PRMT5 links lipid metabolism to contractile function of skeletal muscles
Skeletal muscle plays a key role in systemic energy homeostasis besides its contractile function, but what links these functions is poorly defined. Protein Arginine Methyl Transferase 5 (PRMT5) is a well‐known oncoprotein but also expressed in healthy tissues with unclear physiological functions. As...
Gespeichert in:
Veröffentlicht in: | EMBO reports 2023-08, Vol.24 (8), p.e57306-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 8 |
container_start_page | e57306 |
container_title | EMBO reports |
container_volume | 24 |
creator | Kim, Kun Ho Jia, Zhihao Snyder, Madigan Chen, Jingjuan Qiu, Jiamin Oprescu, Stephanie N Chen, Xiyue Syed, Sabriya A Yue, Feng Roseguini, Bruno T Imbalzano, Anthony N Hu, Changdeng Kuang, Shihuan |
description | Skeletal muscle plays a key role in systemic energy homeostasis besides its contractile function, but what links these functions is poorly defined. Protein Arginine Methyl Transferase 5 (PRMT5) is a well‐known oncoprotein but also expressed in healthy tissues with unclear physiological functions. As adult muscles express high levels of
Prmt5
, we generated skeletal muscle‐specific
Prmt5
knockout (
Prmt5
MKO
) mice. We observe reduced muscle mass, oxidative capacity, force production, and exercise performance in
Prmt5
MKO
mice. The motor deficiency is associated with scarce lipid droplets in myofibers due to defects in lipid biosynthesis and accelerated degradation. Specifically, PRMT5 deletion reduces dimethylation and stability of Sterol Regulatory Element‐Binding Transcription Factor 1a (SREBP1a), a master regulator of
de novo
lipogenesis. Moreover,
Prmt5
MKO
impairs the repressive H4R3 symmetric dimethylation at the
Pnpla2
promoter, elevating the level of its encoded protein ATGL, the rate‐limiting enzyme catalyzing lipolysis. Accordingly, skeletal muscle‐specific double knockout of
Pnpla2
and
Prmt5
normalizes muscle mass and function. Together, our findings delineate a physiological function of PRMT5 in linking lipid metabolism to contractile function of myofibers.
Synopsis
PRMT5 contributes to maintain overall energy homeostasis in skeletal muscle, and depletion of PRMT5 leads to a decline in muscle mass and functionality.
Reduction of PRMT5 in skeletal muscles leads to impaired muscle contraction.
Loss of PRMT5 results in the formation of atrophied myotubes lacking lipid droplets.
PRMT5 catalyzes methylation of SREBP1 to promote lipogenesis.
PRMT5 increases the repressive H4R3Me2s modification to suppress Pnpla2 (ATGL) gene expression and lipolysis.
Graphical Abstract
PRMT5 contributes to maintain overall energy homeostasis in skeletal muscle, and depletion of PRMT5 leads to a decline in muscle mass and functionality. |
doi_str_mv | 10.15252/embr.202357306 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10398672</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2827920932</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5146-7a3475be4f1351f692ca54a8d8dcc0ecab611399a7e2ac2f6400e3b6563610b93</originalsourceid><addsrcrecordid>eNqFkc1LHTEUxUOpVGu77k4GunHz9CaZJJNuiopfoLSIhe5CJu-OjmYmz2RG8b9vnu_51ELpJrmQ3zmcm0PIFwo7VDDBdrGr4w4DxoXiIN-RDVpKPeFUVe-XM2P09zr5mNINAAitqg9knSvOSw2wQU5-XpxfisK3_W3K56ydFh0Otg6-TV0xhMKFfojWDa3Hohn7PIS-CE2RbtFn0BfdmJzH9ImsNdYn_Ly8N8mvo8PLg5PJ2Y_j04O9s4kTOc5EWV4qUWPZUC5oIzVzVpS2mlZT5wCdrSWlXGurkFnHGlkCIK-lkFxSqDXfJN8XvrOx7nDqcB7Pm1lsOxsfTbCtefvSt9fmKtwbClxXUrHssL10iOFuxDSYrk0Ovbc9hjEZVjGlGWg-R7_-hd6EMfZ5v0yVAqiimmZqd0G5GFKK2KzSUDBPNZl5TWZVU1ZsvV5ixT_3koFvC-Ah__vj__zM4fn-xWt3WIhT1vVXGF9S_yvQH_Amrxw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2845017191</pqid></control><display><type>article</type><title>PRMT5 links lipid metabolism to contractile function of skeletal muscles</title><source>MEDLINE</source><source>Wiley Online Library Free Content</source><source>Springer Nature OA Free Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><source>PubMed Central</source><creator>Kim, Kun Ho ; Jia, Zhihao ; Snyder, Madigan ; Chen, Jingjuan ; Qiu, Jiamin ; Oprescu, Stephanie N ; Chen, Xiyue ; Syed, Sabriya A ; Yue, Feng ; Roseguini, Bruno T ; Imbalzano, Anthony N ; Hu, Changdeng ; Kuang, Shihuan</creator><creatorcontrib>Kim, Kun Ho ; Jia, Zhihao ; Snyder, Madigan ; Chen, Jingjuan ; Qiu, Jiamin ; Oprescu, Stephanie N ; Chen, Xiyue ; Syed, Sabriya A ; Yue, Feng ; Roseguini, Bruno T ; Imbalzano, Anthony N ; Hu, Changdeng ; Kuang, Shihuan</creatorcontrib><description>Skeletal muscle plays a key role in systemic energy homeostasis besides its contractile function, but what links these functions is poorly defined. Protein Arginine Methyl Transferase 5 (PRMT5) is a well‐known oncoprotein but also expressed in healthy tissues with unclear physiological functions. As adult muscles express high levels of
Prmt5
, we generated skeletal muscle‐specific
Prmt5
knockout (
Prmt5
MKO
) mice. We observe reduced muscle mass, oxidative capacity, force production, and exercise performance in
Prmt5
MKO
mice. The motor deficiency is associated with scarce lipid droplets in myofibers due to defects in lipid biosynthesis and accelerated degradation. Specifically, PRMT5 deletion reduces dimethylation and stability of Sterol Regulatory Element‐Binding Transcription Factor 1a (SREBP1a), a master regulator of
de novo
lipogenesis. Moreover,
Prmt5
MKO
impairs the repressive H4R3 symmetric dimethylation at the
Pnpla2
promoter, elevating the level of its encoded protein ATGL, the rate‐limiting enzyme catalyzing lipolysis. Accordingly, skeletal muscle‐specific double knockout of
Pnpla2
and
Prmt5
normalizes muscle mass and function. Together, our findings delineate a physiological function of PRMT5 in linking lipid metabolism to contractile function of myofibers.
Synopsis
PRMT5 contributes to maintain overall energy homeostasis in skeletal muscle, and depletion of PRMT5 leads to a decline in muscle mass and functionality.
Reduction of PRMT5 in skeletal muscles leads to impaired muscle contraction.
Loss of PRMT5 results in the formation of atrophied myotubes lacking lipid droplets.
PRMT5 catalyzes methylation of SREBP1 to promote lipogenesis.
PRMT5 increases the repressive H4R3Me2s modification to suppress Pnpla2 (ATGL) gene expression and lipolysis.
Graphical Abstract
PRMT5 contributes to maintain overall energy homeostasis in skeletal muscle, and depletion of PRMT5 leads to a decline in muscle mass and functionality.</description><identifier>ISSN: 1469-221X</identifier><identifier>EISSN: 1469-3178</identifier><identifier>DOI: 10.15252/embr.202357306</identifier><identifier>PMID: 37334900</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Animals ; Arginine - metabolism ; Biosynthesis ; Droplets ; EMBO21 ; Energy balance ; Gene expression ; Homeostasis ; Life Sciences ; lipid droplet ; Lipid metabolism ; Lipid Metabolism - genetics ; Lipids ; Lipogenesis ; Lipolysis ; Metabolism ; Methylation ; Mice ; Muscle contraction ; Muscle, Skeletal - metabolism ; Muscles ; Muscular function ; Musculoskeletal system ; myofiber ; Myotubes ; Physiology ; posttranslational modification ; protein arginine methyltransferase ; Protein-Arginine N-Methyltransferases - genetics ; Protein-Arginine N-Methyltransferases - metabolism ; Proteins ; Regulatory sequences ; Skeletal muscle ; Transferases - metabolism</subject><ispartof>EMBO reports, 2023-08, Vol.24 (8), p.e57306-n/a</ispartof><rights>The Author(s) 2023</rights><rights>2023 The Authors. Published under the terms of the CC BY NC ND 4.0 license</rights><rights>2023 The Authors. Published under the terms of the CC BY NC ND 4.0 license.