Pulse wave imaging of a stenotic artery model with plaque constituents of different stiffnesses: Experimental demonstration in phantoms and fluid-structure interaction simulation
Vulnerable plaques associated with softer components may rupture, releasing thrombotic emboli to smaller vessels in the brain, thus causing an ischemic stroke. Pulse Wave Imaging (PWI) is an ultrasound-based method that allows for pulse wave visualization while the regional pulse wave velocity (PWV)...
Gespeichert in:
Veröffentlicht in: | Journal of biomechanics 2023-03, Vol.149, p.111502-111502, Article 111502 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 111502 |
---|---|
container_issue | |
container_start_page | 111502 |
container_title | Journal of biomechanics |
container_volume | 149 |
creator | Mobadersany, Nima Meshram, Nirvedh H. Kemper, Paul Sise, C.V. Karageorgos, Grigorios M. Liang, Pengcheng Ateshian, Gerard A. Konofagou, Elisa E. |
description | Vulnerable plaques associated with softer components may rupture, releasing thrombotic emboli to smaller vessels in the brain, thus causing an ischemic stroke. Pulse Wave Imaging (PWI) is an ultrasound-based method that allows for pulse wave visualization while the regional pulse wave velocity (PWV) is mapped along the arterial wall to infer the underlying wall compliance. One potential application of PWI is the non-invasive estimation of plaque’s mechanical properties for investigating its vulnerability. In this study, the accuracy of PWV estimation in stenotic vessels was investigated by computational simulation and PWI in validation phantoms to evaluate this modality for assessing future stroke risk. Polyvinyl alcohol (PVA) phantoms with plaque constituents of different stiffnesses were designed and constructed to emulate stenotic arteries in the experiment, and the novel fabrication process was described. Finite-element fluid–structure interaction simulations were performed in a stenotic phantom model that matched the geometry and parameters of the experiment in phantoms. The peak distension acceleration of the phantom wall was tracked to estimate PWV. PWVs of 2.57 ms−1, 3.41 ms−1, and 4.48 ms−1 were respectively obtained in the soft, intermediate, and stiff plaque material in phantoms during the experiment using PWI. PWVs of 2.10 ms−1, 3.33 ms−1, and 4.02 ms−1 were respectively found in the soft, intermediate, and stiff plaque material in the computational simulation. These results demonstrate that PWI can effectively distinguish the mechanical properties of plaque in phantoms as compared to computational simulation. |
doi_str_mv | 10.1016/j.jbiomech.2023.111502 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10392770</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021929023000714</els_id><sourcerecordid>2782160887</sourcerecordid><originalsourceid>FETCH-LOGICAL-c553t-95139c29ca0601ebed20d94035946e7046476664203716dc392399315aa2cea23</originalsourceid><addsrcrecordid>eNqFUstuEzEUHSEQDYFfqCyxYTPh2p7xjNkAqspDqgQLWFuOfSdxNGMH25PS3-ILcZq2Ajas_LjnnHuPfarqnMKKAhWvd6vd2oUJzXbFgPEVpbQF9qha0L7jNeM9PK4WAIzWkkk4q56ltAOArunk0-qMi75hDYhF9evrPCYk1_qAxE164_yGhIFokjL6kJ0hOmaMN2QKFkdy7fKW7Ef9Y0Zigk_Z5Rl9TkeOdcOAsZwKt2w9poTpDbn8ucfopnKvR2JxOrKizi544jzZb7XPYUpEe0uGcXa2LuXZ5DmWgXxprc0tNrlpHm9pz6sngy5Dv7hbl9X3D5ffLj7VV18-fr54f1WbtuW5li3l0jBpNAiguEbLwMoGeCsbgR00oumEEA0D3lFhDZeMS8lpqzUzqBlfVm9Puvt5PaE1xUHUo9oXMzreqKCd-rvi3VZtwkFRKFpdB0Xh1Z1CDOXFUlaTSwbHUXsMc1Ks66Hpe8abAn35D3QX5uiLvyOKUQF9-dhlJU4oE0NKEYeHaSioYy7UTt3nQh1zoU65KMTzP7080O6DUADvTgAsL3pwGFUyDr1B6yKarGxw_-vxGw0S0Z8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2782160887</pqid></control><display><type>article</type><title>Pulse wave imaging of a stenotic artery model with plaque constituents of different stiffnesses: Experimental demonstration in phantoms and fluid-structure interaction simulation</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Mobadersany, Nima ; Meshram, Nirvedh H. ; Kemper, Paul ; Sise, C.V. ; Karageorgos, Grigorios M. ; Liang, Pengcheng ; Ateshian, Gerard A. ; Konofagou, Elisa E.