Pulse wave imaging of a stenotic artery model with plaque constituents of different stiffnesses: Experimental demonstration in phantoms and fluid-structure interaction simulation

Vulnerable plaques associated with softer components may rupture, releasing thrombotic emboli to smaller vessels in the brain, thus causing an ischemic stroke. Pulse Wave Imaging (PWI) is an ultrasound-based method that allows for pulse wave visualization while the regional pulse wave velocity (PWV)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomechanics 2023-03, Vol.149, p.111502-111502, Article 111502
Hauptverfasser: Mobadersany, Nima, Meshram, Nirvedh H., Kemper, Paul, Sise, C.V., Karageorgos, Grigorios M., Liang, Pengcheng, Ateshian, Gerard A., Konofagou, Elisa E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 111502
container_issue
container_start_page 111502
container_title Journal of biomechanics
container_volume 149
creator Mobadersany, Nima
Meshram, Nirvedh H.
Kemper, Paul
Sise, C.V.
Karageorgos, Grigorios M.
Liang, Pengcheng
Ateshian, Gerard A.
Konofagou, Elisa E.
description Vulnerable plaques associated with softer components may rupture, releasing thrombotic emboli to smaller vessels in the brain, thus causing an ischemic stroke. Pulse Wave Imaging (PWI) is an ultrasound-based method that allows for pulse wave visualization while the regional pulse wave velocity (PWV) is mapped along the arterial wall to infer the underlying wall compliance. One potential application of PWI is the non-invasive estimation of plaque’s mechanical properties for investigating its vulnerability. In this study, the accuracy of PWV estimation in stenotic vessels was investigated by computational simulation and PWI in validation phantoms to evaluate this modality for assessing future stroke risk. Polyvinyl alcohol (PVA) phantoms with plaque constituents of different stiffnesses were designed and constructed to emulate stenotic arteries in the experiment, and the novel fabrication process was described. Finite-element fluid–structure interaction simulations were performed in a stenotic phantom model that matched the geometry and parameters of the experiment in phantoms. The peak distension acceleration of the phantom wall was tracked to estimate PWV. PWVs of 2.57 ms−1, 3.41 ms−1, and 4.48 ms−1 were respectively obtained in the soft, intermediate, and stiff plaque material in phantoms during the experiment using PWI. PWVs of 2.10 ms−1, 3.33 ms−1, and 4.02 ms−1 were respectively found in the soft, intermediate, and stiff plaque material in the computational simulation. These results demonstrate that PWI can effectively distinguish the mechanical properties of plaque in phantoms as compared to computational simulation.
doi_str_mv 10.1016/j.jbiomech.2023.111502
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10392770</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021929023000714</els_id><sourcerecordid>2782160887</sourcerecordid><originalsourceid>FETCH-LOGICAL-c553t-95139c29ca0601ebed20d94035946e7046476664203716dc392399315aa2cea23</originalsourceid><addsrcrecordid>eNqFUstuEzEUHSEQDYFfqCyxYTPh2p7xjNkAqspDqgQLWFuOfSdxNGMH25PS3-ILcZq2Ajas_LjnnHuPfarqnMKKAhWvd6vd2oUJzXbFgPEVpbQF9qha0L7jNeM9PK4WAIzWkkk4q56ltAOArunk0-qMi75hDYhF9evrPCYk1_qAxE164_yGhIFokjL6kJ0hOmaMN2QKFkdy7fKW7Ef9Y0Zigk_Z5Rl9TkeOdcOAsZwKt2w9poTpDbn8ucfopnKvR2JxOrKizi544jzZb7XPYUpEe0uGcXa2LuXZ5DmWgXxprc0tNrlpHm9pz6sngy5Dv7hbl9X3D5ffLj7VV18-fr54f1WbtuW5li3l0jBpNAiguEbLwMoGeCsbgR00oumEEA0D3lFhDZeMS8lpqzUzqBlfVm9Puvt5PaE1xUHUo9oXMzreqKCd-rvi3VZtwkFRKFpdB0Xh1Z1CDOXFUlaTSwbHUXsMc1Ks66Hpe8abAn35D3QX5uiLvyOKUQF9-dhlJU4oE0NKEYeHaSioYy7UTt3nQh1zoU65KMTzP7080O6DUADvTgAsL3pwGFUyDr1B6yKarGxw_-vxGw0S0Z8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2782160887</pqid></control><display><type>article</type><title>Pulse wave imaging of a stenotic artery model with plaque constituents of different stiffnesses: Experimental demonstration in phantoms and fluid-structure interaction simulation</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Mobadersany, Nima ; Meshram, Nirvedh H. ; Kemper, Paul ; Sise, C.V. ; Karageorgos, Grigorios M. ; Liang, Pengcheng ; Ateshian, Gerard A. ; Konofagou, Elisa E.