Effects of Molecular Size on Resolution in Charge Detection Mass Spectrometry
Instrumental resolution of Fourier transform-charge detection mass spectrometry instruments with electrostatic ion trap detection of individual ions depends on the precision with which ion energy is determined. Energy can be selected using ion optic filters or from harmonic amplitude ratios (HARs) t...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2022-08, Vol.94 (33), p.11703-11712 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11712 |
---|---|
container_issue | 33 |
container_start_page | 11703 |
container_title | Analytical chemistry (Washington) |
container_volume | 94 |
creator | Harper, Conner C. Miller, Zachary M. Lee, Hyuncheol Bischoff, Amanda J. Francis, Matthew B. Schaffer, David V. Williams, Evan R. |
description | Instrumental resolution of Fourier transform-charge detection mass spectrometry instruments with electrostatic ion trap detection of individual ions depends on the precision with which ion energy is determined. Energy can be selected using ion optic filters or from harmonic amplitude ratios (HARs) that provide Fellgett’s advantage and eliminate the necessity of ion transmission loss to improve resolution. Unlike the ion energy-filtering method, the resolution of the HAR method increases with charge (improved S/N) and thus with mass. An analysis of the HAR method with current instrumentation indicates that higher resolution can be obtained with the HAR method than the best resolution demonstrated for instruments with energy-selective optics for ions in the low MDa range and above. However, this gain is typically unrealized because the resolution obtainable with molecular systems in this mass range is limited by sample heterogeneity. This phenomenon is illustrated with both tobacco mosaic virus (0.6–2.7 MDa) and AAV9 (3.7–4.7 MDa) samples where mass spectral resolution is limited by the sample, including salt adducts, and not by instrument resolution. Nevertheless, the ratio of full to empty AAV9 capsids and the included genome mass can be accurately obtained in a few minutes from 1× PBS buffer solution and an elution buffer containing 300+ mM nonvolatile content despite extensive adduction and lower resolution. Empty and full capsids adduct similarly indicating that salts encrust the complexes during late stages of droplet evaporation and that mass shifts can be calibrated in order to obtain accurate analyte masses even from highly salty solutions. |
doi_str_mv | 10.1021/acs.analchem.2c02572 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10389281</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2709974612</sourcerecordid><originalsourceid>FETCH-LOGICAL-a505t-fb88804c49262c75b80230d37dbba8a38d593594be7ad5538fb27aa30b238f663</originalsourceid><addsrcrecordid>eNp9UcFO3DAQtaoi2AJ_UFVRe-kly9iOHeeE0Ja2SKyQoD1bE8dhjZJ4sZNK9Ovr7S6rlgMnj-333sybR8h7CnMKjJ6hiXMcsDMr28-ZASZK9obMqGCQS6XYWzIDAJ6zEuCIvIvxAYBSoPKQHHFRSQogZmR52bbWjDHzbbb0nTVThyG7c79t5ofs1kbfTaNLpRuyxQrDvc2-2DExNm9LjDG7W6db8L0dw9MJOWixi_Z0dx6Tn18vfyy-59c3364WF9c5ChBj3tZKKShMUTHJTClqBYxDw8umrlEhV42o0ohFbUtshOCqrVmJyKFmqZaSH5Pzre56qnvbGDuMATu9Dq7H8KQ9Ov3_z-BW-t7_0hS4qpiiSeHjVsHH0eloXPK0Mn4YkhlN03YUYwn0edcm-MfJxlH3LhrbdThYP0WdVsuo4lJWCfrpBfTBTyHF8xdVVWUh6Uaw2KJM8DEG2-5HpqA3qeqUqn5OVe9STbQP_9rdk55jTADYAjb0feNXNf8AfWewkg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2709974612</pqid></control><display><type>article</type><title>Effects of Molecular Size on Resolution in Charge Detection Mass Spectrometry</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Harper, Conner C. ; Miller, Zachary M. ; Lee, Hyuncheol ; Bischoff, Amanda J. ; Francis, Matthew B. ; Schaffer, David V. ; Williams, Evan R.</creator><creatorcontrib>Harper, Conner C. ; Miller, Zachary M. ; Lee, Hyuncheol ; Bischoff, Amanda J. ; Francis, Matthew B. ; Schaffer, David V. ; Williams, Evan R. ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Instrumental resolution of Fourier transform-charge detection mass spectrometry instruments with electrostatic ion trap detection of individual ions depends on the precision with which ion energy is determined. Energy can be selected using ion optic filters or from harmonic amplitude ratios (HARs) that provide Fellgett’s advantage and eliminate the necessity of ion transmission loss to improve resolution. Unlike the ion energy-filtering method, the resolution of the HAR method increases with charge (improved S/N) and thus with mass. An analysis of the HAR method with current instrumentation indicates that higher resolution can be obtained with the HAR method than the best resolution demonstrated for instruments with energy-selective optics for ions in the low MDa range and above. However, this gain is typically unrealized because the resolution obtainable with molecular systems in this mass range is limited by sample heterogeneity. This phenomenon is illustrated with both tobacco mosaic virus (0.6–2.7 MDa) and AAV9 (3.7–4.7 MDa) samples where mass spectral resolution is limited by the sample, including salt adducts, and not by instrument resolution. Nevertheless, the ratio of full to empty AAV9 capsids and the included genome mass can be accurately obtained in a few minutes from 1× PBS buffer solution and an elution buffer containing 300+ mM nonvolatile content despite extensive adduction and lower resolution. Empty and full capsids adduct similarly indicating that salts encrust the complexes during late stages of droplet evaporation and that mass shifts can be calibrated in order to obtain accurate analyte masses even from highly salty solutions.</description><identifier>ISSN: 0003-2700</identifier><identifier>ISSN: 1520-6882</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.2c02572</identifier><identifier>PMID: 35961005</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Adducts ; Analytical chemistry ; Buffer solutions ; Capsid ; Capsids ; cations ; chemical properties ; Chemistry ; Energy ; Evaporation ; Fourier Analysis ; Fourier transforms ; Genomes ; Heterogeneity ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Instrumentation ; Ions ; Ions - chemistry ; Mass spectrometry ; Mass Spectrometry - methods ; Mass spectroscopy ; Optics ; organic compounds ; physical properties ; Salts ; Scientific imaging ; Spectral resolution ; Spectroscopy ; Static Electricity ; Tobacco ; Transmission loss ; Viruses</subject><ispartof>Analytical chemistry (Washington), 2022-08, Vol.94 (33), p.11703-11712</ispartof><rights>2022 American Chemical Society</rights><rights>Copyright American Chemical Society Aug 23, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a505t-fb88804c49262c75b80230d37dbba8a38d593594be7ad5538fb27aa30b238f663</citedby><cites>FETCH-LOGICAL-a505t-fb88804c49262c75b80230d37dbba8a38d593594be7ad5538fb27aa30b238f663</cites><orcidid>0000-0002-9625-0121 ; 0000-0003-0802-275X ; 0000-0003-2837-2538 ; 0000-0002-1733-3018 ; 0000000328372538 ; 0000000296250121 ; 0000000217333018 ; 000000030802275X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.2c02572$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.2c02572$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35961005$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1961822$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Harper, Conner C.</creatorcontrib><creatorcontrib>Miller, Zachary M.</creatorcontrib><creatorcontrib>Lee, Hyuncheol</creatorcontrib><creatorcontrib>Bischoff, Amanda J.</creatorcontrib><creatorcontrib>Francis, Matthew B.</creatorcontrib><creatorcontrib>Schaffer, David V.</creatorcontrib><creatorcontrib>Williams, Evan R.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Effects of Molecular Size on Resolution in Charge Detection Mass Spectrometry</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Instrumental resolution of Fourier transform-charge detection mass spectrometry instruments with electrostatic ion trap detection of individual ions depends on the precision with which ion energy is determined. Energy can be selected using ion optic filters or from harmonic amplitude ratios (HARs) that provide Fellgett’s advantage and eliminate the necessity of ion transmission loss to improve resolution. Unlike the ion energy-filtering method, the resolution of the HAR method increases with charge (improved S/N) and thus with mass. An analysis of the HAR method with current instrumentation indicates that higher resolution can be obtained with the HAR method than the best resolution demonstrated for instruments with energy-selective optics for ions in the low MDa range and above. However, this gain is typically unrealized because the resolution obtainable with molecular systems in this mass range is limited by sample heterogeneity. This phenomenon is illustrated with both tobacco mosaic virus (0.6–2.7 MDa) and AAV9 (3.7–4.7 MDa) samples where mass spectral resolution is limited by the sample, including salt adducts, and not by instrument resolution. Nevertheless, the ratio of full to empty AAV9 capsids and the included genome mass can be accurately obtained in a few minutes from 1× PBS buffer solution and an elution buffer containing 300+ mM nonvolatile content despite extensive adduction and lower resolution. Empty and full capsids adduct similarly indicating that salts encrust the complexes during late stages of droplet evaporation and that mass shifts can be calibrated in order to obtain accurate analyte masses even from highly salty solutions.