Surfactants or scaffolds? RNAs of varying lengths control the thermodynamic stability of condensates differently

Biomolecular condensates, thought to form via liquid-liquid phase separation of intracellular mixtures, are multicomponent systems that can include diverse types of proteins and RNAs. RNA is a critical modulator of RNA–protein condensate stability, as it induces an RNA concentration-dependent reentr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2023-07, Vol.122 (14), p.2973-2987
Hauptverfasser: Sanchez-Burgos, Ignacio, Herriott, Lara, Collepardo-Guevara, Rosana, Espinosa, Jorge R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2987
container_issue 14
container_start_page 2973
container_title Biophysical journal
container_volume 122
creator Sanchez-Burgos, Ignacio
Herriott, Lara
Collepardo-Guevara, Rosana
Espinosa, Jorge R.
description Biomolecular condensates, thought to form via liquid-liquid phase separation of intracellular mixtures, are multicomponent systems that can include diverse types of proteins and RNAs. RNA is a critical modulator of RNA–protein condensate stability, as it induces an RNA concentration-dependent reentrant phase transition—increasing stability at low RNA concentrations and decreasing it at high concentrations. Beyond concentration, RNAs inside condensates can be heterogeneous in length, sequence, and structure. Here, we use multiscale simulations to understand how different RNA parameters interact with one another to modulate the properties of RNA–protein condensates. To do so, we perform residue/nucleotide resolution coarse-grained molecular dynamics simulations of multicomponent RNA–protein condensates containing RNAs of different lengths and concentrations, and either FUS or PR25 proteins. Our simulations reveal that RNA length regulates the reentrant phase behavior of RNA–protein condensates: increasing RNA length sensitively rises the maximum value that the critical temperature of the mixture reaches, and the maximum concentration of RNA that the condensate can incorporate before beginning to become unstable. Strikingly, RNAs of different lengths are organized heterogeneously inside condensates, which allows them to enhance condensate stability via two distinct mechanisms: shorter RNA chains accumulate at the condensate’s surface acting as natural biomolecular surfactants, while longer RNA chains concentrate inside the core to saturate their bonds and enhance the density of molecular connections in the condensate. Using a patchy particle model, we additionally demonstrate that the combined impact of RNA length and concentration on condensate properties is dictated by the valency, binding affinity, and polymer length of the various biomolecules involved. Our results postulate that diversity on RNA parameters within condensates allows RNAs to increase condensate stability by fulfilling two different criteria: maximizing enthalpic gain and minimizing interfacial free energy; hence, RNA diversity should be considered when assessing the impact of RNA on biomolecular condensates regulation.
doi_str_mv 10.1016/j.bpj.2023.03.006
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10398262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349523001595</els_id><sourcerecordid>2784839231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-5309ffbd60d987432e1bd2d19144583624e82cb3e8126495258e5540f5bd8de3</originalsourceid><addsrcrecordid>eNp9UU1rGzEQFaUhcdP8gF7KHntZdyStNlp6CCH0C0IKbe5CK41smV3JlWSD_31knIb2UhgxMHrvzccj5B2FJQXaf9wsx-1myYDxJdSA_hVZUNGxFkD2r8kCaqnl3SAuyJucNwCUCaDn5IL3UnIAviDbX7vktCk6lNzE1GSjnYuTzTfNz4fbWnLNXqeDD6tmwrAq69yYGEqKU1PWeHxpjvYQ9OxNk4se_eTL4UirMIsh64K5sd45TBjKdHhLzpyeMl4950vy-OXz49239v7H1-93t_et6QQrreAwODfaHuwgrzvOkI6WWTrQrhOS96xDyczIUVLW1w2ZkChEB06MVlrkl-TmJLvdjTNaU3snPalt8nNdR0Xt1b8_wa_VKu4VBT5I1rOq8OFZIcXfO8xFzT4bnCYdMO6yYteyk3xgnFYoPUFNijkndC99KKijU2qjqlPq6JSCGtBXzvu_B3xh_LGmAj6dAFivtPeYVDYeg0HrE5qibPT_kX8Ce5ymhw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2784839231</pqid></control><display><type>article</type><title>Surfactants or scaffolds? RNAs of varying lengths control the thermodynamic stability of condensates differently</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Sanchez-Burgos, Ignacio ; Herriott, Lara ; Collepardo-Guevara, Rosana ; Espinosa, Jorge R.</creator><creatorcontrib>Sanchez-Burgos, Ignacio ; Herriott, Lara ; Collepardo-Guevara, Rosana ; Espinosa, Jorge R.</creatorcontrib><description>Biomolecular condensates, thought to form via liquid-liquid phase separation of intracellular mixtures, are multicomponent systems that can include diverse types of proteins and RNAs. RNA is a critical modulator of RNA–protein condensate stability, as it induces an RNA concentration-dependent reentrant phase transition—increasing stability at low RNA concentrations and decreasing it at high concentrations. Beyond concentration, RNAs inside condensates can be heterogeneous in length, sequence, and structure. Here, we use multiscale simulations to understand how different RNA parameters interact with one another to modulate the properties of RNA–protein condensates. To do so, we perform residue/nucleotide resolution coarse-grained molecular dynamics simulations of multicomponent RNA–protein condensates containing RNAs of different lengths and concentrations, and either FUS or PR25 proteins. Our simulations reveal that RNA length regulates the reentrant phase behavior of RNA–protein