</creator><creatorcontrib>Mobadersany, Nima ; Meshram, Nirvedh H. ; Kemper, Paul ; Sise, C.V. ; Karageorgos, Grigorios M. ; Liang, Pengcheng ; Ateshian, Gerard A. ; Konofagou, Elisa E.</creatorcontrib><description>Vulnerable plaques associated with softer components may rupture, releasing thrombotic emboli to smaller vessels in the brain, thus causing an ischemic stroke. Pulse Wave Imaging (PWI) is an ultrasound-based method that allows for pulse wave visualization while the regional pulse wave velocity (PWV) is mapped along the arterial wall to infer the underlying wall compliance. One potential application of PWI is the non-invasive estimation of plaque’s mechanical properties for investigating its vulnerability. In this study, the accuracy of PWV estimation in stenotic vessels was investigated by computational simulation and PWI in validation phantoms to evaluate this modality for assessing future stroke risk. Polyvinyl alcohol (PVA) phantoms with plaque constituents of different stiffnesses were designed and constructed to emulate stenotic arteries in the experiment, and the novel fabrication process was described. Finite-element fluid–structure interaction simulations were performed in a stenotic phantom model that matched the geometry and parameters of the experiment in phantoms. The peak distension acceleration of the phantom wall was tracked to estimate PWV. PWVs of 2.57 ms−1, 3.41 ms−1, and 4.48 ms−1 were respectively obtained in the soft, intermediate, and stiff plaque material in phantoms during the experiment using PWI. PWVs of 2.10 ms−1, 3.33 ms−1, and 4.02 ms−1 were respectively found in the soft, intermediate, and stiff plaque material in the computational simulation. These results demonstrate that PWI can effectively distinguish the mechanical properties of plaque in phantoms as compared to computational simulation.</description><identifier>ISSN: 0021-9290</identifier><identifier>ISSN: 1873-2380</identifier><identifier>EISSN: 1873-2380</identifier><identifier>DOI: 10.1016/j.jbiomech.2023.111502</identifier><identifier>PMID: 36842406</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>3-D printers ; Acceleration ; Arteries ; Atherosclerosis ; Carotid arteries ; Carotid plaque ; Computational neuroscience ; Constituents ; Diagnostic Imaging ; Distension ; Experiments ; Fluid-structure interaction ; Fluid–structure interaction simulation ; Humans ; Ischemia ; Mathematical models ; Mechanical properties ; Neuroimaging ; Phantoms, Imaging ; Plaque, Atherosclerotic - diagnostic imaging ; Polyvinyl alcohol ; Pulse Wave Analysis - methods ; Pulse wave imaging ; Pulse wave velocity ; PVA phantom ; Simulation ; Stenosis ; Stroke ; Ultrasonic imaging ; Ultrasonic testing ; Veins & arteries ; Velocity ; Wave velocity</subject><ispartof>Journal of biomechanics, 2023-03, Vol.149, p.111502-111502, Article 111502</ispartof><rights>2023 Elsevier Ltd</rights><rights>Copyright © 2023 Elsevier Ltd. All rights reserved.</rights><rights>2023. Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c553t-95139c29ca0601ebed20d94035946e7046476664203716dc392399315aa2cea23</citedby><cites>FETCH-LOGICAL-c553t-95139c29ca0601ebed20d94035946e7046476664203716dc392399315aa2cea23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021929023000714$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36842406$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mobadersany, Nima</creatorcontrib><creatorcontrib>Meshram, Nirvedh H.