Bandlike Transport and Charge-Carrier Dynamics in BiOI Films

Following the emergence of lead halide perovskites (LHPs) as materials for efficient solar cells, research has progressed to explore stable, abundant, and nontoxic alternatives. However, the performance of such lead-free perovskite-inspired materials (PIMs) still lags significantly behind that of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2023-07, Vol.14 (29), p.6620-6629
Hauptverfasser: Lal, Snigdha, Righetto, Marcello, Ulatowski, Aleksander M., Motti, Silvia G., Sun, Zhuotong, MacManus-Driscoll, Judith L., Hoye, Robert L. Z., Herz, Laura M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6629
container_issue 29
container_start_page 6620
container_title The journal of physical chemistry letters
container_volume 14
creator Lal, Snigdha
Righetto, Marcello
Ulatowski, Aleksander M.
Motti, Silvia G.
Sun, Zhuotong
MacManus-Driscoll, Judith L.
Hoye, Robert L. Z.
Herz, Laura M.
description Following the emergence of lead halide perovskites (LHPs) as materials for efficient solar cells, research has progressed to explore stable, abundant, and nontoxic alternatives. However, the performance of such lead-free perovskite-inspired materials (PIMs) still lags significantly behind that of their LHP counterparts. For bismuth-based PIMs, one significant reason is a frequently observed ultrafast charge-carrier localization (or self-trapping), which imposes a fundamental limit on long-range mobility. Here we report the terahertz (THz) photoconductivity dynamics in thin films of BiOI and demonstrate a lack of such self-trapping, with good charge-carrier mobility, reaching ∼3 cm2 V–1 s–1 at 295 K and increasing gradually to ∼13 cm2 V–1 s–1 at 5 K, indicative of prevailing bandlike transport. Using a combination of transient photoluminescence and THz- and microwave-conductivity spectroscopy, we further investigate charge-carrier recombination processes, revealing charge-specific trapping of electrons at defects in BiOI over nanoseconds and low bimolecular band-to-band recombination. Subject to the development of passivation protocols, BiOI thus emerges as a superior light-harvesting semiconductor among the family of bismuth-based semiconductors.
doi_str_mv 10.1021/acs.jpclett.3c01520
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10388347</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2839248743</sourcerecordid><originalsourceid>FETCH-LOGICAL-a446t-f975d200d8ca9faedc8398202616c3c8f9839749f39e60bd501c9f723f2c53303</originalsourceid><addsrcrecordid>eNp9kF1LwzAYhYMoTqe_QJBeetMtX20TEMRVp4PBbuZ1yNJ0y-yXSSvs3xtdHfPGqyRvzjnv4QHgBsERghiNpXKjbaMK3bYjoiCKMDwBF4hTFiaIRadH9wG4dG4LYcwhS87BgCQ0xiSiF-B-IqusMO86WFpZuaa2beAnQbqRdq3DVFprtA2edpUsjXKBqYKJWcyCqSlKdwXOclk4fd2fQ_A2fV6mr-F88TJLH-ehpDRuw5wnUYYhzJiSPJc6U4xwhiGOUayIYjn374TynHAdw1UWQaR4nmCSYxURAskQPOxzm25VeruuWisL0VhTSrsTtTTi709lNmJdfwoECWOEJj7hrk-w9UenXStK45QuClnpunMC-waYsoQSLyV7qbK1c1bnhz0Iim_wwoMXPXjRg_eu2-OKB88vaS8Y7wU_7rqzlSf2b-QXfZyRbw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2839248743</pqid></control><display><type>article</type><title>Bandlike Transport and Charge-Carrier Dynamics in BiOI Films</title><source>ACS Publications</source><creator>Lal, Snigdha ; Righetto, Marcello ; Ulatowski, Aleksander M. ; Motti, Silvia G. ; Sun, Zhuotong ; MacManus-Driscoll, Judith L. ; Hoye, Robert L. Z. ; Herz, Laura M.</creator><creatorcontrib>Lal, Snigdha ; Righetto, Marcello ; Ulatowski, Aleksander M. ; Motti, Silvia G. ; Sun, Zhuotong ; MacManus-Driscoll, Judith L. ; Hoye, Robert L. Z. ; Herz, Laura M.</creatorcontrib><description>Following the emergence of lead halide perovskites (LHPs) as materials for efficient solar cells, research has progressed to explore stable, abundant, and nontoxic alternatives. However, the performance of such lead-free perovskite-inspired materials (PIMs) still lags significantly behind that of their LHP counterparts. For bismuth-based PIMs, one significant reason is a frequently observed ultrafast charge-carrier localization (or self-trapping), which imposes a fundamental limit on long-range mobility. Here we report the terahertz (THz) photoconductivity dynamics in thin films of BiOI and demonstrate a lack of such self-trapping, with good charge-carrier mobility, reaching ∼3 cm2 V–1 s–1 at 295 K and increasing gradually to ∼13 cm2 V–1 s–1 at 5 K, indicative of prevailing bandlike transport. Using a combination of transient photoluminescence and THz- and microwave-conductivity spectroscopy, we further investigate charge-carrier recombination processes, revealing charge-specific trapping of electrons at defects in BiOI over nanoseconds and low bimolecular band-to-band recombination. Subject to the development of passivation protocols, BiOI thus emerges as a superior light-harvesting semiconductor among the family of bismuth-based semiconductors.