PRMT5 links lipid metabolism to contractile function of skeletal muscles

Skeletal muscle plays a key role in systemic energy homeostasis besides its contractile function, but what links these functions is poorly defined. Protein Arginine Methyl Transferase 5 (PRMT5) is a well‐known oncoprotein but also expressed in healthy tissues with unclear physiological functions. As...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EMBO reports 2023-08, Vol.24 (8), p.e57306-n/a
Hauptverfasser: Kim, Kun Ho, Jia, Zhihao, Snyder, Madigan, Chen, Jingjuan, Qiu, Jiamin, Oprescu, Stephanie N, Chen, Xiyue, Syed, Sabriya A, Yue, Feng, Roseguini, Bruno T, Imbalzano, Anthony N, Hu, Changdeng, Kuang, Shihuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 8
container_start_page e57306
container_title EMBO reports
container_volume 24
creator Kim, Kun Ho
Jia, Zhihao
Snyder, Madigan
Chen, Jingjuan
Qiu, Jiamin
Oprescu, Stephanie N
Chen, Xiyue
Syed, Sabriya A
Yue, Feng
Roseguini, Bruno T
Imbalzano, Anthony N
Hu, Changdeng
Kuang, Shihuan
description Skeletal muscle plays a key role in systemic energy homeostasis besides its contractile function, but what links these functions is poorly defined. Protein Arginine Methyl Transferase 5 (PRMT5) is a well‐known oncoprotein but also expressed in healthy tissues with unclear physiological functions. As adult muscles express high levels of Prmt5 , we generated skeletal muscle‐specific Prmt5 knockout ( Prmt5 MKO ) mice. We observe reduced muscle mass, oxidative capacity, force production, and exercise performance in Prmt5 MKO mice. The motor deficiency is associated with scarce lipid droplets in myofibers due to defects in lipid biosynthesis and accelerated degradation. Specifically, PRMT5 deletion reduces dimethylation and stability of Sterol Regulatory Element‐Binding Transcription Factor 1a (SREBP1a), a master regulator of de novo lipogenesis. Moreover, Prmt5 MKO impairs the repressive H4R3 symmetric dimethylation at the Pnpla2 promoter, elevating the level of its encoded protein ATGL, the rate‐limiting enzyme catalyzing lipolysis. Accordingly, skeletal muscle‐specific double knockout of Pnpla2 and Prmt5 normalizes muscle mass and function. Together, our findings delineate a physiological function of PRMT5 in linking lipid metabolism to contractile function of myofibers. Synopsis PRMT5 contributes to maintain overall energy homeostasis in skeletal muscle, and depletion of PRMT5 leads to a decline in muscle mass and functionality. Reduction of PRMT5 in skeletal muscles leads to impaired muscle contraction. Loss of PRMT5 results in the formation of atrophied myotubes lacking lipid droplets. PRMT5 catalyzes methylation of SREBP1 to promote lipogenesis. PRMT5 increases the repressive H4R3Me2s modification to suppress Pnpla2 (ATGL) gene expression and lipolysis. Graphical Abstract PRMT5 contributes to maintain overall energy homeostasis in skeletal muscle, and depletion of PRMT5 leads to a decline in muscle mass and functionality.
