Acetate exchange mechanism on a Zr12 oxo hydroxo cluster: relevance for reshaping Zr–carboxylate coordination adaptable networks
The kinetics and mechanism of the acetate ligand exchange with free acetic acid in [Zr6O4(OH)4(O2CCH3)12]2, used as a molecular model of crosslink migration in [Zr6O4(OH)4(carboxylate)12−n(OH)n]-based coordination adaptable networks with vitrimer-like properties, has been thoroughly investigated by...
Gespeichert in:
Veröffentlicht in: | Chemical science (Cambridge) 2023-08, Vol.14 (30), p.8152-8163 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8163 |
---|---|
container_issue | 30 |
container_start_page | 8152 |
container_title | Chemical science (Cambridge) |
container_volume | 14 |
creator | Murali, Meenu Bijani, Christian Daran, Jean-Claude Manoury, Eric Poli, Rinaldo |
description | The kinetics and mechanism of the acetate ligand exchange with free acetic acid in [Zr6O4(OH)4(O2CCH3)12]2, used as a molecular model of crosslink migration in [Zr6O4(OH)4(carboxylate)12−n(OH)n]-based coordination adaptable networks with vitrimer-like properties, has been thoroughly investigated by dynamic 1H NMR and DFT calculations. The compound maintains its C2h-symmetric Zr12 structure in CD2Cl2 and C6D6, while it splits into its Zr6 subunits in CD3OD and D2O. In the Zr12 structure, the topologically different acetates (3 chelating, 6 belt-bridging, 2 intercluster-bridging and 1 inner-face-bridging) of the Zr6 subunits behave differently in the presence of free CH3COOH: very fast exchange for the chelating (coalesced resonance at room temperature), slower exchange for the belt-bridging (line broadening upon warming), no observable exchange up to 65 °C (by EXSY NMR) for the intercluster- and inner-face-bridging. The rates of the first two exchange processes have zero-order dependence on [CH3COOH]. Variable-temperature line broadening studies yielded ΔH‡ = 15.0 ± 0.4 kcal mol−1, ΔS‡ = 8 ± 1 cal mol−1 K−1 (−30 to +25 °C range in CD2Cl2) for the chelating acetates and ΔH‡ = 22.7 ± 1.6, 22.9 ± 2.1 and 20.6 ± 1.0 kcal mol−1 and ΔS‡ = 13 ± 5, 14 ± 6 and 9 ± 3 cal mol−1 K−1, respectively (+25 to +70 °C range in C6D6), for three distinct resonances of magnetically inequivalent belt-bridging acetates. With support of DFT calculations, these results point to an operationally associative mechanism involving a rate-determining partial dissociation to monodentate acetate, followed by rapid acid coordination and proton transfer. The cluster μ3-OH ligands accelerate the exchange processes through H-bonding stabilization of the coordinatively unsaturated intermediate. The lower exchange barrier for the chelated vs. bridging acetates is associated to the release of ring strain. The results presented in this investigation may help the interpretation of carboxylate exchange phenomena in other systems and the design of new carboxylate-based materials. |
doi_str_mv | 10.1039/d3sc02204h |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10395313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2846929337</sourcerecordid><originalsourceid>FETCH-LOGICAL-h342t-3c5aa34ff5327d2d6d7e9a9cf41436fbb45fdeff3366191e9d613d20cf9c9d6a3</originalsourceid><addsrcrecordid>eNpdkM1u1DAUhSMEElXphiewxAYWU2zf_NRs0KgCWmkkNrBhE93Y15OUxB5sZzqzq3gF3pAnqaNWSNSbc6793WPpFMVrwc8FB_XeQNRcSl72z4qTLGJVV6Ce__OSvyzOYrzh-QCISjYnxe-1poSJGB10j25LbKLFDHFi3jFkP4KQzB88648mLKrHOSYKH1igkfboNDHrQ55ij7vBbfPG37s_GkPnD8dxidbeBzM4TMOSaHCXsBuJOUq3PvyMr4oXFsdIZ496Wnz__Onb5dVq8_XL9eV6s-qhlGkFukKE0toKZGOkqU1DCpW2pSihtl1XVtaQtQB1LZQgZWoBRnJtlc4e4bT4-JC7m7uJjCaXAo7tLgwThmPrcWj_f3FD3279vl3KrUBATnj3kNA_2btab9rlLvdcVYI3e5nZt4-_Bf9rppjaaYiaxhEd-Tm28qKslVQATUbfPEFv_Bxc7mKhMsYvKg73XGKY3A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2844690850</pqid></control><display><type>article</type><title>Acetate exchange mechanism on a Zr12 oxo hydroxo cluster: relevance for reshaping Zr–carboxylate coordination adaptable networks</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Murali, Meenu ; Bijani, Christian ; Daran, Jean-Claude ; Manoury, Eric ; Poli, Rinaldo</creator><creatorcontrib>Murali, Meenu ; Bijani, Christian ; Daran, Jean-Claude ; Manoury, Eric ; Poli, Rinaldo</creatorcontrib><description>The kinetics and mechanism of the acetate ligand exchange with free acetic acid in [Zr6O4(OH)4(O2CCH3)12]2, used as a molecular model of crosslink migration in [Zr6O4(OH)4(carboxylate)12−n(OH)n]-based coordination adaptable networks with vitrimer-like properties, has been thoroughly investigated by dynamic 1H NMR and DFT calculations. The compound maintains its C2h-symmetric Zr12 structure in CD2Cl2 and C6D6, while it splits into its Zr6 subunits in CD3OD and D2O. In the Zr12 structure, the topologically different acetates (3 chelating, 6 belt-bridging, 2 intercluster-bridging and 1 inner-face-bridging) of the Zr6 subunits behave differently in the presence of free CH3COOH: very fast exchange for the chelating (coalesced resonance at room temperature), slower exchange for the belt-bridging (line broadening upon warming), no observable exchange up to 65 °C (by EXSY NMR) for the intercluster- and inner-face-bridging. The rates of the first two exchange processes have zero-order dependence on [CH3COOH]. Variable-temperature line broadening studies yielded ΔH‡ = 15.0 ± 0.4 kcal mol−1, ΔS‡ = 8 ± 1 cal mol−1 K−1 (−30 to +25 °C range in CD2Cl2) for the chelating acetates and ΔH‡ = 22.7 ± 1.6, 22.9 ± 2.1 and 20.6 ± 1.0 kcal mol−1 and ΔS‡ = 13 ± 5, 14 ± 6 and 9 ± 3 cal mol−1 K−1, respectively (+25 to +70 °C range in C6D6), for three distinct resonances of magnetically inequivalent belt-bridging acetates. With support of DFT calculations, these results point to an operationally associative mechanism involving a rate-determining partial dissociation to monodentate acetate, followed by rapid acid coordination and proton transfer. The cluster μ3-OH ligands accelerate the exchange processes through H-bonding stabilization of the coordinatively unsaturated intermediate. The lower exchange barrier for the chelated vs. bridging acetates is associated to the release of ring strain. The results presented in this investigation may help the interpretation of carboxylate exchange phenomena in other systems and the design of new carboxylate-based materials.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/d3sc02204h</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Acetates ; Acetic acid ; Belts ; Chelation ; Chemical Sciences ; Chemistry ; Clusters ; Coordination ; Coordination chemistry ; Exchanging ; Ligands ; Line broadening ; NMR ; Nuclear magnetic resonance ; Room temperature ; Temperature dependence ; Zirconium</subject><ispartof>Chemical science (Cambridge), 2023-08, Vol.14 (30), p.8152-8163</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><rights>Attribution</rights><rights>This journal is © The Royal Society of Chemistry 2023 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5220-2515 ; 0000-0001-7991-8890 ; 0000-0003-3989-3021</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10395313/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10395313/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04155107$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Murali, Meenu</creatorcontrib><creatorcontrib>Bijani, Christian</creatorcontrib><creatorcontrib>Daran, Jean-Claude</creatorcontrib><creatorcontrib>Manoury, Eric</creatorcontrib><creatorcontrib>Poli, Rinaldo</creatorcontrib><title>Acetate exchange mechanism on a Zr12 oxo hydroxo cluster: relevance for reshaping Zr–carboxylate coordination adaptable networks</title><title>Chemical science (Cambridge)</title><description>The kinetics and mechanism of the acetate ligand exchange with free acetic acid in [Zr6O4(OH)4(O2CCH3)12]2, used as a molecular model of crosslink migration in [Zr6O4(OH)4(carboxylate)12−n(OH)n]-based coordination adaptable networks with vitrimer-like properties, has been thoroughly investigated by dynamic 1H NMR and DFT calculations. The compound maintains its C2h-symmetric Zr12 structure in CD2Cl2 and C6D6, while it splits into its Zr6 subunits in CD3OD and D2O. In the Zr12 structure, the topologically different acetates (3 chelating, 6 belt-bridging, 2 intercluster-bridging and 1 inner-face-bridging) of the