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.3c01520</identifier><identifier>PMID: 37462354</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Letter ; Physical Insights into Energy Science</subject><ispartof>The journal of physical chemistry letters, 2023-07, Vol.14 (29), p.6620-6629</ispartof><rights>2023 The Authors. Published by American Chemical Society</rights><rights>2023 The Authors. Published by American Chemical Society 2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a446t-f975d200d8ca9faedc8398202616c3c8f9839749f39e60bd501c9f723f2c53303</citedby><cites>FETCH-LOGICAL-a446t-f975d200d8ca9faedc8398202616c3c8f9839749f39e60bd501c9f723f2c53303</cites><orcidid>0000-0002-6951-7265 ; 0000-0003-4987-6620 ; 0000-0001-5507-1445 ; 0000-0001-9621-334X ; 0000-0002-8088-3485 ; 0000-0002-7675-0065</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.3c01520$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpclett.3c01520$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37462354$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lal, Snigdha</creatorcontrib><creatorcontrib>Righetto, Marcello</creatorcontrib><creatorcontrib>Ulatowski, Aleksander M.</creatorcontrib><creatorcontrib>Motti, Silvia G.</creatorcontrib><creatorcontrib>Sun, Zhuotong</creatorcontrib><creatorcontrib>MacManus-Driscoll, Judith L.</creatorcontrib><creatorcontrib>Hoye, Robert L. Z.</creatorcontrib><creatorcontrib>Herz, Laura M.</creatorcontrib><title>Bandlike Transport and Charge-Carrier Dynamics in BiOI Films</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>Following the emergence of lead halide perovskites (LHPs) as materials for efficient solar cells, research has progressed to explore stable, abundant, and nontoxic alternatives. However, the performance of such lead-free perovskite-inspired materials (PIMs) still lags significantly behind that of their LHP counterparts. For bismuth-based PIMs, one significant reason is a frequently observed ultrafast charge-carrier localization (or self-trapping), which imposes a fundamental limit on long-range mobility. Here we report the terahertz (THz) photoconductivity dynamics in thin films of BiOI and demonstrate a lack of such self-trapping, with good charge-carrier mobility, reaching ∼3 cm2 V–1 s–1 at 295 K and increasing gradually to ∼13 cm2 V–1 s–1 at 5 K, indicative of prevailing bandlike transport. Using a combination of transient photoluminescence and THz- and microwave-conductivity spectroscopy, we further investigate charge-carrier recombination processes, revealing charge-specific trapping of electrons at defects in BiOI over nanoseconds and low bimolecular band-to-band recombination. Subject to the development of passivation protocols, BiOI thus emerges as a superior light-harvesting semiconductor among the family of bismuth-based semiconductors.</description><subject>Letter</subject><subject>Physical Insights into Energy Science</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LwzAYhYMoTqe_QJBeetMtX20TEMRVp4PBbuZ1yNJ0y-yXSSvs3xtdHfPGqyRvzjnv4QHgBsERghiNpXKjbaMK3bYjoiCKMDwBF4hTFiaIRadH9wG4dG4LYcwhS87BgCQ0xiSiF-B-IqusMO86WFpZuaa2beAnQbqRdq3DVFprtA2edpUsjXKBqYKJWcyCqSlKdwXOclk4fd2fQ_A2fV6mr-F88TJLH-ehpDRuw5wnUYYhzJiSPJc6U4xwhiGOUayIYjn374TynHAdw1UWQaR4nmCSYxURAskQPOxzm25VeruuWisL0VhTSrsTtTTi709lNmJdfwoECWOEJj7hrk-w9UenXStK45QuClnpunMC-waYsoQSLyV7qbK1c1bnhz0Iim_wwoMXPXjRg_eu2-OKB88vaS8Y7wU_7rqzlSf2b-QXfZyRbw</recordid><startdate>20230727</startdate><enddate>20230727</enddate><creator>Lal, Snigdha</creator><creator>Righetto, Marcello</creator><creator>Ulatowski, Aleksander M.</creator><creator>Motti, Silvia G.</creator><creator>Sun, Zhuotong</creator><creator>MacManus-Driscoll, Judith L.</creator><creator>Hoye, Robert L. Z.</creator><creator>Herz, Laura M.