Analyzing the overall effects of the microbiome abundance data with a Bayesian predictive value approach

The microbiome abundance data is known to be over-dispersed and sparse count data. Among various zero-inflated models, zero-inflated negative binomial (ZINB) model and zero-inflated beta binomial (ZIBB) model are the methods to analyze the microbiome abundance data. ZINB and ZIBB have two sets of pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistical methods in medical research 2022-10, Vol.31 (10), p.1992-2003
Hauptverfasser: Zhang, Xinyan, Yi, Nengjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2003
container_issue 10
container_start_page 1992
container_title Statistical methods in medical research
container_volume 31
creator Zhang, Xinyan
Yi, Nengjun
description The microbiome abundance data is known to be over-dispersed and sparse count data. Among various zero-inflated models, zero-inflated negative binomial (ZINB) model and zero-inflated beta binomial (ZIBB) model are the methods to analyze the microbiome abundance data. ZINB and ZIBB have two sets of parameters, which are for modeling the zero-inflation part and the count part separately. Most previous methods have focused on making inferences in terms of separate case-control effect for the zero-inflation part and the count part. However, in a case-control study, the primary interest is normally focused on the inference and a single interpretation of the overall unconditional mean (also known as the overall effect) of the microbiome abundance in microbiome studies. Here, we propose a Bayesian predictive value (BPV) approach to estimate the overall effect of the microbiome abundance. This approach is implemented based on R package brms. Hence, the parameters in the models will be estimated with two Markov chain Monte Carlo (MCMC) algorithms used in Stan. We performed simulations and real data applications to compare the proposed approach and R package glmmTMB with simulation method in the estimation and inference in terms of the ratio function between the overall effects from two groups in a case-control study. The results show that the performance of the BPV approach is better than R package glmmTMB with the simulation method in terms of lower absolute biases and relative absolute biases, and coverage probability being closer to the nominal level especially when the sample size is small and zero-inflation rate is high.
doi_str_mv 10.1177/09622802221107106
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10395189</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_09622802221107106</sage_id><sourcerecordid>2675984701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-4488d076ba46f24e6036138ab80474961cf48d5414dc67cd0ee78741e86ca1393</originalsourceid><addsrcrecordid>eNp1kU1v1DAQhi0EokvhB3BBlrhwSfEkju2cUKn4kipxgbM1cSYbV0kc7GTR8utJ2FK-xMmS55nHnnkZewriAkDrl6JSeW5EnucAQoNQ99gOpNaZKAp5n-22erYBZ-xRSjdCCC1k9ZCdFaWqylzqHesuR-yP3_y453NHPBwoYt9zaltyc-Kh_XE9eBdD7cNAHOtlbHB0xBuckX_1c8eRv8YjJY8jnyI13s3-QPyA_bLy0xQDuu4xe9Bin-jJ7XnOPr998-nqfXb98d2Hq8vrzEml50xKYxqhVY1StbkkJQoFhcHaCKllpcC10jSlBNk4pV0jiLTREsgoh1BUxTl7dfJOSz1Q42ic14nsFP2A8WgDevtnZfSd3YeDBVFUJZjN8OLWEMOXhdJsB58c9T2OFJZkc6XLykgtYEWf_4XehCWuG10pDVUhlVKbEE7UusSUIrV3vwFhtyDtP0GuPc9-H-Ou42dyK3BxAhLu6dez_zd-B_PKpdY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2719346669</pqid></control><display><type>article</type><title>Analyzing the overall effects of the microbiome abundance data with a Bayesian predictive value approach</title><source>Applied Social Sciences Index &amp; Abstracts (ASSIA)</source><source>SAGE Complete A-Z List</source><source>MEDLINE</source><creator>Zhang, Xinyan ; Yi, Nengjun</creator><creatorcontrib>Zhang, Xinyan ; Yi, Nengjun</creatorcontrib><description>The microbiome abundance data is known to be over-dispersed and sparse count data. Among various zero-inflated models, zero-inflated negative binomial (ZINB) model and zero-inflated beta binomial (ZIBB) model are the methods to analyze the microbiome abundance data. ZINB and ZIBB have two sets of parameters, which are for modeling the zero-inflation part and the count part separately. Most previous methods have focused on making inferences in terms of separate case-control effect for the zero-inflation part and the count part. However, in a case-control study, the primary interest is normally focused on the inference and a single interpretation of the overall unconditional mean (also known as the overall effect) of the microbiome abundance in microbiome studies. Here, we propose a Bayesian predictive value (BPV) approach to estimate the overall effect of the microbiome abundance. This approach is implemented based on R package brms. Hence, the parameters in the models will be estimated with two Markov chain Monte Carlo (MCMC) algorithms used in Stan. We performed simulations and real data applications to compare the proposed approach and R package glmmTMB with simulation method in the estimation and inference in terms of the ratio function between the overall effects from two groups in a case-control study. The results show that the performance of the BPV approach is better than R package glmmTMB with the simulation method in terms of lower absolute biases and relative absolute biases, and coverage probability being closer to the nominal level especially when the sample size is small and zero-inflation rate is high.