</creator><creatorcontrib>Mobadersany, Nima ; Meshram, Nirvedh H. ; Kemper, Paul ; Sise, C.V. ; Karageorgos, Grigorios M. ; Liang, Pengcheng ; Ateshian, Gerard A. ; Konofagou, Elisa E.</creatorcontrib><description>Vulnerable plaques associated with softer components may rupture, releasing thrombotic emboli to smaller vessels in the brain, thus causing an ischemic stroke. Pulse Wave Imaging (PWI) is an ultrasound-based method that allows for pulse wave visualization while the regional pulse wave velocity (PWV) is mapped along the arterial wall to infer the underlying wall compliance. One potential application of PWI is the non-invasive estimation of plaque’s mechanical properties for investigating its vulnerability. In this study, the accuracy of PWV estimation in stenotic vessels was investigated by computational simulation and PWI in validation phantoms to evaluate this modality for assessing future stroke risk. Polyvinyl alcohol (PVA) phantoms with plaque constituents of different stiffnesses were designed and constructed to emulate stenotic arteries in the experiment, and the novel fabrication process was described. Finite-element fluid–structure interaction simulations were performed in a stenotic phantom model that matched the geometry and parameters of the experiment in phantoms. The peak distension acceleration of the phantom wall was tracked to estimate PWV. PWVs of 2.57 ms−1, 3.41 ms−1, and 4.48 ms−1 were respectively obtained in the soft, intermediate, and stiff plaque material in phantoms during the experiment using PWI. PWVs of 2.10 ms−1, 3.33 ms−1, and 4.02 ms−1 were respectively found in the soft, intermediate, and stiff plaque material in the computational simulation. These results demonstrate that PWI can effectively distinguish the mechanical properties of plaque in phantoms as compared to computational simulation.</description><identifier>ISSN: 0021-9290</identifier><identifier>ISSN: 1873-2380</identifier><identifier>EISSN: 1873-2380</identifier><identifier>DOI: 10.1016/j.jbiomech.2023.111502</identifier><identifier>PMID: 36842406</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>3-D printers ; Acceleration ; Arteries ; Atherosclerosis ; Carotid arteries ; Carotid plaque ; Computational neuroscience ; Constituents ; Diagnostic Imaging ; Distension ; Experiments ; Fluid-structure interaction ; Fluid–structure interaction simulation ; Humans ; Ischemia ; Mathematical models ; Mechanical properties ; Neuroimaging ; Phantoms, Imaging ; Plaque, Atherosclerotic - diagnostic imaging ; Polyvinyl alcohol ; Pulse Wave Analysis - methods ; Pulse wave imaging ; Pulse wave velocity ; PVA phantom ; Simulation ; Stenosis ; Stroke ; Ultrasonic imaging ; Ultrasonic testing ; Veins &amp; arteries ; Velocity ; Wave velocity</subject><ispartof>Journal of biomechanics, 2023-03, Vol.149, p.111502-111502, Article 111502</ispartof><rights>2023 Elsevier Ltd</rights><rights>Copyright © 2023 Elsevier Ltd. All rights reserved.</rights><rights>2023. Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c553t-95139c29ca0601ebed20d94035946e7046476664203716dc392399315aa2cea23</citedby><cites>FETCH-LOGICAL-c553t-95139c29ca0601ebed20d94035946e7046476664203716dc392399315aa2cea23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021929023000714$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36842406$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mobadersany, Nima</creatorcontrib><creatorcontrib>Meshram, Nirvedh H.</creatorcontrib><creatorcontrib>Kemper, Paul</creatorcontrib><creatorcontrib>Sise, C.V.</creatorcontrib><creatorcontrib>Karageorgos, Grigorios M.</creatorcontrib><creatorcontrib>Liang, Pengcheng</creatorcontrib><creatorcontrib>Ateshian, Gerard A.</creatorcontrib><creatorcontrib>Konofagou, Elisa E.</creatorcontrib><title>Pulse wave imaging of a stenotic artery model with plaque constituents of different stiffnesses: Experimental demonstration in phantoms and fluid-structure interaction simulation</title><title>Journal of biomechanics</title><addtitle>J Biomech</addtitle><description>Vulnerable plaques associated with softer components may rupture, releasing thrombotic emboli to smaller vessels in the brain, thus causing an ischemic stroke. Pulse Wave Imaging (PWI) is an ultrasound-based method that allows for pulse wave visualization while the regional pulse wave velocity (PWV) is mapped along the arterial wall to infer the underlying wall compliance. One potential application of PWI is the non-invasive estimation of plaque’s mechanical properties for investigating its vulnerability. In this study, the accuracy of PWV estimation in stenotic vessels was investigated by computational simulation and PWI in validation phantoms to evaluate this modality for assessing future stroke risk. Polyvinyl alcohol (PVA) phantoms with plaque constituents of different stiffnesses were designed and constructed to emulate stenotic arteries in the experiment, and the novel fabrication process was described. Finite-element fluid–structure interaction simulations were performed in a stenotic phantom model that matched the geometry and parameters of the experiment in phantoms. The peak distension acceleration of the phantom wall was tracked to estimate PWV. PWVs of 2.57 ms−1, 3.41 ms−1, and 4.48 ms−1 were respectively obtained in the soft, intermediate, and stiff plaque material in phantoms during the experiment using PWI. PWVs of 2.10 ms−1, 3.33 ms−1, and 4.02 ms−1 were respectively found in the soft, intermediate, and stiff plaque material in the computational simulation. These results demonstrate that PWI can effectively distinguish the mechanical properties of plaque in phantoms as compared to computational simulation.</description><subject>3-D printers</subject><subject>Acceleration</subject><subject>Arteries</subject><subject>Atherosclerosis</subject><subject>Carotid arteries</subject><subject>Carotid plaque</subject><subject>Computational neuroscience</subject><subject>Constituents</subject><subject>Diagnostic Imaging</subject><subject>Distension</subject><subject>Experiments</subject><subject>Fluid-structure interaction</subject><subject>Fluid–structure interaction simulation</subject><subject>Humans</subject><subject>Ischemia</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Neuroimaging</subject><subject>Phantoms, Imaging</subject><subject>Plaque, Atherosclerotic - diagnostic imaging</subject><subject>Polyvinyl alcohol</subject><subject>Pulse Wave Analysis - methods</subject><subject>Pulse wave imaging</subject><subject>Pulse wave velocity</subject><subject>PVA phantom</subject><subject>Simulation</subject><subject>Stenosis</subject><subject>Stroke</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonic testing</subject><subject>Veins &amp; arteries</subject><subject>Velocity</subject><subject>Wave