Local autocrine plasticity signaling in single dendritic spines by insulin-like growth factors
The insulin superfamily of peptides is essential for homeostasis as well as neuronal plasticity, learning, and memory. Here, we show that insulin-like growth factors 1 and 2 (IGF1 and IGF2) are differentially expressed in hippocampal neurons and released in an activity-dependent manner. Using a new...
Gespeichert in:
Veröffentlicht in: | Science advances 2023-08, Vol.9 (31), p.eadg0666-eadg0666 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | eadg0666 |
---|---|
container_issue | 31 |
container_start_page | eadg0666 |
container_title | Science advances |
container_volume | 9 |
creator | Tu, Xun Jain, Anant Parra Bueno, Paula Decker, Helena Liu, Xiaodan Yasuda, Ryohei |
description | The insulin superfamily of peptides is essential for homeostasis as well as neuronal plasticity, learning, and memory. Here, we show that insulin-like growth factors 1 and 2 (IGF1 and IGF2) are differentially expressed in hippocampal neurons and released in an activity-dependent manner. Using a new fluorescence resonance energy transfer sensor for IGF1 receptor (IGF1R) with two-photon fluorescence lifetime imaging, we find that the release of IGF1 triggers rapid local autocrine IGF1R activation on the same spine and more than several micrometers along the stimulated dendrite, regulating the plasticity of the activated spine in CA1 pyramidal neurons. In CA3 neurons, IGF2, instead of IGF1, is responsible for IGF1R autocrine activation and synaptic plasticity. Thus, our study demonstrates the cell type-specific roles of IGF1 and IGF2 in hippocampal plasticity and a plasticity mechanism mediated by the synthesis and autocrine signaling of IGF peptides in pyramidal neurons. |
doi_str_mv | 10.1126/sciadv.adg0666 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10396292</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2845654190</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-e48f3743c9c25fa674ded0988ca444fa6791c3a9405864d01f1ee15080d4fda93</originalsourceid><addsrcrecordid>eNpVkc1PAyEQxYnRqNFePRqOXrbC8tHlZEzjV9LEi14lFNgtSqHCbk3_ezGtjZ4Y5v3mzSQPgAuMxhjX_Dprp8x6rEyHOOcH4LQmE1bVjDaHf-oTMMr5HSGEKecMi2NwUiSCKWGn4G0WtfJQDX3UyQULV17l3mnXb2B2XVDehQ66UD6h8xYaG0xyBYB5VfAM55ui5qFglXcfFnYpfvUL2Crdx5TPwVGrfLaj3XsGXu_vXqaP1ez54Wl6O6s0EbivLG1aMqFEC12zVvEJNdYg0TRaUUp_GgJrogRFrOHUINxiazFDDTK0NUqQM3Cz9V0N86U12oY-KS9XyS1V2sionPyvBLeQXVxLjIjgtaiLw9XOIcXPweZeLl3W1nsVbByyrBvKOKNYoIKOt6hOMedk2_0ejORPMHIbjNwFUwYu_163x39jIN-t8I37</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2845654190</pqid></control><display><type>article</type><title>Local autocrine plasticity signaling in single dendritic spines by insulin-like growth factors</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Tu, Xun ; Jain, Anant ; Parra Bueno, Paula ; Decker, Helena ; Liu, Xiaodan ; Yasuda, Ryohei</creator><creatorcontrib>Tu, Xun ; Jain, Anant ; Parra Bueno, Paula ; Decker, Helena ; Liu, Xiaodan ; Yasuda, Ryohei</creatorcontrib><description>The insulin superfamily of peptides is essential for homeostasis as well as neuronal plasticity, learning, and memory. Here, we show that insulin-like growth factors 1 and 2 (IGF1 and IGF2) are differentially expressed in hippocampal neurons and released in an activity-dependent manner. Using a new fluorescence resonance energy transfer sensor for IGF1 receptor (IGF1R) with two-photon fluorescence lifetime imaging, we find that the release of IGF1 triggers rapid local autocrine IGF1R activation on the same spine and more than several micrometers along the stimulated dendrite, regulating the plasticity of the activated spine in CA1 pyramidal neurons. In CA3 neurons, IGF2, instead of IGF1, is responsible for IGF1R autocrine activation and synaptic plasticity. Thus, our study demonstrates the cell type-specific roles of IGF1 and IGF2 in hippocampal plasticity and a plasticity mechanism mediated by the synthesis and autocrine signaling of IGF peptides in pyramidal neurons.