</description><subject>Adducts</subject><subject>Analytical chemistry</subject><subject>Buffer solutions</subject><subject>Capsid</subject><subject>Capsids</subject><subject>cations</subject><subject>chemical properties</subject><subject>Chemistry</subject><subject>Energy</subject><subject>Evaporation</subject><subject>Fourier Analysis</subject><subject>Fourier transforms</subject><subject>Genomes</subject><subject>Heterogeneity</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Instrumentation</subject><subject>Ions</subject><subject>Ions - chemistry</subject><subject>Mass spectrometry</subject><subject>Mass Spectrometry - methods</subject><subject>Mass spectroscopy</subject><subject>Optics</subject><subject>organic compounds</subject><subject>physical properties</subject><subject>Salts</subject><subject>Scientific imaging</subject><subject>Spectral resolution</subject><subject>Spectroscopy</subject><subject>Static Electricity</subject><subject>Tobacco</subject><subject>Transmission loss</subject><subject>Viruses</subject><issn>0003-2700</issn><issn>1520-6882</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UcFO3DAQtaoi2AJ_UFVRe-kly9iOHeeE0Ja2SKyQoD1bE8dhjZJ4sZNK9Ovr7S6rlgMnj-333sybR8h7CnMKjJ6hiXMcsDMr28-ZASZK9obMqGCQS6XYWzIDAJ6zEuCIvIvxAYBSoPKQHHFRSQogZmR52bbWjDHzbbb0nTVThyG7c79t5ofs1kbfTaNLpRuyxQrDvc2-2DExNm9LjDG7W6db8L0dw9MJOWixi_Z0dx6Tn18vfyy-59c3364WF9c5ChBj3tZKKShMUTHJTClqBYxDw8umrlEhV42o0ohFbUtshOCqrVmJyKFmqZaSH5Pzre56qnvbGDuMATu9Dq7H8KQ9Ov3_z-BW-t7_0hS4qpiiSeHjVsHH0eloXPK0Mn4YkhlN03YUYwn0edcm-MfJxlH3LhrbdThYP0WdVsuo4lJWCfrpBfTBTyHF8xdVVWUh6Uaw2KJM8DEG2-5HpqA3qeqUqn5OVe9STbQP_9rdk55jTADYAjb0feNXNf8AfWewkg</recordid><startdate>20220823</startdate><enddate>20220823</enddate><creator>Harper, Conner C.</creator><creator>Miller, Zachary M.</creator><creator>Lee, Hyuncheol</creator><creator>Bischoff, Amanda J.</creator><creator>Francis, Matthew B.</creator><creator>Schaffer, David V.</creator><creator>Williams, Evan R.</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9625-0121</orcidid><orcidid>https://orcid.org/0000-0003-0802-275X</orcidid><orcidid>https://orcid.org/0000-0003-2837-2538</orcidid><orcidid>https://orcid.org/0000-0002-1733-3018</orcidid><orcidid>https://orcid.org/0000000328372538</orcidid><orcidid>https://orcid.org/0000000296250121</orcidid><orcidid>https://orcid.org/0000000217333018</orcidid><orcidid>https://orcid.org/000000030802275X</orcidid></search><sort><creationdate>20220823</creationdate><title>Effects of Molecular Size on Resolution in Charge Detection Mass Spectrometry</title><author>Harper, Conner C. ; Miller, Zachary M. ; Lee, Hyuncheol ; Bischoff, Amanda J. ; Francis, Matthew B. ; Schaffer, David V. ; Williams, Evan R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a505t-fb88804c49262c75b80230d37dbba8a38d593594be7ad5538fb27aa30b238f663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adducts</topic><topic>Analytical chemistry</topic><topic>Buffer solutions</topic><topic>Capsid</topic><topic>Capsids</topic><topic>cations</topic><topic>chemical properties</topic><topic>Chemistry</topic><topic>Energy</topic><topic>Evaporation</topic><topic>Fourier Analysis</topic><topic>Fourier transforms</topic><topic>Genomes</topic><topic>Heterogeneity</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Instrumentation</topic><topic>Ions</topic><topic>Ions - chemistry</topic><topic>Mass spectrometry</topic><topic>Mass Spectrometry - methods</topic><topic>Mass spectroscopy</topic><topic>Optics</topic><topic>organic compounds</topic><topic>physical properties</topic><topic>Salts</topic><topic>Scientific imaging</topic><topic>Spectral resolution</topic><topic>Spectroscopy</topic><topic>Static Electricity</topic><topic>Tobacco</topic><topic>Transmission loss</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harper, Conner C.</creatorcontrib><creatorcontrib>Miller, Zachary M.</creatorcontrib><creatorcontrib>Lee, Hyuncheol</creatorcontrib><creatorcontrib>Bischoff, Amanda J.