velocity</subject><issn>0021-9290</issn><issn>1873-2380</issn><issn>1873-2380</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFUstuEzEUHSEQDYFfqCyxYTPh2p7xjNkAqspDqgQLWFuOfSdxNGMH25PS3-ILcZq2Ajas_LjnnHuPfarqnMKKAhWvd6vd2oUJzXbFgPEVpbQF9qha0L7jNeM9PK4WAIzWkkk4q56ltAOArunk0-qMi75hDYhF9evrPCYk1_qAxE164_yGhIFokjL6kJ0hOmaMN2QKFkdy7fKW7Ef9Y0Zigk_Z5Rl9TkeOdcOAsZwKt2w9poTpDbn8ucfopnKvR2JxOrKizi544jzZb7XPYUpEe0uGcXa2LuXZ5DmWgXxprc0tNrlpHm9pz6sngy5Dv7hbl9X3D5ffLj7VV18-fr54f1WbtuW5li3l0jBpNAiguEbLwMoGeCsbgR00oumEEA0D3lFhDZeMS8lpqzUzqBlfVm9Puvt5PaE1xUHUo9oXMzreqKCd-rvi3VZtwkFRKFpdB0Xh1Z1CDOXFUlaTSwbHUXsMc1Ks66Hpe8abAn35D3QX5uiLvyOKUQF9-dhlJU4oE0NKEYeHaSioYy7UTt3nQh1zoU65KMTzP7080O6DUADvTgAsL3pwGFUyDr1B6yKarGxw_-vxGw0S0Z8</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Mobadersany, Nima</creator><creator>Meshram, Nirvedh H.</creator><creator>Kemper, Paul</creator><creator>Sise, C.V.</creator><creator>Karageorgos, Grigorios M.</creator><creator>Liang, Pengcheng</creator><creator>Ateshian, Gerard A.</creator><creator>Konofagou, Elisa E.</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TB</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20230301</creationdate><title>Pulse wave imaging of a stenotic artery model with plaque constituents of different stiffnesses: Experimental demonstration in phantoms and fluid-structure interaction simulation</title><author>Mobadersany, Nima ; Meshram, Nirvedh H. ; Kemper, Paul ; Sise, C.V. ; Karageorgos, Grigorios M. ; Liang, Pengcheng ; Ateshian, Gerard A. ; Konofagou, Elisa E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c553t-95139c29ca0601ebed20d94035946e7046476664203716dc392399315aa2cea23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3-D printers</topic><topic>Acceleration</topic><topic>Arteries</topic><topic>Atherosclerosis</topic><topic>Carotid arteries</topic><topic>Carotid plaque</topic><topic>Computational neuroscience</topic><topic>Constituents</topic><topic>Diagnostic Imaging</topic><topic>Distension</topic><topic>Experiments</topic><topic>Fluid-structure interaction</topic><topic>Fluid–structure interaction simulation</topic><topic>Humans</topic><topic>Ischemia</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Neuroimaging</topic><topic>Phantoms, Imaging</topic><topic>Plaque, Atherosclerotic - diagnostic imaging</topic><topic>Polyvinyl alcohol</topic><topic>Pulse Wave Analysis - methods</topic><topic>Pulse wave imaging</topic><topic>Pulse wave velocity</topic><topic>PVA phantom</topic><topic>Simulation</topic><topic>Stenosis</topic><topic>Stroke</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonic testing</topic><topic>Veins &amp; arteries</topic><topic>Velocity</topic><topic>Wave velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mobadersany, Nima</creatorcontrib><creatorcontrib>Meshram, Nirvedh H.</creatorcontrib><creatorcontrib>Kemper, Paul</creatorcontrib><creatorcontrib>Sise, C.V.</creatorcontrib><creatorcontrib>Karageorgos, Grigorios M.</creatorcontrib><creatorcontrib>Liang, Pengcheng</creatorcontrib><creatorcontrib>Ateshian, Gerard A.</creatorcontrib><creatorcontrib>Konofagou, Elisa E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of biomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mobadersany, Nima</au><au>Meshram, Nirvedh H.</au><au>Kemper, Paul</au><au>Sise, C.V.</au><au>Karageorgos, Grigorios M.</au><au>Liang, Pengcheng</au><au>Ateshian, Gerard A.