doi_str_mv 10.15252/embr.202357306
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10398672</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2827920932</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5146-7a3475be4f1351f692ca54a8d8dcc0ecab611399a7e2ac2f6400e3b6563610b93</originalsourceid><addsrcrecordid>eNqFkc1LHTEUxUOpVGu77k4GunHz9CaZJJNuiopfoLSIhe5CJu-OjmYmz2RG8b9vnu_51ELpJrmQ3zmcm0PIFwo7VDDBdrGr4w4DxoXiIN-RDVpKPeFUVe-XM2P09zr5mNINAAitqg9knSvOSw2wQU5-XpxfisK3_W3K56ydFh0Otg6-TV0xhMKFfojWDa3Hohn7PIS-CE2RbtFn0BfdmJzH9ImsNdYn_Ly8N8mvo8PLg5PJ2Y_j04O9s4kTOc5EWV4qUWPZUC5oIzVzVpS2mlZT5wCdrSWlXGurkFnHGlkCIK-lkFxSqDXfJN8XvrOx7nDqcB7Pm1lsOxsfTbCtefvSt9fmKtwbClxXUrHssL10iOFuxDSYrk0Ovbc9hjEZVjGlGWg-R7_-hd6EMfZ5v0yVAqiimmZqd0G5GFKK2KzSUDBPNZl5TWZVU1ZsvV5ixT_3koFvC-Ah__vj__zM4fn-xWt3WIhT1vVXGF9S_yvQH_Amrxw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2845017191</pqid></control><display><type>article</type><title>PRMT5 links lipid metabolism to contractile function of skeletal muscles</title><source>MEDLINE</source><source>Wiley Online Library Free Content</source><source>Springer Nature OA Free Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><source>PubMed Central</source><creator>Kim, Kun Ho ; Jia, Zhihao ; Snyder, Madigan ; Chen, Jingjuan ; Qiu, Jiamin ; Oprescu, Stephanie N ; Chen, Xiyue ; Syed, Sabriya A ; Yue, Feng ; Roseguini, Bruno T ; Imbalzano, Anthony N ; Hu, Changdeng ; Kuang, Shihuan</creator><creatorcontrib>Kim, Kun Ho ; Jia, Zhihao ; Snyder, Madigan ; Chen, Jingjuan ; Qiu, Jiamin ; Oprescu, Stephanie N ; Chen, Xiyue ; Syed, Sabriya A ; Yue, Feng ; Roseguini, Bruno T ; Imbalzano, Anthony N ; Hu, Changdeng ; Kuang, Shihuan</creatorcontrib><description>Skeletal muscle plays a key role in systemic energy homeostasis besides its contractile function, but what links these functions is poorly defined. Protein Arginine Methyl Transferase 5 (PRMT5) is a well‐known oncoprotein but also expressed in healthy tissues with unclear physiological functions. As adult muscles express high levels of Prmt5 , we generated skeletal muscle‐specific Prmt5 knockout ( Prmt5 MKO ) mice. We observe reduced muscle mass, oxidative capacity, force production, and exercise performance in Prmt5 MKO mice. The motor deficiency is associated with scarce lipid droplets in myofibers due to defects in lipid biosynthesis and accelerated degradation. Specifically, PRMT5 deletion reduces dimethylation and stability of Sterol Regulatory Element‐Binding Transcription Factor 1a (SREBP1a), a master regulator of de novo lipogenesis. Moreover, Prmt5 MKO impairs the repressive H4R3 symmetric dimethylation at the Pnpla2 promoter, elevating the level of its encoded protein ATGL, the rate‐limiting enzyme catalyzing lipolysis. Accordingly, skeletal muscle‐specific double knockout of Pnpla2 and Prmt5 normalizes muscle mass and function. Together, our findings delineate a physiological function of PRMT5 in linking lipid metabolism to contractile function of myofibers. Synopsis PRMT5 contributes to maintain overall energy homeostasis in skeletal muscle, and depletion of PRMT5 leads to a decline in muscle mass and functionality. Reduction of PRMT5 in skeletal muscles leads to impaired muscle contraction. Loss of PRMT5 results in the formation of atrophied myotubes lacking lipid droplets. PRMT5 catalyzes methylation of SREBP1 to promote lipogenesis. PRMT5 increases the repressive H4R3Me2s modification to suppress Pnpla2 (ATGL) gene expression and lipolysis. Graphical Abstract PRMT5 contributes to maintain overall energy homeostasis in skeletal muscle, and depletion of PRMT5 leads to a decline in muscle mass and functionality.