</creatorcontrib><creatorcontrib>Kemper, Paul</creatorcontrib><creatorcontrib>Sise, C.V.</creatorcontrib><creatorcontrib>Karageorgos, Grigorios M.</creatorcontrib><creatorcontrib>Liang, Pengcheng</creatorcontrib><creatorcontrib>Ateshian, Gerard A.</creatorcontrib><creatorcontrib>Konofagou, Elisa E.</creatorcontrib><title>Pulse wave imaging of a stenotic artery model with plaque constituents of different stiffnesses: Experimental demonstration in phantoms and fluid-structure interaction simulation</title><title>Journal of biomechanics</title><addtitle>J Biomech</addtitle><description>Vulnerable plaques associated with softer components may rupture, releasing thrombotic emboli to smaller vessels in the brain, thus causing an ischemic stroke. Pulse Wave Imaging (PWI) is an ultrasound-based method that allows for pulse wave visualization while the regional pulse wave velocity (PWV) is mapped along the arterial wall to infer the underlying wall compliance. One potential application of PWI is the non-invasive estimation of plaque’s mechanical properties for investigating its vulnerability. In this study, the accuracy of PWV estimation in stenotic vessels was investigated by computational simulation and PWI in validation phantoms to evaluate this modality for assessing future stroke risk. Polyvinyl alcohol (PVA) phantoms with plaque constituents of different stiffnesses were designed and constructed to emulate stenotic arteries in the experiment, and the novel fabrication process was described. Finite-element fluid–structure interaction simulations were performed in a stenotic phantom model that matched the geometry and parameters of the experiment in phantoms. The peak distension acceleration of the phantom wall was tracked to estimate PWV. PWVs of 2.57 ms−1, 3.41 ms−1, and 4.48 ms−1 were respectively obtained in the soft, intermediate, and stiff plaque material in phantoms during the experiment using PWI. PWVs of 2.10 ms−1, 3.33 ms−1, and 4.02 ms−1 were respectively found in the soft, intermediate, and stiff plaque material in the computational simulation. These results demonstrate that PWI can effectively distinguish the mechanical properties of plaque in phantoms as compared to computational simulation.</description><subject>3-D printers</subject><subject>Acceleration</subject><subject>Arteries</subject><subject>Atherosclerosis</subject><subject>Carotid arteries</subject><subject>Carotid plaque</subject><subject>Computational neuroscience</subject><subject>Constituents</subject><subject>Diagnostic Imaging</subject><subject>Distension</subject><subject>Experiments</subject><subject>Fluid-structure interaction</subject><subject>Fluid–structure interaction simulation</subject><subject>Humans</subject><subject>Ischemia</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Neuroimaging</subject><subject>Phantoms, Imaging</subject><subject>Plaque, Atherosclerotic - diagnostic imaging</subject><subject>Polyvinyl alcohol</subject><subject>Pulse Wave Analysis - methods</subject><subject>Pulse wave imaging</subject><subject>Pulse wave velocity</subject><subject>PVA phantom</subject><subject>Simulation</subject><subject>Stenosis</subject><subject>Stroke</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonic testing</subject><subject>Veins & arteries</subject><subject>Velocity</subject><subject>Wave