</description><identifier>ISSN: 0962-2802</identifier><identifier>EISSN: 1477-0334</identifier><identifier>DOI: 10.1177/09622802221107106</identifier><identifier>PMID: 35695247</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Algorithms ; Bayes Theorem ; Bayesian analysis ; Bias ; Case-Control Studies ; Computer simulation ; Inference ; Inflation rates ; Markov analysis ; Markov Chains ; Mathematical models ; Microbiota ; Models, Statistical ; Monte Carlo simulation ; Parameters ; Simulation</subject><ispartof>Statistical methods in medical research, 2022-10, Vol.31 (10), p.1992-2003</ispartof><rights>The Author(s) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-4488d076ba46f24e6036138ab80474961cf48d5414dc67cd0ee78741e86ca1393</citedby><cites>FETCH-LOGICAL-c467t-4488d076ba46f24e6036138ab80474961cf48d5414dc67cd0ee78741e86ca1393</cites><orcidid>0000-0002-8274-8711</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/09622802221107106$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/09622802221107106$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>230,314,776,780,881,21798,27901,27902,30976,43597,43598</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35695247$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Xinyan</creatorcontrib><creatorcontrib>Yi, Nengjun</creatorcontrib><title>Analyzing the overall effects of the microbiome abundance data with a Bayesian predictive value approach</title><title>Statistical methods in medical research</title><addtitle>Stat Methods Med Res</addtitle><description>The microbiome abundance data is known to be over-dispersed and sparse count data. Among various zero-inflated models, zero-inflated negative binomial (ZINB) model and zero-inflated beta binomial (ZIBB) model are the methods to analyze the microbiome abundance data. ZINB and ZIBB have two sets of parameters, which are for modeling the zero-inflation part and the count part separately. Most previous methods have focused on making inferences in terms of separate case-control effect for the zero-inflation part and the count part. However, in a case-control study, the primary interest is normally focused on the inference and a single interpretation of the overall unconditional mean (also known as the overall effect) of the microbiome abundance in microbiome studies. Here, we propose a Bayesian predictive value (BPV) approach to estimate the overall effect of the microbiome abundance. This approach is implemented based on R package brms. Hence, the parameters in the models will be estimated with two Markov chain Monte Carlo (MCMC) algorithms used in Stan. We performed simulations and real data applications to compare the proposed approach and R package glmmTMB with simulation method in the estimation and inference in terms of the ratio function between the overall effects from two groups in a case-control study. The results show that the performance of the BPV approach is better than R package glmmTMB with the simulation method in terms of lower absolute biases and relative absolute biases, and coverage probability being closer to the nominal level especially when the sample size is small and zero-inflation rate is high.</description><subject>Algorithms</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Bias</subject><subject>Case-Control Studies</subject><subject>Computer simulation</subject><subject>Inference</subject><subject>Inflation rates</subject><subject>Markov analysis</subject><subject>Markov Chains</subject><subject>Mathematical models</subject><subject>Microbiota</subject><subject>Models, Statistical</subject><subject>Monte Carlo simulation</subject><subject>Parameters</subject><subject>Simulation</subject><issn>0962-2802</issn><issn>1477-0334</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>7QJ</sourceid><recordid>eNp1kU1v1DAQhi0EokvhB3BBlrhwSfEkju2cUKn4kipxgbM1cSYbV0kc7GTR8utJ2FK-xMmS55nHnnkZewriAkDrl6JSeW5EnucAQoNQ99gOpNaZKAp5n-22erYBZ-xRSjdCCC1k9ZCdFaWqylzqHesuR-yP3_y453NHPBwoYt9zaltyc-Kh_XE9eBdD7cNAHOtlbHB0xBuckX_1c8eRv8YjJY8jnyI13s3-QPyA_bLy0xQDuu4xe9Bin-jJ7XnOPr998-nqfXb98d2Hq8vrzEml50xKYxqhVY1StbkkJQoFhcHaCKllpcC10jSlBNk4pV0jiLTREsgoh1BUxTl7dfJOSz1Q42ic14nsFP2A8WgDevtnZfSd3YeDBVFUJZjN8OLWEMOXhdJsB58c9T2OFJZkc6XLykgtYEWf_4XehCWuG10pDVUhlVKbEE7UusSUIrV3vwFhtyDtP0GuPc9-H-Ou42dyK3BxAhLu6dez_zd-B_PKpdY</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Zhang, Xinyan</creator><creator>Yi, Nengjun</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QJ</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8274-8711</orcidid></search><sort><creationdate>20221001</creationdate><title>Analyzing