</description><identifier>ISSN: 1469-221X</identifier><identifier>EISSN: 1469-3178</identifier><identifier>DOI: 10.15252/embr.202357306</identifier><identifier>PMID: 37334900</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Animals ; Arginine - metabolism ; Biosynthesis ; Droplets ; EMBO21 ; Energy balance ; Gene expression ; Homeostasis ; Life Sciences ; lipid droplet ; Lipid metabolism ; Lipid Metabolism - genetics ; Lipids ; Lipogenesis ; Lipolysis ; Metabolism ; Methylation ; Mice ; Muscle contraction ; Muscle, Skeletal - metabolism ; Muscles ; Muscular function ; Musculoskeletal system ; myofiber ; Myotubes ; Physiology ; posttranslational modification ; protein arginine methyltransferase ; Protein-Arginine N-Methyltransferases - genetics ; Protein-Arginine N-Methyltransferases - metabolism ; Proteins ; Regulatory sequences ; Skeletal muscle ; Transferases - metabolism</subject><ispartof>EMBO reports, 2023-08, Vol.24 (8), p.e57306-n/a</ispartof><rights>The Author(s) 2023</rights><rights>2023 The Authors. Published under the terms of the CC BY NC ND 4.0 license</rights><rights>2023 The Authors. Published under the terms of the CC BY NC ND 4.0 license.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5146-7a3475be4f1351f692ca54a8d8dcc0ecab611399a7e2ac2f6400e3b6563610b93</citedby><cites>FETCH-LOGICAL-c5146-7a3475be4f1351f692ca54a8d8dcc0ecab611399a7e2ac2f6400e3b6563610b93</cites><orcidid>0000-0001-9180-3180 ; 0000-0002-5047-703X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10398672/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10398672/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1417,1433,27924,27925,41120,42189,45574,45575,46409,46833,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37334900$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Kun Ho</creatorcontrib><creatorcontrib>Jia, Zhihao</creatorcontrib><creatorcontrib>Snyder, Madigan</creatorcontrib><creatorcontrib>Chen, Jingjuan</creatorcontrib><creatorcontrib>Qiu, Jiamin</creatorcontrib><creatorcontrib>Oprescu, Stephanie N</creatorcontrib><creatorcontrib>Chen, Xiyue</creatorcontrib><creatorcontrib>Syed, Sabriya A</creatorcontrib><creatorcontrib>Yue, Feng</creatorcontrib><creatorcontrib>Roseguini, Bruno T</creatorcontrib><creatorcontrib>Imbalzano, Anthony N</creatorcontrib><creatorcontrib>Hu, Changdeng</creatorcontrib><creatorcontrib>Kuang, Shihuan</creatorcontrib><title>PRMT5 links lipid metabolism to contractile function of skeletal muscles</title><title>EMBO reports</title><addtitle>EMBO Rep</addtitle><addtitle>EMBO Rep</addtitle><description>Skeletal muscle plays a key role in systemic energy homeostasis besides its contractile function, but what links these functions is poorly defined. Protein Arginine Methyl Transferase 5 (PRMT5) is a well‐known oncoprotein but also expressed in healthy tissues with unclear physiological functions. As adult muscles express high levels of Prmt5 , we generated skeletal muscle‐specific Prmt5 knockout ( Prmt5 MKO ) mice. We observe reduced muscle mass, oxidative capacity, force production, and exercise performance in Prmt5 MKO mice. The motor deficiency is associated with scarce lipid droplets in myofibers due to defects in lipid biosynthesis and accelerated degradation. Specifically, PRMT5 deletion reduces dimethylation and stability of Sterol Regulatory Element‐Binding