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5146-7a3475be4f1351f692ca54a8d8dcc0ecab611399a7e2ac2f6400e3b6563610b93</citedby><cites>FETCH-LOGICAL-c5146-7a3475be4f1351f692ca54a8d8dcc0ecab611399a7e2ac2f6400e3b6563610b93</cites><orcidid>0000-0001-9180-3180 ; 0000-0002-5047-703X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10398672/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10398672/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1417,1433,27924,27925,41120,42189,45574,45575,46409,46833,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37334900$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Kun Ho</creatorcontrib><creatorcontrib>Jia, Zhihao</creatorcontrib><creatorcontrib>Snyder, Madigan</creatorcontrib><creatorcontrib>Chen, Jingjuan</creatorcontrib><creatorcontrib>Qiu, Jiamin</creatorcontrib><creatorcontrib>Oprescu, Stephanie N</creatorcontrib><creatorcontrib>Chen, Xiyue</creatorcontrib><creatorcontrib>Syed, Sabriya A</creatorcontrib><creatorcontrib>Yue, Feng</creatorcontrib><creatorcontrib>Roseguini, Bruno T</creatorcontrib><creatorcontrib>Imbalzano, Anthony N</creatorcontrib><creatorcontrib>Hu, Changdeng</creatorcontrib><creatorcontrib>Kuang, Shihuan</creatorcontrib><title>PRMT5 links lipid metabolism to contractile function of skeletal muscles</title><title>EMBO reports</title><addtitle>EMBO Rep</addtitle><addtitle>EMBO Rep</addtitle><description>Skeletal muscle plays a key role in systemic energy homeostasis besides its contractile function, but what links these functions is poorly defined. Protein Arginine Methyl Transferase 5 (PRMT5) is a well‐known oncoprotein but also expressed in healthy tissues with unclear physiological functions. As adult muscles express high levels of
Prmt5
, we generated skeletal muscle‐specific
Prmt5
knockout (
Prmt5
MKO
) mice. We observe reduced muscle mass, oxidative capacity, force production, and exercise performance in
Prmt5
MKO
mice. The motor deficiency is associated with scarce lipid droplets in myofibers due to defects in lipid biosynthesis and accelerated degradation. Specifically, PRMT5 deletion reduces dimethylation and stability of Sterol Regulatory Element‐Binding Transcription Factor 1a (SREBP1a), a master regulator of
de novo
lipogenesis. Moreover,
Prmt5
MKO
impairs the repressive H4R3 symmetric dimethylation at the
Pnpla2
promoter, elevating the level of its encoded protein ATGL, the rate‐limiting enzyme catalyzing lipolysis. Accordingly, skeletal muscle‐specific double knockout of
Pnpla2
and
Prmt5
normalizes muscle mass and function. Together, our findings delineate a physiological function of PRMT5 in linking lipid metabolism to contractile function of myofibers.
Synopsis
PRMT5 contributes to maintain overall energy homeostasis in skeletal muscle, and depletion of PRMT5 leads to a decline in muscle mass and functionality.
Reduction of PRMT5 in skeletal muscles leads to impaired muscle contraction.
Loss of PRMT5 results in the formation of atrophied myotubes lacking lipid droplets.
PRMT5 catalyzes methylation of SREBP1 to promote lipogenesis.
PRMT5 increases the repressive H4R3Me2s modification to suppress Pnpla2 (ATGL) gene expression and lipolysis.
Graphical Abstract
PRMT5 contributes to maintain overall energy homeostasis in skeletal muscle, and depletion of PRMT5 leads to a decline in muscle mass and functionality.</description><subject>Animals</subject><subject>Arginine - metabolism</subject><subject>Biosynthesis</subject><subject>Droplets</subject><subject>EMBO21</subject><subject>Energy balance</subject><subject>Gene expression</subject><subject>Homeostasis</subject><subject>Life Sciences</subject><subject>lipid droplet</subject><subject>Lipid metabolism</subject><subject>Lipid Metabolism - genetics</subject><subject>Lipids</subject><subject>Lipogenesis</subject><subject>Lipolysis</subject><subject>Metabolism</subject><subject>Methylation</subject><subject>Mice</subject><subject>Muscle contraction</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscles</subject><subject>Muscular function</subject><subject>Musculoskeletal system</subject><subject>myofiber</subject><subject>Myotubes</subject><subject>Physiology</subject><subject>posttranslational modification</subject><subject>protein arginine methyltransferase</subject><subject>Protein-Arginine N-Methyltransferases - genetics</subject><subject>Protein-Arginine N-Methyltransferases - metabolism</subject><subject>Proteins</subject><subject>Regulatory sequences</subject><subject>Skeletal muscle</subject><subject>Transferases - metabolism</subject><issn>1469-221X</issn><issn>1469-3178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkc1LHTEUxUOpVGu77k4GunHz9CaZJJNuiopfoLSIhe5CJu-OjmYmz2RG8b9vnu_51ELpJrmQ3zmcm0PIFwo7VDDBdrGr4w4DxoXiIN-RDVpKPeFUVe-XM2P09zr5mNINAAitqg9knSvOSw2wQU5-XpxfisK3_W3K56ydFh0Otg6-TV0xhMKFfojWDa3Hohn7PIS-CE2RbtFn0BfdmJzH9ImsNdYn_Ly8N8mvo8PLg5PJ2Y_j04O9s4kTOc5EWV4qUWPZUC5oIzVzVpS2mlZT5wCdrSWlXGurkFnHGlkCIK-lkFxSqDXfJN8XvrOx7nDqcB7Pm1lsOxsfTbCtefvSt9fmKtwbClxXUrHssL10iOFuxDSYrk0Ovbc9hjEZVjGlGWg-R7_-hd6EMfZ5v0yVAqiimmZqd0G5GFKK2KzSUDBPNZl5TWZVU1ZsvV5ixT_3koFvC-Ah__vj__zM4fn-xWt3WIhT1vVXGF9S_yvQH_Amrxw</recordid><startdate>20230803</startdate><enddate>20230803</enddate><creator>Kim, Kun Ho</creator><creator>Jia, Zhihao</creator><creator>Snyder, Madigan</creator><creator>Chen, Jingjuan</creator><creator>Qiu, Jiamin</creator><creator>Oprescu, Stephanie N</creator><creator>Chen, Xiyue</creator><creator>Syed, Sabriya A</creator><creator>Yue, Feng</creator><creator>Roseguini, Bruno T</creator><creator>Imbalzano, Anthony N</creator><creator>Hu, Changdeng</creator><creator>Kuang, Shihuan</creator><general>Nature Publishing Group UK</general><general>Blackwell Publishing Ltd</general><general>John Wiley and Sons Inc</general><scope>C6C</scope><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9180-3180</orcidid><orcidid>https://orcid.org/0000-0002-5047-703X</orcidid></search><sort><creationdate>20230803</creationdate><title>PRMT5 links lipid metabolism to contractile function of skeletal muscles</title><author>Kim, Kun Ho ; Jia, Zhihao ; Snyder, Madigan ; Chen, Jingjuan ; Qiu, Jiamin ; Oprescu, Stephanie N ; Chen, Xiyue ; Syed, Sabriya A ; Yue, Feng ; Roseguini, Bruno T ; Imbalzano, Anthony N ; Hu, Changdeng ; Kuang, Shihuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5146-7a3475be4f1351f692ca54a8d8dcc0ecab611399a7e2ac2f6400e3b6563610b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>Arginine - metabolism</topic><topic>Biosynthesis</topic><topic>Droplets</topic><topic>EMBO21</topic><topic>Energy balance</topic><topic>Gene expression</topic><topic>Homeostasis</topic><topic>Life Sciences</topic><topic>lipid droplet</topic><topic>Lipid metabolism</topic><topic>Lipid Metabolism - genetics</topic><topic>Lipids</topic><topic>Lipogenesis</topic><topic>Lipolysis</topic><topic>Metabolism</topic><topic>Methylation</topic><topic>Mice</topic><topic>Muscle contraction</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscles</topic><topic>Muscular function</topic><topic>Musculoskeletal system</topic><topic>myofiber</topic><topic>Myotubes</topic><topic>Physiology</topic><topic>posttranslational modification</topic><topic>protein arginine methyltransferase</topic><topic>Protein-Arginine N-Methyltransferases - genetics</topic><topic>Protein-Arginine N-Methyltransferases - metabolism</topic><topic>Proteins</topic><topic>Regulatory sequences</topic><topic>Skeletal muscle</topic><topic>Transferases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Kun Ho</creatorcontrib><creatorcontrib>Jia, Zhihao</creatorcontrib><creatorcontrib>Snyder, Madigan</creatorcontrib><creatorcontrib>Chen, Jingjuan</creatorcontrib><creatorcontrib>Qiu, Jiamin</creatorcontrib><creatorcontrib>Oprescu, Stephanie N</creatorcontrib><creatorcontrib>Chen, Xiyue</creatorcontrib><creatorcontrib>Syed, Sabriya A</creatorcontrib><creatorcontrib>Yue, Feng</creatorcontrib><creatorcontrib>Roseguini, Bruno T</creatorcontrib><creatorcontrib>Imbalzano, Anthony N</creatorcontrib><creatorcontrib>Hu, Changdeng</creatorcontrib><creatorcontrib>Kuang, Shihuan</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>EMBO reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Kun Ho</au><au>Jia, Zhihao</au><au>Snyder, Madigan</au><au>Chen, Jingjuan</au><au>Qiu, Jiamin</au><au>Oprescu, Stephanie N</au><au>Chen, Xiyue</au><au>Syed, Sabriya A</au><au>Yue, Feng</au><au>Roseguini, Bruno T</au><au>Imbalzano, Anthony N</au><au>Hu, Changdeng</au><au>Kuang, Shihuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PRMT5 links lipid metabolism to contractile function of skeletal muscles</atitle><jtitle>EMBO reports</jtitle><stitle>EMBO Rep</stitle><addtitle>EMBO Rep</addtitle><date>2023-08-03</date><risdate>2023</risdate><volume>24</volume><issue>8</issue><spage>e57306</spage><epage>n/a</epage><pages>e57306-n/a</pages><issn>1469-221X</issn><eissn>1469-3178</eissn><abstract>Skeletal muscle plays a key role in systemic energy homeostasis besides its contractile function, but what links these functions is poorly defined. Protein Arginine Methyl Transferase 5 (PRMT5) is a well‐known oncoprotein but also expressed in healthy tissues with unclear physiological functions. As adult muscles express high levels of
