Acetate exchange mechanism on a Zr12 oxo hydroxo cluster: relevance for reshaping Zr–carboxylate coordination adaptable networks

The kinetics and mechanism of the acetate ligand exchange with free acetic acid in [Zr6O4(OH)4(O2CCH3)12]2, used as a molecular model of crosslink migration in [Zr6O4(OH)4(carboxylate)12−n(OH)n]-based coordination adaptable networks with vitrimer-like properties, has been thoroughly investigated by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical science (Cambridge) 2023-08, Vol.14 (30), p.8152-8163
Hauptverfasser: Murali, Meenu, Bijani, Christian, Daran, Jean-Claude, Manoury, Eric, Poli, Rinaldo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8163
container_issue 30
container_start_page 8152
container_title Chemical science (Cambridge)
container_volume 14
creator Murali, Meenu
Bijani, Christian
Daran, Jean-Claude
Manoury, Eric
Poli, Rinaldo
description The kinetics and mechanism of the acetate ligand exchange with free acetic acid in [Zr6O4(OH)4(O2CCH3)12]2, used as a molecular model of crosslink migration in [Zr6O4(OH)4(carboxylate)12−n(OH)n]-based coordination adaptable networks with vitrimer-like properties, has been thoroughly investigated by dynamic 1H NMR and DFT calculations. The compound maintains its C2h-symmetric Zr12 structure in CD2Cl2 and C6D6, while it splits into its Zr6 subunits in CD3OD and D2O. In the Zr12 structure, the topologically different acetates (3 chelating, 6 belt-bridging, 2 intercluster-bridging and 1 inner-face-bridging) of the Zr6 subunits behave differently in the presence of free CH3COOH: very fast exchange for the chelating (coalesced resonance at room temperature), slower exchange for the belt-bridging (line broadening upon warming), no observable exchange up to 65 °C (by EXSY NMR) for the intercluster- and inner-face-bridging. The rates of the first two exchange processes have zero-order dependence on [CH3COOH]. Variable-temperature line broadening studies yielded ΔH‡ = 15.0 ± 0.4 kcal mol−1, ΔS‡ = 8 ± 1 cal mol−1 K−1 (−30 to +25 °C range in CD2Cl2) for the chelating acetates and ΔH‡ = 22.7 ± 1.6, 22.9 ± 2.1 and 20.6 ± 1.0 kcal mol−1 and ΔS‡ = 13 ± 5, 14 ± 6 and 9 ± 3 cal mol−1 K−1, respectively (+25 to +70 °C range in C6D6), for three distinct resonances of magnetically inequivalent belt-bridging acetates. With support of DFT calculations, these results point to an operationally associative mechanism involving a rate-determining partial dissociation to monodentate acetate, followed by rapid acid coordination and proton transfer. The cluster μ3-OH ligands accelerate the exchange processes through H-bonding stabilization of the coordinatively unsaturated intermediate. The lower exchange barrier for the chelated vs. bridging acetates is associated to the release of ring strain. The results presented in this investigation may help the interpretation of carboxylate exchange phenomena in other systems and the design of new carboxylate-based materials.
doi_str_mv 10.1039/d3sc02204h
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10395313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2846929337</sourcerecordid><originalsourceid>FETCH-LOGICAL-h342t-3c5aa34ff5327d2d6d7e9a9cf41436fbb45fdeff3366191e9d613d20cf9c9d6a3</originalsourceid><addsrcrecordid>eNpdkM1u1DAUhSMEElXphiewxAYWU2zf_NRs0KgCWmkkNrBhE93Y15OUxB5sZzqzq3gF3pAnqaNWSNSbc6793WPpFMVrwc8FB_XeQNRcSl72z4qTLGJVV6Ce__OSvyzOYrzh-QCISjYnxe-1poSJGB10j25LbKLFDHFi3jFkP4KQzB88648mLKrHOSYKH1igkfboNDHrQ55ij7vBbfPG37s_GkPnD8dxidbeBzM4TMOSaHCXsBuJOUq3PvyMr4oXFsdIZ496Wnz__Onb5dVq8_XL9eV6s-qhlGkFukKE0toKZGOkqU1DCpW2pSihtl1XVtaQtQB1LZQgZWoBRnJtlc4e4bT4-JC7m7uJjCaXAo7tLgwThmPrcWj_f3FD3279vl3KrUBATnj3kNA_2btab9rlLvdcVYI3e5nZt4-_Bf9rppjaaYiaxhEd-Tm28qKslVQATUbfPEFv_Bxc7mKhMsYvKg73XGKY3A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2844690850</pqid></control><display><type>article</type><title>Acetate exchange mechanism on a Zr12 oxo hydroxo cluster: relevance for reshaping Zr–carboxylate coordination adaptable networks</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Murali, Meenu ; Bijani, Christian ; Daran, Jean-Claude ; Manoury, Eric ; Poli, Rinaldo</creator><creatorcontrib>Murali, Meenu ; Bijani, Christian ; Daran, Jean-Claude ; Manoury, Eric ; Poli, Rinaldo</creatorcontrib><description>The kinetics and mechanism of the acetate ligand exchange with free acetic acid in [Zr6O4(OH)4(O2CCH3)12]2, used as a molecular model of crosslink migration in [Zr6O4(OH)4(carboxylate)12−n(OH)n]-based coordination adaptable networks with vitrimer-like properties, has been thoroughly investigated by dynamic 1H NMR and DFT calculations. The compound maintains its C2h-symmetric Zr12 structure in CD2Cl2 and C6D6, while it splits into its Zr6 subunits in CD3OD and D2O. In the Zr12 structure, the topologically different acetates (3 chelating, 6 belt-bridging, 2 intercluster-bridging and 1 inner-face-bridging) of the Zr6 subunits behave differently in the presence of free CH3COOH: very fast exchange for the chelating (coalesced resonance at room temperature), slower exchange for the belt-bridging (line broadening upon warming), no observable exchange up to 65 °C (by EXSY NMR) for the intercluster- and inner-face-bridging. The rates of the first two exchange processes have zero-order dependence on [CH3COOH]. Variable-temperature line broadening studies yielded ΔH‡ = 15.0 ± 0.4 kcal mol−1, ΔS‡ = 8 ± 1 cal mol−1 K−1 (−30 to +25 °C range in CD2Cl2) for the chelating acetates and ΔH‡ = 22.7 ± 1.6, 22.9 ± 2.1 and 20.6 ± 1.0 kcal mol−1 and ΔS‡ = 13 ± 5, 14 ± 6 and 9 ± 3 cal mol−1 K−1, respectively (+25 to +70 °C range in C6D6), for three distinct resonances of magnetically inequivalent belt-bridging acetates. With support of DFT calculations, these results point to an operationally associative mechanism involving a rate-determining partial dissociation to monodentate acetate, followed by rapid acid coordination and proton transfer. The cluster μ3-OH ligands accelerate the exchange processes through H-bonding stabilization of the coordinatively unsaturated intermediate. The lower exchange barrier for the chelated vs. bridging acetates is associated to the release of ring strain. The results presented in this investigation may help the interpretation of carboxylate exchange phenomena in other systems and the design of new carboxylate-based materials.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/d3sc02204h</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Acetates ; Acetic acid ; Belts ; Chelation ; Chemical Sciences ; Chemistry ; Clusters ; Coordination ; Coordination chemistry ; Exchanging ; Ligands ; Line broadening ; NMR ; Nuclear magnetic resonance ; Room temperature ; Temperature dependence ; Zirconium</subject><ispartof>Chemical science (Cambridge), 2023-08, Vol.14 (30), p.8152-8163</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><rights>Attribution</rights><rights>This journal is © The Royal Society of Chemistry 2023 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5220-2515 ; 0000-0001-7991-8890 ; 0000-0003-3989-3021</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10395313/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10395313/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04155107$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Murali, Meenu</creatorcontrib><creatorcontrib>Bijani, Christian</creatorcontrib><creatorcontrib>Daran, Jean-Claude</creatorcontrib><creatorcontrib>Manoury, Eric</creatorcontrib><creatorcontrib>Poli, Rinaldo</creatorcontrib><title>Acetate exchange mechanism on a Zr12 oxo hydroxo cluster: relevance for reshaping Zr–carboxylate coordination adaptable networks</title><title>Chemical science (Cambridge)</title><description>The kinetics and mechanism of the acetate ligand exchange with free acetic acid in [Zr6O4(OH)4(O2CCH3)12]2, used as a molecular model of crosslink migration in [Zr6O4(OH)4(carboxylate)12−n(OH)n]-based coordination adaptable networks with vitrimer-like properties, has been thoroughly investigated by dynamic 1H NMR and DFT calculations. The compound maintains its C2h-symmetric Zr12 structure in CD2Cl2 and C6D6, while it splits into its Zr6 subunits in CD3OD and D2O. In the Zr12 structure, the topologically different acetates (3 chelating, 6 belt-bridging, 2 intercluster-bridging