Transcription Factor 1a (SREBP1a), a master regulator of de novo lipogenesis. Moreover, Prmt5 MKO impairs the repressive H4R3 symmetric dimethylation at the Pnpla2 promoter, elevating the level of its encoded protein ATGL, the rate‐limiting enzyme catalyzing lipolysis. Accordingly, skeletal muscle‐specific double knockout of Pnpla2 and Prmt5 normalizes muscle mass and function. Together, our findings delineate a physiological function of PRMT5 in linking lipid metabolism to contractile function of myofibers. Synopsis PRMT5 contributes to maintain overall energy homeostasis in skeletal muscle, and depletion of PRMT5 leads to a decline in muscle mass and functionality. Reduction of PRMT5 in skeletal muscles leads to impaired muscle contraction. Loss of PRMT5 results in the formation of atrophied myotubes lacking lipid droplets. PRMT5 catalyzes methylation of SREBP1 to promote lipogenesis. PRMT5 increases the repressive H4R3Me2s modification to suppress Pnpla2 (ATGL) gene expression and lipolysis. Graphical Abstract PRMT5 contributes to maintain overall energy homeostasis in skeletal muscle, and depletion of PRMT5 leads to a decline in muscle mass and functionality.</description><subject>Animals</subject><subject>Arginine - metabolism</subject><subject>Biosynthesis</subject><subject>Droplets</subject><subject>EMBO21</subject><subject>Energy balance</subject><subject>Gene expression</subject><subject>Homeostasis</subject><subject>Life Sciences</subject><subject>lipid droplet</subject><subject>Lipid metabolism</subject><subject>Lipid Metabolism - genetics</subject><subject>Lipids</subject><subject>Lipogenesis</subject><subject>Lipolysis</subject><subject>Metabolism</subject><subject>Methylation</subject><subject>Mice</subject><subject>Muscle contraction</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscles</subject><subject>Muscular function</subject><subject>Musculoskeletal system</subject><subject>myofiber</subject><subject>Myotubes</subject><subject>Physiology</subject><subject>posttranslational modification</subject><subject>protein arginine methyltransferase</subject><subject>Protein-Arginine N-Methyltransferases - genetics</subject><subject>Protein-Arginine N-Methyltransferases - metabolism</subject><subject>Proteins</subject><subject>Regulatory sequences</subject><subject>Skeletal muscle</subject><subject>Transferases - metabolism</subject><issn>1469-221X</issn><issn>1469-3178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkc1LHTEUxUOpVGu77k4GunHz9CaZJJNuiopfoLSIhe5CJu-OjmYmz2RG8b9vnu_51ELpJrmQ3zmcm0PIFwo7VDDBdrGr4w4DxoXiIN-RDVpKPeFUVe-XM2P09zr5mNINAAitqg9knSvOSw2wQU5-XpxfisK3_W3K56ydFh0Otg6-TV0xhMKFfojWDa3Hohn7PIS-CE2RbtFn0BfdmJzH9ImsNdYn_Ly8N8mvo8PLg5PJ2Y_j04O9s4kTOc5EWV4qUWPZUC5oIzVzVpS2mlZT5wCdrSWlXGurkFnHGlkCIK-lkFxSqDXfJN8XvrOx7nDqcB7Pm1lsOxsfTbCtefvSt9fmKtwbClxXUrHssL10iOFuxDSYrk0Ovbc9hjEZVjGlGWg-R7_-hd6EMfZ5v0yVAqiimmZqd0G5GFKK2KzSUDBPNZl5TWZVU1ZsvV5ixT_3koFvC-Ah__vj__zM4fn-xWt3WIhT1vVXGF9S_yvQH_Amrxw</recordid><startdate>20230803</startdate><enddate>20230803</enddate><creator>Kim, Kun Ho</creator><creator>Jia, Zhihao</creator><creator>Snyder, Madigan</creator><creator>Chen, Jingjuan</creator><creator>Qiu, Jiamin</creator><creator>Oprescu, Stephanie N</creator><creator>Chen, Xiyue</creator><creator>Syed, Sabriya A</creator><creator>Yue, Feng</creator><creator>Roseguini, Bruno T</creator><creator>Imbalzano, Anthony N</creator><creator>Hu, Changdeng</creator><creator>Kuang, Shihuan</creator><general>Nature Publishing Group