorine binding model, resulting in an ultrastrong C
H
binding affinity. ZJU-300a exhibits a record-high C
H
uptake of 3.23 millimoles per gram (at 0.01 bar and 296 kelvin) and one of the highest C
H
/C
H
selectivity (1672). The adsorption binding of C
H
and C
H
was visualized by gas-loaded ZJU-300a structures. The separation capacity was confirmed by breakthrough experiments for 1/99 C
H
/C
H
mixtures, affording the maximal dynamic selectivity (264) and C
H
productivity of 436.7 millimoles per gram.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.adh0135</identifier><identifier>PMID: 37540740</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Chemistry ; Materials Science ; Physical and Materials Sciences ; SciAdv r-articles</subject><ispartof>Science advances, 2023-08, Vol.9 (31), p.eadh0135-eadh0135</ispartof><rights>Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-4404ba6550159362d4b664b2c9dac87402aac8cc475da8fe7506e51d5db351113</citedby><cites>FETCH-LOGICAL-c391t-4404ba6550159362d4b664b2c9dac87402aac8cc475da8fe7506e51d5db351113</cites><orcidid>0000-0003-2973-4107 ; 0000-0002-3531-3379 ; 0000-0002-7774-5452 ; 0009-0006-9077-7092 ; 0000-0001-8296-8696 ; 0000-0001-8707-8115</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10403210/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10403210/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37540740$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gu, Xiao-Wen</creatorcontrib><creatorcontrib>Wu, Enyu</creatorcontrib><creatorcontrib>Wang, Jia-Xin</creatorcontrib><creatorcontrib>Wen, Hui-Min</creatorcontrib><creatorcontrib>Chen, Banglin</creatorcontrib><creatorcontrib>Li, Bin</creatorcontrib><creatorcontrib>Qian, Guodong</creatorcontrib><title>Programmed fluorine binding engineering in anion-pillared metal-organic framework for record trace acetylene capture from ethylene</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>Porous physisorbents are attractive candidates for selective capture of trace gas or volatile compounds due to their low energy footprints. However, many physisorbents suffer from insufficient sorbate-sorbent interactions, resulting in low uptake or inadequate selectivity when gases are present at trace levels. Here, we report a strategy of programmed fluorine binding engineering in anion-pillared metal-organic frameworks to maximize C
H
binding affinity for benchmark trace C
H
capture from C
H
. A robust material (ZJU-300a) was elaborately designed to provide multiple-site fluorine binding model, resulting in an ultrastrong C
H
binding affinity. ZJU-300a exhibits a record-high C
H
uptake of 3.23 millimoles per gram (at 0.01 bar and 296 kelvin) and one of the highest C
H
/C
H
selectivity (1672). The adsorption binding of C
H
and C
H
was visualized by gas-loaded ZJU-300a structures. The separation capacity was confirmed by breakthrough experiments for 1/99 C
H
/C
H
mixtures, affording the maximal dynamic selectivity (264) and C
H
productivity of 436.7 millimoles per gram.</description><subject>Chemistry</subject><subject>Materials Science</subject><subject>Physical and Materials Sciences</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpVUU1P3DAQtVArQJQrx8rHXrLYju1NTgihfiAhtYdythx7knVJ7GWcgLjyy2vYLaKH0Yxn3jzPzCPkjLMV50KfZxesf1hZv2G8VgfkWNRrVQklmw_v4iNymvMfxhiXWiveHpKjUpJsLdkxef6FaUA7TeBpPy4JQwTahehDHCjEoTwBX-IQqY0hxWobxtFigU8w27FKOJS8o30hgceEd7RPSBFcQk9ntA5osflphELs7HZeEAo4TRTmzWv2E_nY2zHD6d6fkNtvX39f_ahufn6_vrq8qVzd8rmSksnOaqUYV22thZed1rITrvXWNWUZYYt3Tq6Vt00Pa8U0KO6V72rFOa9PyMWOd7t0ZV0HsYw3mi2GyeKTSTaY_ysxbMyQHgxnktWCs8LwZc-A6X6BPJspZAflHhHSko1opG6F0qop0NUO6jDljNC__cOZeRHP7MQze_FKw-f3073B_0lV_wVPAJtA</recordid><startdate>20230804</startdate><enddate>20230804</enddate><creator>Gu, Xiao-Wen</creator><creator>Wu, Enyu</creator><creator>Wang, Jia-Xin</creator><creator>Wen, Hui-Min</creator><creator>Chen, Banglin</creator><creator>Li, Bin</creator><creator>Qian, Guodong</creator><general>American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2973-4107</orcidid><orcidid>https://orcid.org/0000-0002-3531-3379</orcidid><orcidid>https://orcid.org/0000-0002-7774-5452</orcidid><orcidid>https://orcid.org/0009-0006-9077-7092</orcidid><orcidid>https://orcid.org/0000-0001-8296-8696</orcidid><orcidid>https://orcid.org/0000-0001-8707-8115</orcidid></search><sort><creationdate>20230804</creationdate><title>Programmed