Analytical study of the Lorenz system: Existence of infinitely many periodic orbits and their topological characterization

We consider the Lorenz equations, a system of three-dimensional ordinary differential equations modeling atmospheric convection. These equations are chaotic and hard to study even numerically, and so a simpler "geometric model" has been introduced in the seventies. One of the classical pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2023-08, Vol.120 (31), p.e2205552120-e2205552120
1. Verfasser: Pinsky, Tali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e2205552120
container_issue 31
container_start_page e2205552120
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 120
creator Pinsky, Tali
description We consider the Lorenz equations, a system of three-dimensional ordinary differential equations modeling atmospheric convection. These equations are chaotic and hard to study even numerically, and so a simpler "geometric model" has been introduced in the seventies. One of the classical problems in dynamical systems is to relate the original equations to the geometric model. This has been achieved numerically by Tucker for the classical parameter values and remains open for general values. In this paper, we establish analytically a relation to the geometric model for a different set of parameter values that we prove must exist. This is facilitated by finding a way to apply topological tools developed for the study of surface dynamics to the more intricate case of three-dimensional flows.
doi_str_mv 10.1073/pnas.2205552120
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10400991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2845707643</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-2adde153dbeaf31cba72c4e1c2f3bc1d9c2d82d1644a843ee14374a206b717433</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhi0EokvhzA1Z4sIl7fgja4cLqqpCK63USzlbju10XSV2sJ2K7K8nu_2AcrKleebRzLwIfSRwQkCw0zHofEIp1HVNCYVXaEWgIdWaN_AarQCoqCSn_Ai9y_kOAJpawlt0xASXAhpYod1Z0P1cvNE9zmWyM44dLluHNzG5sMN5zsUNX_HFb798gnH7ug-dD764fsaDDjMeXfLReoNjan3JWAe7d_iESxxjH28PerPVSZuysDtdfAzv0ZtO99l9eHyP0c_vFzfnl9Xm-sfV-dmmMpzSUlFtrSM1s63THSOm1YIa7oihHWsNsY2hVlJL1pxryZlzhC_raQrrVhDBGTtG3x6849QOzhoXStK9GpMfdJpV1F69rAS_VbfxXhHgy8Uashi-PBpS_DW5XNTgs3F9r4OLU1ZUciIl1FIu6Of_0Ls4peXGB6oWINaHkU4fKJNizsl1z9MQUPtg1T5Y9TfYpePTv0s8809Jsj-vd6KY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2845707643</pqid></control><display><type>article</type><title>Analytical study of the Lorenz system: Existence of infinitely many periodic orbits and their topological characterization</title><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Pinsky, Tali</creator><creatorcontrib>Pinsky, Tali</creatorcontrib><description>We consider the Lorenz equations, a system of three-dimensional ordinary differential equations modeling atmospheric convection. These equations are chaotic and hard to study even numerically, and so a simpler "geometric model" has been introduced in the seventies. One of the classical problems in dynamical systems is to relate the original equations to the geometric model. This has been achieved numerically by Tucker for the classical parameter values and remains open for general values. In this paper, we establish analytically a relation to the geometric model for a different set of parameter values that we prove must exist. This is facilitated by finding a way to apply topological tools developed for the study of surface dynamics to the more intricate case of three-dimensional flows.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2205552120</identifier><identifier>PMID: 37487090</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Atmospheric convection ; Atmospheric models ; Differential equations ; Dynamical systems ; Lorenz equations ; Lorenz system ; Mathematical models ; Orbits ; Parameters ; Physical Sciences ; Surface dynamics ; Three dimensional flow ; Topology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2023-08, Vol.120 (31), p.e2205552120-e2205552120</ispartof><rights>Copyright National Academy of Sciences Aug 1, 2023</rights><rights>Copyright © 2023 the Author(s). Published by PNAS. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-2adde153dbeaf31cba72c4e1c2f3bc1d9c2d82d1644a843ee14374a206b717433</citedby><cites>FETCH-LOGICAL-c422t-2adde153dbeaf31cba72c4e1c2f3bc1d9c2d82d1644a843ee14374a206b717433</cites><orcidid>0000-0002-6747-2382</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10400991/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10400991/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37487090$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pinsky, Tali</creatorcontrib><title>Analytical study of the Lorenz system: Existence of infinitely many periodic orbits and their topological characterization</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>We consider the Lorenz equations, a system of three-dimensional ordinary differential equations modeling atmospheric convection. These equations are chaotic and hard to study even numerically, and so a simpler "geometric model" has been introduced in the seventies. One of the classical problems in dynamical systems is to relate the original equations to the geometric model. This has been achieved numerically by Tucker for the classical parameter values and remains open for general values. In this paper, we establish analytically a relation to the geometric model for a different set of parameter values that we prove must exist. This is facilitated by finding a way to apply topological tools developed for the study of surface dynamics to the more intricate case of three-dimensional flows.