UK</general><general>Blackwell Publishing Ltd</general><general>John Wiley and Sons Inc</general><scope>C6C</scope><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9180-3180</orcidid><orcidid>https://orcid.org/0000-0002-5047-703X</orcidid></search><sort><creationdate>20230803</creationdate><title>PRMT5 links lipid metabolism to contractile function of skeletal muscles</title><author>Kim, Kun Ho ; Jia, Zhihao ; Snyder, Madigan ; Chen, Jingjuan ; Qiu, Jiamin ; Oprescu, Stephanie N ; Chen, Xiyue ; Syed, Sabriya A ; Yue, Feng ; Roseguini, Bruno T ; Imbalzano, Anthony N ; Hu, Changdeng ; Kuang, Shihuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5146-7a3475be4f1351f692ca54a8d8dcc0ecab611399a7e2ac2f6400e3b6563610b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>Arginine - metabolism</topic><topic>Biosynthesis</topic><topic>Droplets</topic><topic>EMBO21</topic><topic>Energy balance</topic><topic>Gene expression</topic><topic>Homeostasis</topic><topic>Life Sciences</topic><topic>lipid droplet</topic><topic>Lipid metabolism</topic><topic>Lipid Metabolism - genetics</topic><topic>Lipids</topic><topic>Lipogenesis</topic><topic>Lipolysis</topic><topic>Metabolism</topic><topic>Methylation</topic><topic>Mice</topic><topic>Muscle contraction</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscles</topic><topic>Muscular function</topic><topic>Musculoskeletal system</topic><topic>myofiber</topic><topic>Myotubes</topic><topic>Physiology</topic><topic>posttranslational modification</topic><topic>protein arginine methyltransferase</topic><topic>Protein-Arginine N-Methyltransferases - genetics</topic><topic>Protein-Arginine N-Methyltransferases - metabolism</topic><topic>Proteins</topic><topic>Regulatory sequences</topic><topic>Skeletal muscle</topic><topic>Transferases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Kun Ho</creatorcontrib><creatorcontrib>Jia, Zhihao</creatorcontrib><creatorcontrib>Snyder, Madigan</creatorcontrib><creatorcontrib>Chen, Jingjuan</creatorcontrib><creatorcontrib>Qiu, Jiamin</creatorcontrib><creatorcontrib>Oprescu, Stephanie N</creatorcontrib><creatorcontrib>Chen, Xiyue</creatorcontrib><creatorcontrib>Syed, Sabriya A</creatorcontrib><creatorcontrib>Yue, Feng</creatorcontrib><creatorcontrib>Roseguini, Bruno T</creatorcontrib><creatorcontrib>Imbalzano, Anthony N</creatorcontrib><creatorcontrib>Hu, Changdeng</creatorcontrib><creatorcontrib>Kuang, Shihuan</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>EMBO reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Kun Ho</au><au>Jia, Zhihao</au><au>Snyder, Madigan</au><au>Chen, Jingjuan</au><au>Qiu, Jiamin</au><au>Oprescu, Stephanie N</au><au>Chen, Xiyue</au><au>Syed, Sabriya A</au><au>Yue, Feng</au><au>Roseguini, Bruno T</au><au>Imbalzano, Anthony N</au><au>Hu, Changdeng</au><au>Kuang, Shihuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PRMT5 links lipid metabolism to contractile function of skeletal muscles</atitle><jtitle>EMBO reports</jtitle><stitle>EMBO Rep</stitle><addtitle>EMBO Rep</addtitle><date>2023-08-03</date><risdate>2023</risdate><volume>24</volume><issue>8</issue><spage>e57306</spage><epage>n/a</epage><pages>e57306-n/a</pages><issn>1469-221X</issn><eissn>1469-3178</eissn><abstract>Skeletal muscle plays a key role in systemic energy homeostasis besides its contractile function, but what links these functions is poorly defined. Protein Arginine Methyl Transferase 5 (PRMT5) is a well‐known oncoprotein but also expressed in healthy tissues with unclear