fluorine binding engineering in anion-pillared metal-organic framework for record trace acetylene capture from ethylene</title><author>Gu, Xiao-Wen ; Wu, Enyu ; Wang, Jia-Xin ; Wen, Hui-Min ; Chen, Banglin ; Li, Bin ; Qian, Guodong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-4404ba6550159362d4b664b2c9dac87402aac8cc475da8fe7506e51d5db351113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chemistry</topic><topic>Materials Science</topic><topic>Physical and Materials Sciences</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gu, Xiao-Wen</creatorcontrib><creatorcontrib>Wu, Enyu</creatorcontrib><creatorcontrib>Wang, Jia-Xin</creatorcontrib><creatorcontrib>Wen, Hui-Min</creatorcontrib><creatorcontrib>Chen, Banglin</creatorcontrib><creatorcontrib>Li, Bin</creatorcontrib><creatorcontrib>Qian, Guodong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gu, Xiao-Wen</au><au>Wu, Enyu</au><au>Wang, Jia-Xin</au><au>Wen, Hui-Min</au><au>Chen, Banglin</au><au>Li, Bin</au><au>Qian, Guodong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Programmed fluorine binding engineering in anion-pillared metal-organic framework for record trace acetylene capture from ethylene</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2023-08-04</date><risdate>2023</risdate><volume>9</volume><issue>31</issue><spage>eadh0135</spage><epage>eadh0135</epage><pages>eadh0135-eadh0135</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Porous physisorbents are attractive candidates for selective capture of trace gas or volatile compounds due to their low energy footprints. However, many physisorbents suffer from insufficient sorbate-sorbent interactions, resulting in low uptake or inadequate selectivity when gases are present at trace levels. Here, we report a strategy of programmed fluorine binding engineering in anion-pillared metal-organic frameworks to maximize C
H
binding affinity for benchmark trace C
H
capture from C
H
. A robust material (ZJU-300a) was elaborately designed to provide multiple-site fluorine binding model, resulting in an ultrastrong C
H
binding affinity. ZJU-300a exhibits a record-high C
H
uptake of 3.23 millimoles per gram (at 0.01 bar and 296 kelvin) and one of the highest C
H
/C
H
selectivity (1672). The adsorption binding of C
H
and C
H
was visualized by gas-loaded ZJU-300a structures. The separation capacity was confirmed by breakthrough experiments for 1/99 C
H
/C
H
mixtures, affording the maximal dynamic selectivity (264) and C
H
productivity of 436.7 millimoles per gram.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>37540740</pmid><doi>10.1126/sciadv.adh0135</doi><orcidid>https://orcid.org/0000-0003-2973-4107</orcidid><orcidid>https://orcid.org/0000-0002-3531-3379</orcidid><orcidid>https://orcid.org/0000-0002-7774-5452</orcidid><orcidid>https://orcid.org/0009-0006-9077-7092</orcidid><orcidid>https://orcid.org/0000-0001-8296-8696</orcidid><orcidid>https://orcid.org/0000-0001-8707-8115</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2375-2548 |
ispartof | Science advances, 2023-08, Vol.9 (31), p.eadh0135-eadh0135 |
issn | 2375-2548 2375-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10403210 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Chemistry Materials Science Physical and Materials Sciences SciAdv r-articles |
title | Programmed fluorine binding engineering in anion-pillared metal-organic framework for record trace acetylene capture from ethylene |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A40%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Programmed%20fluorine%20binding%20engineering%20in%20anion-pillared%20metal-organic%20framework%20for%20record%20trace%20acetylene%20capture%20from%20ethylene&rft.jtitle=Science%20advances&rft.au=Gu,%20Xiao-Wen&rft.date=2023-08-04&rft.volume=9&rft.issue=31&rft.spage=eadh0135&rft.epage=eadh0135&rft.pages=eadh0135-eadh0135&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.adh0135&rft_dat=%3Cproquest_pubme%3E2846925658%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2846925658&rft_id=info:pmid/37540740&rfr_iscdi=true |