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.adg0666</identifier><identifier>PMID: 37531435</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Autocrine Communication ; Cellular Neuroscience ; Dendritic Spines - physiology ; Hippocampus - physiology ; Neuronal Plasticity - physiology ; Neuroscience ; Pyramidal Cells - metabolism ; SciAdv r-articles</subject><ispartof>Science advances, 2023-08, Vol.9 (31), p.eadg0666-eadg0666</ispartof><rights>Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-e48f3743c9c25fa674ded0988ca444fa6791c3a9405864d01f1ee15080d4fda93</citedby><cites>FETCH-LOGICAL-c391t-e48f3743c9c25fa674ded0988ca444fa6791c3a9405864d01f1ee15080d4fda93</cites><orcidid>0009-0009-5115-6551 ; 0000-0002-3534-6525 ; 0000-0001-6263-9297</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10396292/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10396292/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37531435$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tu, Xun</creatorcontrib><creatorcontrib>Jain, Anant</creatorcontrib><creatorcontrib>Parra Bueno, Paula</creatorcontrib><creatorcontrib>Decker, Helena</creatorcontrib><creatorcontrib>Liu, Xiaodan</creatorcontrib><creatorcontrib>Yasuda, Ryohei</creatorcontrib><title>Local autocrine plasticity signaling in single dendritic spines by insulin-like growth factors</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>The insulin superfamily of peptides is essential for homeostasis as well as neuronal plasticity, learning, and memory. Here, we show that insulin-like growth factors 1 and 2 (IGF1 and IGF2) are differentially expressed in hippocampal neurons and released in an activity-dependent manner. Using a new fluorescence resonance energy transfer sensor for IGF1 receptor (IGF1R) with two-photon fluorescence lifetime imaging, we find that the release of IGF1 triggers rapid local autocrine IGF1R activation on the same spine and more than several micrometers along the stimulated dendrite, regulating the plasticity of the activated spine in CA1 pyramidal neurons. In CA3 neurons, IGF2, instead of IGF1, is responsible for IGF1R autocrine activation and synaptic plasticity. Thus, our study demonstrates the cell type-specific roles of IGF1 and IGF2 in hippocampal plasticity and a plasticity mechanism mediated by the synthesis and autocrine signaling of IGF peptides in pyramidal neurons.</description><subject>Autocrine Communication</subject><subject>Cellular Neuroscience</subject><subject>Dendritic Spines - physiology</subject><subject>Hippocampus - physiology</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neuroscience</subject><subject>Pyramidal Cells - metabolism</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkc1PAyEQxYnRqNFePRqOXrbC8tHlZEzjV9LEi14lFNgtSqHCbk3_ezGtjZ4Y5v3mzSQPgAuMxhjX_Dprp8x6rEyHOOcH4LQmE1bVjDaHf-oTMMr5HSGEKecMi2NwUiSCKWGn4G0WtfJQDX3UyQULV17l3mnXb2B2XVDehQ66UD6h8xYaG0xyBYB5VfAM55ui5qFglXcfFnYpfvUL2Crdx5TPwVGrfLaj3XsGXu_vXqaP1ez54Wl6O6s0EbivLG1aMqFEC12zVvEJNdYg0TRaUUp_GgJrogRFrOHUINxiazFDDTK0NUqQM3Cz9V0N86U12oY-KS9XyS1V2sionPyvBLeQXVxLjIjgtaiLw9XOIcXPweZeLl3W1nsVbByyrBvKOKNYoIKOt6hOMedk2_0ejORPMHIbjNwFUwYu_163x39jIN-t8I37</recordid><startdate>20230802</startdate><enddate>20230802</enddate><creator>Tu, Xun</creator><creator>Jain, Anant</creator><creator>Parra Bueno, Paula</creator><creator>Decker, Helena</creator><creator>Liu, Xiaodan</creator><creator>Yasuda, Ryohei</creator><general>American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0009-0009-5115-6551</orcidid><orcidid>https://orcid.org/0000-0002-3534-6525</orcidid><orcidid>https://orcid.org/0000-0001-6263-9297</orcidid></search><sort><creationdate>20230802</creationdate><title>Local autocrine plasticity signaling