</creatorcontrib><creatorcontrib>Francis, Matthew B.</creatorcontrib><creatorcontrib>Schaffer, David V.</creatorcontrib><creatorcontrib>Williams, Evan R.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harper, Conner C.</au><au>Miller, Zachary M.</au><au>Lee, Hyuncheol</au><au>Bischoff, Amanda J.</au><au>Francis, Matthew B.</au><au>Schaffer, David V.</au><au>Williams, Evan R.</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of Molecular Size on Resolution in Charge Detection Mass Spectrometry</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2022-08-23</date><risdate>2022</risdate><volume>94</volume><issue>33</issue><spage>11703</spage><epage>11712</epage><pages>11703-11712</pages><issn>0003-2700</issn><issn>1520-6882</issn><eissn>1520-6882</eissn><abstract>Instrumental resolution of Fourier transform-charge detection mass spectrometry instruments with electrostatic ion trap detection of individual ions depends on the precision with which ion energy is determined. Energy can be selected using ion optic filters or from harmonic amplitude ratios (HARs) that provide Fellgett’s advantage and eliminate the necessity of ion transmission loss to improve resolution. Unlike the ion energy-filtering method, the resolution of the HAR method increases with charge (improved S/N) and thus with mass. An analysis of the HAR method with current instrumentation indicates that higher resolution can be obtained with the HAR method than the best resolution demonstrated for instruments with energy-selective optics for ions in the low MDa range and above. However, this gain is typically unrealized because the resolution obtainable with molecular systems in this mass range is limited by sample heterogeneity. This phenomenon is illustrated with both tobacco mosaic virus (0.6–2.7 MDa) and AAV9 (3.7–4.7 MDa) samples where mass spectral resolution is limited by the sample, including salt adducts, and not by instrument resolution. Nevertheless, the ratio of full to empty AAV9 capsids and the included genome mass can be accurately obtained in a few minutes from 1× PBS buffer solution and an elution buffer containing 300+ mM nonvolatile content despite extensive adduction and lower resolution. Empty and full capsids adduct similarly indicating that salts encrust the complexes during late stages of droplet evaporation and that mass shifts can be calibrated in order to obtain accurate analyte masses even from highly salty solutions.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35961005</pmid><doi>10.1021/acs.analchem.2c02572</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9625-0121</orcidid><orcidid>https://orcid.org/0000-0003-0802-275X</orcidid><orcidid>https://orcid.org/0000-0003-2837-2538</orcidid><orcidid>https://orcid.org/0000-0002-1733-3018</orcidid><orcidid>https://orcid.org/0000000328372538</orcidid><orcidid>https://orcid.org/0000000296250121</orcidid><orcidid>https://orcid.org/0000000217333018</orcidid><orcidid>https://orcid.org/000000030802275X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2022-08, Vol.94 (33), p.11703-11712 |
issn | 0003-2700 1520-6882 1520-6882 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10389281 |
source | MEDLINE; American Chemical Society Journals |
subjects | Adducts Analytical chemistry Buffer solutions Capsid Capsids cations chemical properties Chemistry Energy Evaporation Fourier Analysis Fourier transforms Genomes Heterogeneity INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Instrumentation Ions Ions - chemistry Mass spectrometry Mass Spectrometry - methods Mass spectroscopy Optics organic compounds physical properties Salts Scientific imaging Spectral resolution Spectroscopy Static Electricity Tobacco Transmission loss Viruses |
title | Effects of Molecular Size on Resolution in Charge Detection Mass Spectrometry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T03%3A31%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20Molecular%20Size%20on%20Resolution%20in%20Charge%20Detection%20Mass%20Spectrometry&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Harper,%20Conner%20C.&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2022-08-23&rft.volume=94&rft.issue=33&rft.spage=11703&rft.epage=11712&rft.pages=11703-11712&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.2c02572&rft_dat=%3Cproquest_pubme%3E2709974612%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2709974612&rft_id=info:pmid/35961005&rfr_iscdi=true |