velocity</subject><issn>0021-9290</issn><issn>1873-2380</issn><issn>1873-2380</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFUstuEzEUHSEQDYFfqCyxYTPh2p7xjNkAqspDqgQLWFuOfSdxNGMH25PS3-ILcZq2Ajas_LjnnHuPfarqnMKKAhWvd6vd2oUJzXbFgPEVpbQF9qha0L7jNeM9PK4WAIzWkkk4q56ltAOArunk0-qMi75hDYhF9evrPCYk1_qAxE164_yGhIFokjL6kJ0hOmaMN2QKFkdy7fKW7Ef9Y0Zigk_Z5Rl9TkeOdcOAsZwKt2w9poTpDbn8ucfopnKvR2JxOrKizi544jzZb7XPYUpEe0uGcXa2LuXZ5DmWgXxprc0tNrlpHm9pz6sngy5Dv7hbl9X3D5ffLj7VV18-fr54f1WbtuW5li3l0jBpNAiguEbLwMoGeCsbgR00oumEEA0D3lFhDZeMS8lpqzUzqBlfVm9Puvt5PaE1xUHUo9oXMzreqKCd-rvi3VZtwkFRKFpdB0Xh1Z1CDOXFUlaTSwbHUXsMc1Ks66Hpe8abAn35D3QX5uiLvyOKUQF9-dhlJU4oE0NKEYeHaSioYy7UTt3nQh1zoU65KMTzP7080O6DUADvTgAsL3pwGFUyDr1B6yKarGxw_-vxGw0S0Z8</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Mobadersany, Nima</creator><creator>Meshram, Nirvedh H.</creator><creator>Kemper, Paul</creator><creator>Sise, C.V.</creator><creator>Karageorgos, Grigorios M.</creator><creator>Liang, Pengcheng</creator><creator>Ateshian, Gerard A.</creator><creator>Konofagou, Elisa E.</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TB</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20230301</creationdate><title>Pulse wave imaging of a stenotic artery model with plaque constituents of different stiffnesses: Experimental demonstration in phantoms and fluid-structure interaction simulation</title><author>Mobadersany, Nima ; Meshram, Nirvedh H. ; Kemper, Paul ; Sise, C.V. ; Karageorgos, Grigorios M. ; Liang, Pengcheng ; Ateshian, Gerard A. ; Konofagou, Elisa E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c553t-95139c29ca0601ebed20d94035946e7046476664203716dc392399315aa2cea23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3-D printers</topic><topic>Acceleration</topic><topic>Arteries</topic><topic>Atherosclerosis</topic><topic>Carotid arteries</topic><topic>Carotid plaque</topic><topic>Computational neuroscience</topic><topic>Constituents</topic><topic>Diagnostic Imaging</topic><topic>Distension</topic><topic>Experiments</topic><topic>Fluid-structure interaction</topic><topic>Fluid–structure interaction simulation</topic><topic>Humans</topic><topic>Ischemia</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Neuroimaging</topic><topic>Phantoms, Imaging</topic><topic>Plaque, Atherosclerotic - diagnostic imaging</topic><topic>Polyvinyl alcohol</topic><topic>Pulse Wave Analysis - methods</topic><topic>Pulse wave imaging</topic><topic>Pulse wave velocity</topic><topic>PVA phantom</topic><topic>Simulation</topic><topic>Stenosis</topic><topic>Stroke</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonic testing</topic><topic>Veins & arteries</topic><topic>Velocity</topic><topic>Wave velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mobadersany, Nima</creatorcontrib><creatorcontrib>Meshram, Nirvedh H.</creatorcontrib><creatorcontrib>Kemper, Paul</creatorcontrib><creatorcontrib>Sise, C.V.</creatorcontrib><creatorcontrib>Karageorgos, Grigorios M.</creatorcontrib><creatorcontrib>Liang, Pengcheng</creatorcontrib><creatorcontrib>Ateshian, Gerard A.</creatorcontrib><creatorcontrib>Konofagou, Elisa E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of biomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mobadersany, Nima</au><au>Meshram, Nirvedh H.</au><au>Kemper, Paul</au><au>Sise, C.V.</au><au>Karageorgos, Grigorios M.</au><au>Liang, Pengcheng</au><au>Ateshian, Gerard A.