condensates: increasing RNA length sensitively rises the maximum value that the critical temperature of the mixture reaches, and the maximum concentration of RNA that the condensate can incorporate before beginning to become unstable. Strikingly, RNAs of different lengths are organized heterogeneously inside condensates, which allows them to enhance condensate stability via two distinct mechanisms: shorter RNA chains accumulate at the condensate’s surface acting as natural biomolecular surfactants, while longer RNA chains concentrate inside the core to saturate their bonds and enhance the density of molecular connections in the condensate. Using a patchy particle model, we additionally demonstrate that the combined impact of RNA length and concentration on condensate properties is dictated by the valency, binding affinity, and polymer length of the various biomolecules involved. Our results postulate that diversity on RNA parameters within condensates allows RNAs to increase condensate stability by fulfilling two different criteria: maximizing enthalpic gain and minimizing interfacial free energy; hence, RNA diversity should be considered when assessing the impact of RNA on biomolecular condensates regulation.</description><identifier>ISSN: 0006-3495</identifier><identifier>ISSN: 1542-0086</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2023.03.006</identifier><identifier>PMID: 36883003</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Biomolecular Condensates ; Molecular Dynamics Simulation ; RNA ; Temperature ; Thermodynamics</subject><ispartof>Biophysical journal, 2023-07, Vol.122 (14), p.2973-2987</ispartof><rights>2023 Biophysical Society</rights><rights>Copyright © 2023 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>2023 Biophysical Society. 2023 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-5309ffbd60d987432e1bd2d19144583624e82cb3e8126495258e5540f5bd8de3</citedby><cites>FETCH-LOGICAL-c452t-5309ffbd60d987432e1bd2d19144583624e82cb3e8126495258e5540f5bd8de3</cites><orcidid>0000-0001-9530-2658</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10398262/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0006349523001595$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3537,27901,27902,53766,53768,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36883003$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sanchez-Burgos, Ignacio</creatorcontrib><creatorcontrib>Herriott, Lara</creatorcontrib><creatorcontrib>Collepardo-Guevara, Rosana</creatorcontrib><creatorcontrib>Espinosa, Jorge R.</creatorcontrib><title>Surfactants or scaffolds? RNAs of varying lengths control the thermodynamic stability of condensates differently</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Biomolecular condensates, thought to form via liquid-liquid phase separation of intracellular mixtures, are multicomponent systems that can include diverse types of proteins and RNAs. RNA is a critical modulator of RNA–protein condensate stability, as it induces an RNA concentration-dependent reentrant phase transition—increasing stability at low RNA concentrations and decreasing it at high concentrations. Beyond concentration, RNAs inside condensates can be heterogeneous in length, sequence, and structure. Here, we use multiscale simulations to understand how different RNA parameters interact with one another to modulate the properties of RNA–protein condensates. To do so, we perform residue/nucleotide resolution coarse-grained molecular dynamics simulations of multicomponent RNA–protein condensates containing RNAs of different lengths and concentrations, and either FUS or PR25 proteins. Our simulations reveal that RNA length regulates the reentrant phase behavior of RNA–protein condensates: increasing RNA length sensitively rises the maximum value that the critical temperature of the mixture reaches, and the maximum concentration of RNA that the condensate can incorporate before beginning to become unstable. Strikingly, RNAs of different lengths are organized heterogeneously inside condensates, which allows them to enhance condensate stability via two distinct mechanisms: shorter RNA chains accumulate at the condensate’s surface acting as natural biomolecular surfactants, while longer RNA chains concentrate inside the core to saturate their bonds and enhance the density of molecular connections in the condensate. Using a patchy particle model, we additionally demonstrate that the combined impact of RNA length and concentration on condensate properties is dictated by the valency, binding affinity, and polymer length of the various biomolecules involved. Our results postulate that diversity on RNA parameters within condensates allows RNAs to increase condensate stability by fulfilling two different criteria: maximizing enthalpic gain and minimizing interfacial free energy; hence, RNA diversity should be considered when assessing the impact of RNA on biomolecular condensates regulation.