Prmt5
, we generated skeletal muscle‐specific
Prmt5
knockout (
Prmt5
MKO
) mice. We observe reduced muscle mass, oxidative capacity, force production, and exercise performance in
Prmt5
MKO
mice. The motor deficiency is associated with scarce lipid droplets in myofibers due to defects in lipid biosynthesis and accelerated degradation. Specifically, PRMT5 deletion reduces dimethylation and stability of Sterol Regulatory Element‐Binding Transcription Factor 1a (SREBP1a), a master regulator of
de novo
lipogenesis. Moreover,
Prmt5
MKO
impairs the repressive H4R3 symmetric dimethylation at the
Pnpla2
promoter, elevating the level of its encoded protein ATGL, the rate‐limiting enzyme catalyzing lipolysis. Accordingly, skeletal muscle‐specific double knockout of
Pnpla2
and
Prmt5
normalizes muscle mass and function. Together, our findings delineate a physiological function of PRMT5 in linking lipid metabolism to contractile function of myofibers.
Synopsis
PRMT5 contributes to maintain overall energy homeostasis in skeletal muscle, and depletion of PRMT5 leads to a decline in muscle mass and functionality.
Reduction of PRMT5 in skeletal muscles leads to impaired muscle contraction.
Loss of PRMT5 results in the formation of atrophied myotubes lacking lipid droplets.
PRMT5 catalyzes methylation of SREBP1 to promote lipogenesis.
PRMT5 increases the repressive H4R3Me2s modification to suppress Pnpla2 (ATGL) gene expression and lipolysis.
Graphical Abstract
PRMT5 contributes to maintain overall energy homeostasis in skeletal muscle, and depletion of PRMT5 leads to a decline in muscle mass and functionality.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37334900</pmid><doi>10.15252/embr.202357306</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-9180-3180</orcidid><orcidid>https://orcid.org/0000-0002-5047-703X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1469-221X |
ispartof | EMBO reports, 2023-08, Vol.24 (8), p.e57306-n/a |
issn | 1469-221X 1469-3178 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10398672 |
source | MEDLINE; Wiley Online Library Free Content; Springer Nature OA Free Journals; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals; PubMed Central |
subjects | Animals Arginine - metabolism Biosynthesis Droplets EMBO21 Energy balance Gene expression Homeostasis Life Sciences lipid droplet Lipid metabolism Lipid Metabolism - genetics Lipids Lipogenesis Lipolysis Metabolism Methylation Mice Muscle contraction Muscle, Skeletal - metabolism Muscles Muscular function Musculoskeletal system myofiber Myotubes Physiology posttranslational modification protein arginine methyltransferase Protein-Arginine N-Methyltransferases - genetics Protein-Arginine N-Methyltransferases - metabolism Proteins Regulatory sequences Skeletal muscle Transferases - metabolism |
title | PRMT5 links lipid metabolism to contractile function of skeletal muscles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A41%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PRMT5%20links%20lipid%20metabolism%20to%20contractile%20function%20of%20skeletal%20muscles&rft.jtitle=EMBO%20reports&rft.au=Kim,%20Kun%20Ho&rft.date=2023-08-03&rft.volume=24&rft.issue=8&rft.spage=e57306&rft.epage=n/a&rft.pages=e57306-n/a&rft.issn=1469-221X&rft.eissn=1469-3178&rft_id=info:doi/10.15252/embr.202357306&rft_dat=%3Cproquest_pubme%3E2827920932%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2845017191&rft_id=info:pmid/37334900&rfr_iscdi=true |