Zr6 subunits behave differently in the presence of free CH3COOH: very fast exchange for the chelating (coalesced resonance at room temperature), slower exchange for the belt-bridging (line broadening upon warming), no observable exchange up to 65 °C (by EXSY NMR) for the intercluster- and inner-face-bridging. The rates of the first two exchange processes have zero-order dependence on [CH3COOH]. Variable-temperature line broadening studies yielded ΔH‡ = 15.0 ± 0.4 kcal mol−1, ΔS‡ = 8 ± 1 cal mol−1 K−1 (−30 to +25 °C range in CD2Cl2) for the chelating acetates and ΔH‡ = 22.7 ± 1.6, 22.9 ± 2.1 and 20.6 ± 1.0 kcal mol−1 and ΔS‡ = 13 ± 5, 14 ± 6 and 9 ± 3 cal mol−1 K−1, respectively (+25 to +70 °C range in C6D6), for three distinct resonances of magnetically inequivalent belt-bridging acetates. With support of DFT calculations, these results point to an operationally associative mechanism involving a rate-determining partial dissociation to monodentate acetate, followed by rapid acid coordination and proton transfer. The cluster μ3-OH ligands accelerate the exchange processes through H-bonding stabilization of the coordinatively unsaturated intermediate. The lower exchange barrier for the chelated vs. bridging acetates is associated to the release of ring strain. The results presented in this investigation may help the interpretation of carboxylate exchange phenomena in other systems and the design of new carboxylate-based materials.</description><subject>Acetates</subject><subject>Acetic acid</subject><subject>Belts</subject><subject>Chelation</subject><subject>Chemical Sciences</subject><subject>Chemistry</subject><subject>Clusters</subject><subject>Coordination</subject><subject>Coordination chemistry</subject><subject>Exchanging</subject><subject>Ligands</subject><subject>Line broadening</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Room temperature</subject><subject>Temperature dependence</subject><subject>Zirconium</subject><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkM1u1DAUhSMEElXphiewxAYWU2zf_NRs0KgCWmkkNrBhE93Y15OUxB5sZzqzq3gF3pAnqaNWSNSbc6793WPpFMVrwc8FB_XeQNRcSl72z4qTLGJVV6Ce__OSvyzOYrzh-QCISjYnxe-1poSJGB10j25LbKLFDHFi3jFkP4KQzB88648mLKrHOSYKH1igkfboNDHrQ55ij7vBbfPG37s_GkPnD8dxidbeBzM4TMOSaHCXsBuJOUq3PvyMr4oXFsdIZ496Wnz__Onb5dVq8_XL9eV6s-qhlGkFukKE0toKZGOkqU1DCpW2pSihtl1XVtaQtQB1LZQgZWoBRnJtlc4e4bT4-JC7m7uJjCaXAo7tLgwThmPrcWj_f3FD3279vl3KrUBATnj3kNA_2btab9rlLvdcVYI3e5nZt4-_Bf9rppjaaYiaxhEd-Tm28qKslVQATUbfPEFv_Bxc7mKhMsYvKg73XGKY3A</recordid><startdate>20230802</startdate><enddate>20230802</enddate><creator>Murali, Meenu</creator><creator>Bijani, Christian</creator><creator>Daran, Jean-Claude</creator><creator>Manoury, Eric</creator><creator>Poli, Rinaldo</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5220-2515</orcidid><orcidid>https://orcid.org/0000-0001-7991-8890</orcidid><orcidid>https://orcid.org/0000-0003-3989-3021</orcidid></search><sort><creationdate>20230802</creationdate><title>Acetate exchange mechanism on a Zr12 oxo hydroxo cluster: relevance for reshaping Zr–carboxylate coordination adaptable networks</title><author>Murali, Meenu ; Bijani, Christian ; Daran, Jean-Claude ; Manoury, Eric ; Poli, Rinaldo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h342t-3c5aa34ff5327d2d6d7e9a9cf41436fbb45fdeff3366191e9d613d20cf9c9d6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acetates</topic><topic>Acetic acid</topic><topic>Belts</topic><topic>Chelation</topic><topic>Chemical Sciences</topic><topic>Chemistry</topic><topic>Clusters</topic><topic>Coordination</topic><topic>Coordination chemistry</topic><topic>Exchanging</topic><topic>Ligands</topic><topic>Line broadening</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Room temperature</topic><topic>Temperature dependence</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murali, Meenu</creatorcontrib><creatorcontrib>Bijani, Christian</creatorcontrib><creatorcontrib>Daran, Jean-Claude</creatorcontrib><creatorcontrib>Manoury, Eric</creatorcontrib><creatorcontrib>Poli, Rinaldo</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murali, Meenu</au><au>Bijani, Christian</au><au>Daran, Jean-Claude</au><au>Manoury, Eric</au><au>Poli, Rinaldo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acetate