in single dendritic spines by insulin-like growth factors</title><author>Tu, Xun ; Jain, Anant ; Parra Bueno, Paula ; Decker, Helena ; Liu, Xiaodan ; Yasuda, Ryohei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-e48f3743c9c25fa674ded0988ca444fa6791c3a9405864d01f1ee15080d4fda93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Autocrine Communication</topic><topic>Cellular Neuroscience</topic><topic>Dendritic Spines - physiology</topic><topic>Hippocampus - physiology</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neuroscience</topic><topic>Pyramidal Cells - metabolism</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tu, Xun</creatorcontrib><creatorcontrib>Jain, Anant</creatorcontrib><creatorcontrib>Parra Bueno, Paula</creatorcontrib><creatorcontrib>Decker, Helena</creatorcontrib><creatorcontrib>Liu, Xiaodan</creatorcontrib><creatorcontrib>Yasuda, Ryohei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tu, Xun</au><au>Jain, Anant</au><au>Parra Bueno, Paula</au><au>Decker, Helena</au><au>Liu, Xiaodan</au><au>Yasuda, Ryohei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local autocrine plasticity signaling in single dendritic spines by insulin-like growth factors</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2023-08-02</date><risdate>2023</risdate><volume>9</volume><issue>31</issue><spage>eadg0666</spage><epage>eadg0666</epage><pages>eadg0666-eadg0666</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>The insulin superfamily of peptides is essential for homeostasis as well as neuronal plasticity, learning, and memory. Here, we show that insulin-like growth factors 1 and 2 (IGF1 and IGF2) are differentially expressed in hippocampal neurons and released in an activity-dependent manner. Using a new fluorescence resonance energy transfer sensor for IGF1 receptor (IGF1R) with two-photon fluorescence lifetime imaging, we find that the release of IGF1 triggers rapid local autocrine IGF1R activation on the same spine and more than several micrometers along the stimulated dendrite, regulating the plasticity of the activated spine in CA1 pyramidal neurons. In CA3 neurons, IGF2, instead of IGF1, is responsible for IGF1R autocrine activation and synaptic plasticity. Thus, our study demonstrates the cell type-specific roles of IGF1 and IGF2 in hippocampal plasticity and a plasticity mechanism mediated by the synthesis and autocrine signaling of IGF peptides in pyramidal neurons.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>37531435</pmid><doi>10.1126/sciadv.adg0666</doi><orcidid>https://orcid.org/0009-0009-5115-6551</orcidid><orcidid>https://orcid.org/0000-0002-3534-6525</orcidid><orcidid>https://orcid.org/0000-0001-6263-9297</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2375-2548 |
ispartof | Science advances, 2023-08, Vol.9 (31), p.eadg0666-eadg0666 |
issn | 2375-2548 2375-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10396292 |
source | MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Autocrine Communication Cellular Neuroscience Dendritic Spines - physiology Hippocampus - physiology Neuronal Plasticity - physiology Neuroscience Pyramidal Cells - metabolism SciAdv r-articles |
title | Local autocrine plasticity signaling in single dendritic spines by insulin-like growth factors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T06%3A48%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20autocrine%20plasticity%20signaling%20in%20single%20dendritic%20spines%20by%20insulin-like%20growth%20factors&rft.jtitle=Science%20advances&rft.au=Tu,%20Xun&rft.date=2023-08-02&rft.volume=9&rft.issue=31&rft.spage=eadg0666&rft.epage=eadg0666&rft.pages=eadg0666-eadg0666&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.adg0666&rft_dat=%3Cproquest_pubme%3E2845654190%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2845654190&rft_id=info:pmid/37531435&rfr_iscdi=true |