</description><subject>Biomolecular Condensates</subject><subject>Molecular Dynamics Simulation</subject><subject>RNA</subject><subject>Temperature</subject><subject>Thermodynamics</subject><issn>0006-3495</issn><issn>1542-0086</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UU1rGzEQFaUhcdP8gF7KHntZdyStNlp6CCH0C0IKbe5CK41smV3JlWSD_31knIb2UhgxMHrvzccj5B2FJQXaf9wsx-1myYDxJdSA_hVZUNGxFkD2r8kCaqnl3SAuyJucNwCUCaDn5IL3UnIAviDbX7vktCk6lNzE1GSjnYuTzTfNz4fbWnLNXqeDD6tmwrAq69yYGEqKU1PWeHxpjvYQ9OxNk4se_eTL4UirMIsh64K5sd45TBjKdHhLzpyeMl4950vy-OXz49239v7H1-93t_et6QQrreAwODfaHuwgrzvOkI6WWTrQrhOS96xDyczIUVLW1w2ZkChEB06MVlrkl-TmJLvdjTNaU3snPalt8nNdR0Xt1b8_wa_VKu4VBT5I1rOq8OFZIcXfO8xFzT4bnCYdMO6yYteyk3xgnFYoPUFNijkndC99KKijU2qjqlPq6JSCGtBXzvu_B3xh_LGmAj6dAFivtPeYVDYeg0HrE5qibPT_kX8Ce5ymhw</recordid><startdate>20230725</startdate><enddate>20230725</enddate><creator>Sanchez-Burgos, Ignacio</creator><creator>Herriott, Lara</creator><creator>Collepardo-Guevara, Rosana</creator><creator>Espinosa, Jorge R.</creator><general>Elsevier Inc</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9530-2658</orcidid></search><sort><creationdate>20230725</creationdate><title>Surfactants or scaffolds? RNAs of varying lengths control the thermodynamic stability of condensates differently</title><author>Sanchez-Burgos, Ignacio ; Herriott, Lara ; Collepardo-Guevara, Rosana ; Espinosa, Jorge R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-5309ffbd60d987432e1bd2d19144583624e82cb3e8126495258e5540f5bd8de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biomolecular Condensates</topic><topic>Molecular Dynamics Simulation</topic><topic>RNA</topic><topic>Temperature</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sanchez-Burgos, Ignacio</creatorcontrib><creatorcontrib>Herriott, Lara</creatorcontrib><creatorcontrib>Collepardo-Guevara, Rosana</creatorcontrib><creatorcontrib>Espinosa, Jorge R.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sanchez-Burgos, Ignacio</au><au>Herriott, Lara</au><au>Collepardo-Guevara, Rosana</au><au>Espinosa, Jorge R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surfactants or scaffolds? RNAs of varying lengths control the thermodynamic stability of condensates differently</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2023-07-25</date><risdate>2023</risdate><volume>122</volume><issue>14</issue><spage>2973</spage><epage>2987</epage><pages>2973-2987</pages><issn>0006-3495</issn><issn>1542-0086</issn><eissn>1542-0086</eissn><abstract>Biomolecular condensates, thought to form via liquid-liquid phase separation of intracellular mixtures, are multicomponent systems that can include diverse types of proteins and RNAs. RNA is a critical modulator of RNA–protein condensate stability, as it induces an RNA concentration-dependent reentrant phase transition—increasing stability at low RNA concentrations and decreasing it at high concentrations. Beyond concentration, RNAs inside condensates can be heterogeneous in length, sequence, and structure. Here, we use multiscale simulations to understand how different RNA parameters interact with one another to modulate the properties of RNA–protein condensates. To do so, we perform residue/nucleotide resolution coarse-grained molecular dynamics simulations of multicomponent RNA–protein condensates containing RNAs of different lengths and concentrations, and either FUS or PR25 proteins. Our simulations reveal that RNA length regulates the reentrant phase behavior of RNA–protein condensates: increasing RNA length sensitively rises the maximum value that the critical temperature of the mixture reaches, and the maximum concentration of RNA that the condensate can incorporate before beginning to become unstable. Strikingly, RNAs of different lengths are organized heterogeneously inside condensates, which allows them to enhance condensate stability via two distinct mechanisms: shorter RNA chains accumulate at the condensate’s surface acting as natural biomolecular surfactants, while longer RNA chains concentrate inside the core to saturate their bonds and enhance the density of molecular connections in the condensate. Using a patchy particle model, we additionally demonstrate that the combined impact of RNA length and concentration on condensate properties is dictated by the valency, binding affinity, and polymer length of the various biomolecules involved. Our results postulate that diversity on RNA parameters within condensates allows RNAs to increase condensate stability by fulfilling two different criteria: maximizing enthalpic gain and minimizing interfacial free energy; hence, RNA diversity should be considered when assessing the impact of RNA on biomolecular condensates regulation.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>36883003</pmid><doi>10.1016/j.bpj.2023.03.006</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-9530-2658</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2023-07, Vol.122 (14), p.2973-2987
issn 0006-3495
1542-0086
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10398262
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Biomolecular Condensates
Molecular Dynamics Simulation
RNA
Temperature
Thermodynamics
title Surfactants or scaffolds? RNAs of varying lengths control the thermodynamic stability of condensates differently
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A15%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surfactants%20or%20scaffolds?%20RNAs%20of%20varying%20lengths%20control%20the%20thermodynamic%20stability%20of%20condensates%20differently&rft.jtitle=Biophysical%20journal&rft.au=Sanchez-Burgos,%20Ignacio&rft.date=2023-07-25&rft.volume=122&rft.issue=14&rft.spage=2973&rft.epage=2987&rft.pages=2973-2987&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2023.03.006&rft_dat=%3Cproquest_pubme%3E2784839231%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2784839231&rft_id=info:pmid/36883003&rft_els_id=S0006349523001595&rfr_iscdi=true