exchange mechanism on a Zr12 oxo hydroxo cluster: relevance for reshaping Zr–carboxylate coordination adaptable networks</atitle><jtitle>Chemical science (Cambridge)</jtitle><date>2023-08-02</date><risdate>2023</risdate><volume>14</volume><issue>30</issue><spage>8152</spage><epage>8163</epage><pages>8152-8163</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>The kinetics and mechanism of the acetate ligand exchange with free acetic acid in [Zr6O4(OH)4(O2CCH3)12]2, used as a molecular model of crosslink migration in [Zr6O4(OH)4(carboxylate)12−n(OH)n]-based coordination adaptable networks with vitrimer-like properties, has been thoroughly investigated by dynamic 1H NMR and DFT calculations. The compound maintains its C2h-symmetric Zr12 structure in CD2Cl2 and C6D6, while it splits into its Zr6 subunits in CD3OD and D2O. In the Zr12 structure, the topologically different acetates (3 chelating, 6 belt-bridging, 2 intercluster-bridging and 1 inner-face-bridging) of the Zr6 subunits behave differently in the presence of free CH3COOH: very fast exchange for the chelating (coalesced resonance at room temperature), slower exchange for the belt-bridging (line broadening upon warming), no observable exchange up to 65 °C (by EXSY NMR) for the intercluster- and inner-face-bridging. The rates of the first two exchange processes have zero-order dependence on [CH3COOH]. Variable-temperature line broadening studies yielded ΔH‡ = 15.0 ± 0.4 kcal mol−1, ΔS‡ = 8 ± 1 cal mol−1 K−1 (−30 to +25 °C range in CD2Cl2) for the chelating acetates and ΔH‡ = 22.7 ± 1.6, 22.9 ± 2.1 and 20.6 ± 1.0 kcal mol−1 and ΔS‡ = 13 ± 5, 14 ± 6 and 9 ± 3 cal mol−1 K−1, respectively (+25 to +70 °C range in C6D6), for three distinct resonances of magnetically inequivalent belt-bridging acetates. With support of DFT calculations, these results point to an operationally associative mechanism involving a rate-determining partial dissociation to monodentate acetate, followed by rapid acid coordination and proton transfer. The cluster μ3-OH ligands accelerate the exchange processes through H-bonding stabilization of the coordinatively unsaturated intermediate. The lower exchange barrier for the chelated vs. bridging acetates is associated to the release of ring strain. The results presented in this investigation may help the interpretation of carboxylate exchange phenomena in other systems and the design of new carboxylate-based materials.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3sc02204h</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5220-2515</orcidid><orcidid>https://orcid.org/0000-0001-7991-8890</orcidid><orcidid>https://orcid.org/0000-0003-3989-3021</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-6520 |
ispartof | Chemical science (Cambridge), 2023-08, Vol.14 (30), p.8152-8163 |
issn | 2041-6520 2041-6539 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10395313 |
source | DOAJ Directory of Open Access Journals; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Acetates Acetic acid Belts Chelation Chemical Sciences Chemistry Clusters Coordination Coordination chemistry Exchanging Ligands Line broadening NMR Nuclear magnetic resonance Room temperature Temperature dependence Zirconium |
title | Acetate exchange mechanism on a Zr12 oxo hydroxo cluster: relevance for reshaping Zr–carboxylate coordination adaptable networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T18%3A15%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acetate%20exchange%20mechanism%20on%20a%20Zr12%20oxo%20hydroxo%20cluster:%20relevance%20for%20reshaping%20Zr%E2%80%93carboxylate%20coordination%20adaptable%20networks&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Murali,%20Meenu&rft.date=2023-08-02&rft.volume=14&rft.issue=30&rft.spage=8152&rft.epage=8163&rft.pages=8152-8163&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/d3sc02204h&rft_dat=%3Cproquest_pubme%3E2846929337%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2844690850&rft_id=info:pmid/&rfr_iscdi=true |