the overall effects of the microbiome abundance data with a Bayesian predictive value approach</title><author>Zhang, Xinyan ; Yi, Nengjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-4488d076ba46f24e6036138ab80474961cf48d5414dc67cd0ee78741e86ca1393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Bias</topic><topic>Case-Control Studies</topic><topic>Computer simulation</topic><topic>Inference</topic><topic>Inflation rates</topic><topic>Markov analysis</topic><topic>Markov Chains</topic><topic>Mathematical models</topic><topic>Microbiota</topic><topic>Models, Statistical</topic><topic>Monte Carlo simulation</topic><topic>Parameters</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xinyan</creatorcontrib><creatorcontrib>Yi, Nengjun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Applied Social Sciences Index &amp; Abstracts (ASSIA)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Statistical methods in medical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xinyan</au><au>Yi, Nengjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analyzing the overall effects of the microbiome abundance data with a Bayesian predictive value approach</atitle><jtitle>Statistical methods in medical research</jtitle><addtitle>Stat Methods Med Res</addtitle><date>2022-10-01</date><risdate>2022</risdate><volume>31</volume><issue>10</issue><spage>1992</spage><epage>2003</epage><pages>1992-2003</pages><issn>0962-2802</issn><eissn>1477-0334</eissn><abstract>The microbiome abundance data is known to be over-dispersed and sparse count data. Among various zero-inflated models, zero-inflated negative binomial (ZINB) model and zero-inflated beta binomial (ZIBB) model are the methods to analyze the microbiome abundance data. ZINB and ZIBB have two sets of parameters, which are for modeling the zero-inflation part and the count part separately. Most previous methods have focused on making inferences in terms of separate case-control effect for the zero-inflation part and the count part. However, in a case-control study, the primary interest is normally focused on the inference and a single interpretation of the overall unconditional mean (also known as the overall effect) of the microbiome abundance in microbiome studies. Here, we propose a Bayesian predictive value (BPV) approach to estimate the overall effect of the microbiome abundance. This approach is implemented based on R package brms. Hence, the parameters in the models will be estimated with two Markov chain Monte Carlo (MCMC) algorithms used in Stan. We performed simulations and real data applications to compare the proposed approach and R package glmmTMB with simulation method in the estimation and inference in terms of the ratio function between the overall effects from two groups in a case-control study. The results show that the performance of the BPV approach is better than R package glmmTMB with the simulation method in terms of lower absolute biases and relative absolute biases, and coverage probability being closer to the nominal level especially when the sample size is small and zero-inflation rate is high.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>35695247</pmid><doi>10.1177/09622802221107106</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8274-8711</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0962-2802
ispartof Statistical methods in medical research, 2022-10, Vol.31 (10), p.1992-2003
issn 0962-2802
1477-0334
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10395189
source Applied Social Sciences Index & Abstracts (ASSIA); SAGE Complete A-Z List; MEDLINE
subjects Algorithms
Bayes Theorem
Bayesian analysis
Bias
Case-Control Studies
Computer simulation
Inference
Inflation rates
Markov analysis
Markov Chains
Mathematical models
Microbiota
Models, Statistical
Monte Carlo simulation
Parameters
Simulation
title Analyzing the overall effects of the microbiome abundance data with a Bayesian predictive value approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T02%3A35%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analyzing%20the%20overall%20effects%20of%20the%20microbiome%20abundance%20data%20with%20a%20Bayesian%20predictive%20value%20approach&rft.jtitle=Statistical%20methods%20in%20medical%20research&rft.au=Zhang,%20Xinyan&rft.date=2022-10-01&rft.volume=31&rft.issue=10&rft.spage=1992&rft.epage=2003&rft.pages=1992-2003&rft.issn=0962-2802&rft.eissn=1477-0334&rft_id=info:doi/10.1177/09622802221107106&rft_dat=%3Cproquest_pubme%3E2675984701%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2719346669&rft_id=info:pmid/35695247&rft_sage_id=10.1177_09622802221107106&rfr_iscdi=true