and 1 inner-face-bridging) of the Zr6 subunits behave differently in the presence of free CH3COOH: very fast exchange for the chelating (coalesced resonance at room temperature), slower exchange for the belt-bridging (line broadening upon warming), no observable exchange up to 65 °C (by EXSY NMR) for the intercluster- and inner-face-bridging. The rates of the first two exchange processes have zero-order dependence on [CH3COOH]. Variable-temperature line broadening studies yielded ΔH‡ = 15.0 ± 0.4 kcal mol−1, ΔS‡ = 8 ± 1 cal mol−1 K−1 (−30 to +25 °C range in CD2Cl2) for the chelating acetates and ΔH‡ = 22.7 ± 1.6, 22.9 ± 2.1 and 20.6 ± 1.0 kcal mol−1 and ΔS‡ = 13 ± 5, 14 ± 6 and 9 ± 3 cal mol−1 K−1, respectively (+25 to +70 °C range in C6D6), for three distinct resonances of magnetically inequivalent belt-bridging acetates. With support of DFT calculations, these results point to an operationally associative mechanism involving a rate-determining partial dissociation to monodentate acetate, followed by rapid acid coordination and proton transfer. The cluster μ3-OH ligands accelerate the exchange processes through H-bonding stabilization of the coordinatively unsaturated intermediate. The lower exchange barrier for the chelated vs. bridging acetates is associated to the release of ring strain. The results presented in this investigation may help the interpretation of carboxylate exchange phenomena in other systems and the design of new carboxylate-based materials.</description><subject>Acetates</subject><subject>Acetic acid</subject><subject>Belts</subject><subject>Chelation</subject><subject>Chemical Sciences</subject><subject>Chemistry</subject><subject>Clusters</subject><subject>Coordination</subject><subject>Coordination chemistry</subject><subject>Exchanging</subject><subject>Ligands</subject><subject>Line broadening</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Room temperature</subject><subject>Temperature dependence</subject><subject>Zirconium</subject><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkM1u1DAUhSMEElXphiewxAYWU2zf_NRs0KgCWmkkNrBhE93Y15OUxB5sZzqzq3gF3pAnqaNWSNSbc6793WPpFMVrwc8FB_XeQNRcSl72z4qTLGJVV6Ce__OSvyzOYrzh-QCISjYnxe-1poSJGB10j25LbKLFDHFi3jFkP4KQzB88648mLKrHOSYKH1igkfboNDHrQ55ij7vBbfPG37s_GkPnD8dxidbeBzM4TMOSaHCXsBuJOUq3PvyMr4oXFsdIZ496Wnz__Onb5dVq8_XL9eV6s-qhlGkFukKE0toKZGOkqU1DCpW2pSihtl1XVtaQtQB1LZQgZWoBRnJtlc4e4bT4-JC7m7uJjCaXAo7tLgwThmPrcWj_f3FD3279vl3KrUBATnj3kNA_2btab9rlLvdcVYI3e5nZt4-_Bf9rppjaaYiaxhEd-Tm28qKslVQATUbfPEFv_Bxc7mKhMsYvKg73XGKY3A</recordid><startdate>20230802</startdate><enddate>20230802</enddate><creator>Murali, Meenu</creator><creator>Bijani, Christian</creator><creator>Daran, Jean-Claude</creator><creator>Manoury, Eric</creator><creator>Poli, Rinaldo</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5220-2515</orcidid><orcidid>https://orcid.org/0000-0001-7991-8890</orcidid><orcidid>https://orcid.org/0000-0003-3989-3021</orcidid></search><sort><creationdate>20230802</creationdate><title>Acetate exchange mechanism on a Zr12 oxo hydroxo cluster: relevance for reshaping Zr–carboxylate coordination adaptable networks</title><author>Murali, Meenu ; Bijani, Christian ; Daran, Jean-Claude ; Manoury, Eric ; Poli, Rinaldo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h342t-3c5aa34ff5327d2d6d7e9a9cf41436fbb45fdeff3366191e9d613d20cf9c9d6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acetates</topic><topic>Acetic acid</topic><topic>Belts</topic><topic>Chelation</topic><topic>Chemical Sciences</topic><topic>Chemistry</topic><topic>Clusters</topic><topic>Coordination</topic><topic>Coordination chemistry</topic><topic>Exchanging</topic><topic>Ligands</topic><topic>Line broadening</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Room temperature</topic><topic>Temperature dependence</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murali, Meenu</creatorcontrib><creatorcontrib>Bijani, Christian</creatorcontrib><creatorcontrib>Daran, Jean-Claude</creatorcontrib><creatorcontrib>Manoury, Eric</creatorcontrib><creatorcontrib>Poli, Rinaldo</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murali, Meenu</au><au>Bijani, Christian</au><au>Daran, Jean-Claude</au><au>Manoury, Eric</au><au>Poli, Rinaldo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acetate