physiological functions. As adult muscles express high levels of Prmt5 , we generated skeletal muscle‐specific Prmt5 knockout ( Prmt5 MKO ) mice. We observe reduced muscle mass, oxidative capacity, force production, and exercise performance in Prmt5 MKO mice. The motor deficiency is associated with scarce lipid droplets in myofibers due to defects in lipid biosynthesis and accelerated degradation. Specifically, PRMT5 deletion reduces dimethylation and stability of Sterol Regulatory Element‐Binding Transcription Factor 1a (SREBP1a), a master regulator of de novo lipogenesis. Moreover, Prmt5 MKO impairs the repressive H4R3 symmetric dimethylation at the Pnpla2 promoter, elevating the level of its encoded protein ATGL, the rate‐limiting enzyme catalyzing lipolysis. Accordingly, skeletal muscle‐specific double knockout of Pnpla2 and Prmt5 normalizes muscle mass and function. Together, our findings delineate a physiological function of PRMT5 in linking lipid metabolism to contractile function of myofibers. Synopsis PRMT5 contributes to maintain overall energy homeostasis in skeletal muscle, and depletion of PRMT5 leads to a decline in muscle mass and functionality. Reduction of PRMT5 in skeletal muscles leads to impaired muscle contraction. Loss of PRMT5 results in the formation of atrophied myotubes lacking lipid droplets. PRMT5 catalyzes methylation of SREBP1 to promote lipogenesis. PRMT5 increases the repressive H4R3Me2s modification to suppress Pnpla2 (ATGL) gene expression and lipolysis. Graphical Abstract PRMT5 contributes to maintain overall energy homeostasis in skeletal muscle, and depletion of PRMT5 leads to a decline in muscle mass and functionality.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37334900</pmid><doi>10.15252/embr.202357306</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-9180-3180</orcidid><orcidid>https://orcid.org/0000-0002-5047-703X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1469-221X
ispartof EMBO reports, 2023-08, Vol.24 (8), p.e57306-n/a
issn 1469-221X
1469-3178
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10398672
source MEDLINE; Wiley Online Library Free Content; Springer Nature OA Free Journals; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals; PubMed Central
subjects Animals
Arginine - metabolism
Biosynthesis
Droplets
EMBO21
Energy balance
Gene expression
Homeostasis
Life Sciences
lipid droplet
Lipid metabolism
Lipid Metabolism - genetics
Lipids
Lipogenesis
Lipolysis
Metabolism
Methylation
Mice
Muscle contraction
Muscle, Skeletal - metabolism
Muscles
Muscular function
Musculoskeletal system
myofiber
Myotubes
Physiology
posttranslational modification
protein arginine methyltransferase
Protein-Arginine N-Methyltransferases - genetics
Protein-Arginine N-Methyltransferases - metabolism
Proteins
Regulatory sequences
Skeletal muscle
Transferases - metabolism
title PRMT5 links lipid metabolism to contractile function of skeletal muscles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A41%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PRMT5%20links%20lipid%20metabolism%20to%20contractile%20function%20of%20skeletal%20muscles&rft.jtitle=EMBO%20reports&rft.au=Kim,%20Kun%20Ho&rft.date=2023-08-03&rft.volume=24&rft.issue=8&rft.spage=e57306&rft.epage=n/a&rft.pages=e57306-n/a&rft.issn=1469-221X&rft.eissn=1469-3178&rft_id=info:doi/10.15252/embr.202357306&rft_dat=%3Cproquest_pubme%3E2827920932%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2845017191&rft_id=info:pmid/37334900&rfr_iscdi=true