</au><au>Konofagou, Elisa E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pulse wave imaging of a stenotic artery model with plaque constituents of different stiffnesses: Experimental demonstration in phantoms and fluid-structure interaction simulation</atitle><jtitle>Journal of biomechanics</jtitle><addtitle>J Biomech</addtitle><date>2023-03-01</date><risdate>2023</risdate><volume>149</volume><spage>111502</spage><epage>111502</epage><pages>111502-111502</pages><artnum>111502</artnum><issn>0021-9290</issn><issn>1873-2380</issn><eissn>1873-2380</eissn><abstract>Vulnerable plaques associated with softer components may rupture, releasing thrombotic emboli to smaller vessels in the brain, thus causing an ischemic stroke. Pulse Wave Imaging (PWI) is an ultrasound-based method that allows for pulse wave visualization while the regional pulse wave velocity (PWV) is mapped along the arterial wall to infer the underlying wall compliance. One potential application of PWI is the non-invasive estimation of plaque’s mechanical properties for investigating its vulnerability. In this study, the accuracy of PWV estimation in stenotic vessels was investigated by computational simulation and PWI in validation phantoms to evaluate this modality for assessing future stroke risk. Polyvinyl alcohol (PVA) phantoms with plaque constituents of different stiffnesses were designed and constructed to emulate stenotic arteries in the experiment, and the novel fabrication process was described. Finite-element fluid–structure interaction simulations were performed in a stenotic phantom model that matched the geometry and parameters of the experiment in phantoms. The peak distension acceleration of the phantom wall was tracked to estimate PWV. PWVs of 2.57 ms−1, 3.41 ms−1, and 4.48 ms−1 were respectively obtained in the soft, intermediate, and stiff plaque material in phantoms during the experiment using PWI. PWVs of 2.10 ms−1, 3.33 ms−1, and 4.02 ms−1 were respectively found in the soft, intermediate, and stiff plaque material in the computational simulation. These results demonstrate that PWI can effectively distinguish the mechanical properties of plaque in phantoms as compared to computational simulation.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>36842406</pmid><doi>10.1016/j.jbiomech.2023.111502</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9290
ispartof Journal of biomechanics, 2023-03, Vol.149, p.111502-111502, Article 111502
issn 0021-9290
1873-2380
1873-2380
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10392770
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects 3-D printers
Acceleration
Arteries
Atherosclerosis
Carotid arteries
Carotid plaque
Computational neuroscience
Constituents
Diagnostic Imaging
Distension
Experiments
Fluid-structure interaction
Fluid–structure interaction simulation
Humans
Ischemia
Mathematical models
Mechanical properties
Neuroimaging
Phantoms, Imaging
Plaque, Atherosclerotic - diagnostic imaging
Polyvinyl alcohol
Pulse Wave Analysis - methods
Pulse wave imaging
Pulse wave velocity
PVA phantom
Simulation
Stenosis
Stroke
Ultrasonic imaging
Ultrasonic testing
Veins & arteries
Velocity
Wave velocity
title Pulse wave imaging of a stenotic artery model with plaque constituents of different stiffnesses: Experimental demonstration in phantoms and fluid-structure interaction simulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T23%3A03%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pulse%20wave%20imaging%20of%20a%20stenotic%20artery%20model%20with%20plaque%20constituents%20of%20different%20stiffnesses:%20Experimental%20demonstration%20in%20phantoms%20and%20fluid-structure%20interaction%20simulation&rft.jtitle=Journal%20of%20biomechanics&rft.au=Mobadersany,%20Nima&rft.date=2023-03-01&rft.volume=149&rft.spage=111502&rft.epage=111502&rft.pages=111502-111502&rft.artnum=111502&rft.issn=0021-9290&rft.eissn=1873-2380&rft_id=info:doi/10.1016/j.jbiomech.2023.111502&rft_dat=%3Cproquest_pubme%3E2782160887%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2782160887&rft_id=info:pmid/36842406&rft_els_id=S0021929023000714&rfr_iscdi=true