exchange mechanism on a Zr12 oxo hydroxo cluster: relevance for reshaping Zr–carboxylate coordination adaptable networks</atitle><jtitle>Chemical science (Cambridge)</jtitle><date>2023-08-02</date><risdate>2023</risdate><volume>14</volume><issue>30</issue><spage>8152</spage><epage>8163</epage><pages>8152-8163</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>The kinetics and mechanism of the acetate ligand exchange with free acetic acid in [Zr6O4(OH)4(O2CCH3)12]2, used as a molecular model of crosslink migration in [Zr6O4(OH)4(carboxylate)12−n(OH)n]-based coordination adaptable networks with vitrimer-like properties, has been thoroughly investigated by dynamic 1H NMR and DFT calculations. The compound maintains its C2h-symmetric Zr12 structure in CD2Cl2 and C6D6, while it splits into its Zr6 subunits in CD3OD and D2O. In the Zr12 structure, the topologically different acetates (3 chelating, 6 belt-bridging, 2 intercluster-bridging and 1 inner-face-bridging) of the Zr6 subunits behave differently in the presence of free CH3COOH: very fast exchange for the chelating (coalesced resonance at room temperature), slower exchange for the belt-bridging (line broadening upon warming), no observable exchange up to 65 °C (by EXSY NMR) for the intercluster- and inner-face-bridging. The rates of the first two exchange processes have zero-order dependence on [CH3COOH]. Variable-temperature line broadening studies yielded ΔH‡ = 15.0 ± 0.4 kcal mol−1, ΔS‡ = 8 ± 1 cal mol−1 K−1 (−30 to +25 °C range in CD2Cl2) for the chelating acetates and ΔH‡ = 22.7 ± 1.6, 22.9 ± 2.1 and 20.6 ± 1.0 kcal mol−1 and ΔS‡ = 13 ± 5, 14 ± 6 and 9 ± 3 cal mol−1 K−1, respectively (+25 to +70 °C range in C6D6), for three distinct resonances of magnetically inequivalent belt-bridging acetates. With support of DFT calculations, these results point to an operationally associative mechanism involving a rate-determining partial dissociation to monodentate acetate, followed by rapid acid coordination and proton transfer. The cluster μ3-OH ligands accelerate the exchange processes through H-bonding stabilization of the coordinatively unsaturated intermediate. The lower exchange barrier for the chelated vs. bridging acetates is associated to the release of ring strain. The results presented in this investigation may help the interpretation of carboxylate exchange phenomena in other systems and the design of new carboxylate-based materials.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3sc02204h</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5220-2515</orcidid><orcidid>https://orcid.org/0000-0001-7991-8890</orcidid><orcidid>https://orcid.org/0000-0003-3989-3021</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-6520
ispartof Chemical science (Cambridge), 2023-08, Vol.14 (30), p.8152-8163
issn 2041-6520
2041-6539
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10395313
source DOAJ Directory of Open Access Journals; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Acetates
Acetic acid
Belts
Chelation
Chemical Sciences
Chemistry
Clusters
Coordination
Coordination chemistry
Exchanging
Ligands
Line broadening
NMR
Nuclear magnetic resonance
Room temperature
Temperature dependence
Zirconium
title Acetate exchange mechanism on a Zr12 oxo hydroxo cluster: relevance for reshaping Zr–carboxylate coordination adaptable networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T18%3A15%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acetate%20exchange%20mechanism%20on%20a%20Zr12%20oxo%20hydroxo%20cluster:%20relevance%20for%20reshaping%20Zr%E2%80%93carboxylate%20coordination%20adaptable%20networks&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Murali,%20Meenu&rft.date=2023-08-02&rft.volume=14&rft.issue=30&rft.spage=8152&rft.epage=8163&rft.pages=8152-8163&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/d3sc02204h&rft_dat=%3Cproquest_pubme%3E2846929337%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2844690850&rft_id=info:pmid/&rfr_iscdi=true