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6951-7265</orcidid><orcidid>https://orcid.org/0000-0003-4987-6620</orcidid><orcidid>https://orcid.org/0000-0001-5507-1445</orcidid><orcidid>https://orcid.org/0000-0001-9621-334X</orcidid><orcidid>https://orcid.org/0000-0002-8088-3485</orcidid><orcidid>https://orcid.org/0000-0002-7675-0065</orcidid></search><sort><creationdate>20230727</creationdate><title>Bandlike Transport and Charge-Carrier Dynamics in BiOI Films</title><author>Lal, Snigdha ; Righetto, Marcello ; Ulatowski, Aleksander M. ; Motti, Silvia G. ; Sun, Zhuotong ; MacManus-Driscoll, Judith L. ; Hoye, Robert L. Z. ; Herz, Laura M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a446t-f975d200d8ca9faedc8398202616c3c8f9839749f39e60bd501c9f723f2c53303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Letter</topic><topic>Physical Insights into Energy Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lal, Snigdha</creatorcontrib><creatorcontrib>Righetto, Marcello</creatorcontrib><creatorcontrib>Ulatowski, Aleksander M.</creatorcontrib><creatorcontrib>Motti, Silvia G.</creatorcontrib><creatorcontrib>Sun, Zhuotong</creatorcontrib><creatorcontrib>MacManus-Driscoll, Judith L.</creatorcontrib><creatorcontrib>Hoye, Robert L. Z.</creatorcontrib><creatorcontrib>Herz, Laura M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lal, Snigdha</au><au>Righetto, Marcello</au><au>Ulatowski, Aleksander M.</au><au>Motti, Silvia G.</au><au>Sun, Zhuotong</au><au>MacManus-Driscoll, Judith L.</au><au>Hoye, Robert L. Z.</au><au>Herz, Laura M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bandlike Transport and Charge-Carrier Dynamics in BiOI Films</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2023-07-27</date><risdate>2023</risdate><volume>14</volume><issue>29</issue><spage>6620</spage><epage>6629</epage><pages>6620-6629</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>Following the emergence of lead halide perovskites (LHPs) as materials for efficient solar cells, research has progressed to explore stable, abundant, and nontoxic alternatives. However, the performance of such lead-free perovskite-inspired materials (PIMs) still lags significantly behind that of their LHP counterparts. For bismuth-based PIMs, one significant reason is a frequently observed ultrafast charge-carrier localization (or self-trapping), which imposes a fundamental limit on long-range mobility. Here we report the terahertz (THz) photoconductivity dynamics in thin films of BiOI and demonstrate a lack of such self-trapping, with good charge-carrier mobility, reaching ∼3 cm2 V–1 s–1 at 295 K and increasing gradually to ∼13 cm2 V–1 s–1 at 5 K, indicative of prevailing bandlike transport. Using a combination of transient photoluminescence and THz- and microwave-conductivity spectroscopy, we further investigate charge-carrier recombination processes, revealing charge-specific trapping of electrons at defects in BiOI over nanoseconds and low bimolecular band-to-band recombination. Subject to the development of passivation protocols, BiOI thus emerges as a superior light-harvesting semiconductor among the family of bismuth-based semiconductors.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37462354</pmid><doi>10.1021/acs.jpclett.3c01520</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6951-7265</orcidid><orcidid>https://orcid.org/0000-0003-4987-6620</orcidid><orcidid>https://orcid.org/0000-0001-5507-1445</orcidid><orcidid>https://orcid.org/0000-0001-9621-334X</orcidid><orcidid>https://orcid.org/0000-0002-8088-3485</orcidid><orcidid>https://orcid.org/0000-0002-7675-0065</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1948-7185
ispartof The journal of physical chemistry letters, 2023-07, Vol.14 (29), p.6620-6629
issn 1948-7185
1948-7185
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10388347
source ACS Publications
subjects Letter
Physical Insights into Energy Science
title Bandlike Transport and Charge-Carrier Dynamics in BiOI Films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T01%3A45%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bandlike%20Transport%20and%20Charge-Carrier%20Dynamics%20in%20BiOI%20Films&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Lal,%20Snigdha&rft.date=2023-07-27&rft.volume=14&rft.issue=29&rft.spage=6620&rft.epage=6629&rft.pages=6620-6629&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.3c01520&rft_dat=%3Cproquest_pubme%3E2839248743%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2839248743&rft_id=info:pmid/37462354&rfr_iscdi=true