</au><au>Konofagou, Elisa E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pulse wave imaging of a stenotic artery model with plaque constituents of different stiffnesses: Experimental demonstration in phantoms and fluid-structure interaction simulation</atitle><jtitle>Journal of biomechanics</jtitle><addtitle>J Biomech</addtitle><date>2023-03-01</date><risdate>2023</risdate><volume>149</volume><spage>111502</spage><epage>111502</epage><pages>111502-111502</pages><artnum>111502</artnum><issn>0021-9290</issn><issn>1873-2380</issn><eissn>1873-2380</eissn><abstract>Vulnerable plaques associated with softer components may rupture, releasing thrombotic emboli to smaller vessels in the brain, thus causing an ischemic stroke. Pulse Wave Imaging (PWI) is an ultrasound-based method that allows for pulse wave visualization while the regional pulse wave velocity (PWV) is mapped along the arterial wall to infer the underlying wall compliance. One potential application of PWI is the non-invasive estimation of plaque’s mechanical properties for investigating its vulnerability. In this study, the accuracy of PWV estimation in stenotic vessels was investigated by computational simulation and PWI in validation phantoms to evaluate this modality for assessing future stroke risk. Polyvinyl alcohol (PVA) phantoms with plaque constituents of different stiffnesses were designed and constructed to emulate stenotic arteries in the experiment, and the novel fabrication process was described. Finite-element fluid–structure interaction simulations were performed in a stenotic phantom model that matched the geometry and parameters of the experiment in phantoms. The peak distension acceleration of the phantom wall was tracked to estimate PWV. PWVs of 2.57 ms−1, 3.41 ms−1, and 4.48 ms−1 were respectively obtained in the soft, intermediate, and stiff plaque material in phantoms during the experiment using PWI. PWVs of 2.10 ms−1, 3.33 ms−1, and 4.02 ms−1 were respectively found in the soft, intermediate, and stiff plaque material in the computational simulation. These results demonstrate that PWI can effectively distinguish the mechanical properties of plaque in phantoms as compared to computational simulation.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>36842406</pmid><doi>10.1016/j.jbiomech.2023.111502</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9290 |
ispartof | Journal of biomechanics, 2023-03, Vol.149, p.111502-111502, Article 111502 |
issn | 0021-9290 1873-2380 1873-2380 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10392770 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | 3-D printers Acceleration Arteries Atherosclerosis Carotid arteries Carotid plaque Computational neuroscience Constituents Diagnostic Imaging Distension Experiments Fluid-structure interaction Fluid–structure interaction simulation Humans Ischemia Mathematical models Mechanical properties Neuroimaging Phantoms, Imaging Plaque, Atherosclerotic - diagnostic imaging Polyvinyl alcohol Pulse Wave Analysis - methods Pulse wave imaging Pulse wave velocity PVA phantom Simulation Stenosis Stroke Ultrasonic imaging Ultrasonic testing Veins & arteries Velocity Wave velocity |
title | Pulse wave imaging of a stenotic artery model with plaque constituents of different stiffnesses: Experimental demonstration in phantoms and fluid-structure interaction simulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T23%3A03%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pulse%20wave%20imaging%20of%20a%20stenotic%20artery%20model%20with%20plaque%20constituents%20of%20different%20stiffnesses:%20Experimental%20demonstration%20in%20phantoms%20and%20fluid-structure%20interaction%20simulation&rft.jtitle=Journal%20of%20biomechanics&rft.au=Mobadersany,%20Nima&rft.date=2023-03-01&rft.volume=149&rft.spage=111502&rft.epage=111502&rft.pages=111502-111502&rft.artnum=111502&rft.issn=0021-9290&rft.eissn=1873-2380&rft_id=info:doi/10.1016/j.jbiomech.2023.111502&rft_dat=%3Cproquest_pubme%3E2782160887%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2782160887&rft_id=info:pmid/36842406&rft_els_id=S0021929023000714&rfr_iscdi=true |