</description><subject>Atmospheric convection</subject><subject>Atmospheric models</subject><subject>Differential equations</subject><subject>Dynamical systems</subject><subject>Lorenz equations</subject><subject>Lorenz system</subject><subject>Mathematical models</subject><subject>Orbits</subject><subject>Parameters</subject><subject>Physical Sciences</subject><subject>Surface dynamics</subject><subject>Three dimensional flow</subject><subject>Topology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkU1v1DAQhi0EokvhzA1Z4sIl7fgja4cLqqpCK63USzlbju10XSV2sJ2K7K8nu_2AcrKleebRzLwIfSRwQkCw0zHofEIp1HVNCYVXaEWgIdWaN_AarQCoqCSn_Ai9y_kOAJpawlt0xASXAhpYod1Z0P1cvNE9zmWyM44dLluHNzG5sMN5zsUNX_HFb798gnH7ug-dD764fsaDDjMeXfLReoNjan3JWAe7d_iESxxjH28PerPVSZuysDtdfAzv0ZtO99l9eHyP0c_vFzfnl9Xm-sfV-dmmMpzSUlFtrSM1s63THSOm1YIa7oihHWsNsY2hVlJL1pxryZlzhC_raQrrVhDBGTtG3x6849QOzhoXStK9GpMfdJpV1F69rAS_VbfxXhHgy8Uashi-PBpS_DW5XNTgs3F9r4OLU1ZUciIl1FIu6Of_0Ls4peXGB6oWINaHkU4fKJNizsl1z9MQUPtg1T5Y9TfYpePTv0s8809Jsj-vd6KY</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Pinsky, Tali</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6747-2382</orcidid></search><sort><creationdate>20230801</creationdate><title>Analytical study of the Lorenz system: Existence of infinitely many periodic orbits and their topological characterization</title><author>Pinsky, Tali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-2adde153dbeaf31cba72c4e1c2f3bc1d9c2d82d1644a843ee14374a206b717433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Atmospheric convection</topic><topic>Atmospheric models</topic><topic>Differential equations</topic><topic>Dynamical systems</topic><topic>Lorenz equations</topic><topic>Lorenz system</topic><topic>Mathematical models</topic><topic>Orbits</topic><topic>Parameters</topic><topic>Physical Sciences</topic><topic>Surface dynamics</topic><topic>Three dimensional flow</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pinsky, Tali</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pinsky, Tali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical study of the Lorenz system: Existence of infinitely many periodic orbits and their topological characterization</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>120</volume><issue>31</issue><spage>e2205552120</spage><epage>e2205552120</epage><pages>e2205552120-e2205552120</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>We consider the Lorenz equations, a system of three-dimensional ordinary differential equations modeling atmospheric convection. These equations are chaotic and hard to study even numerically, and so a simpler "geometric model" has been introduced in the seventies. One of the classical problems in dynamical systems is to relate the original equations to the geometric model. This has been achieved numerically by Tucker for the classical parameter values and remains open for general values. In this paper, we establish analytically a relation to the geometric model for a different set of parameter values that we prove must exist. This is facilitated by finding a way to apply topological tools developed for the study of surface dynamics to the more intricate case of three-dimensional flows.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>37487090</pmid><doi>10.1073/pnas.2205552120</doi><orcidid>https://orcid.org/0000-0002-6747-2382</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2023-08, Vol.120 (31), p.e2205552120-e2205552120
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10400991
source PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Atmospheric convection
Atmospheric models
Differential equations
Dynamical systems
Lorenz equations
Lorenz system
Mathematical models
Orbits
Parameters
Physical Sciences
Surface dynamics
Three dimensional flow
Topology
title Analytical study of the Lorenz system: Existence of infinitely many periodic orbits and their topological characterization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T05%3A22%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20study%20of%20the%20Lorenz%20system:%20Existence%20of%20infinitely%20many%20periodic%20orbits%20and%20their%20topological%20characterization&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Pinsky,%20Tali&rft.date=2023-08-01&rft.volume=120&rft.issue=31&rft.spage=e2205552120&rft.epage=e2205552120&rft.pages=e2205552120-e2205552120&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2205552120&rft_dat=%3Cproquest_pubme%3E2845707643%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2845707643&rft_id=info:pmid/37487090&rfr_iscdi=true