Nondestructive Evaluation of Residual Stress in Shot Peened Inconel Using Ultrasonic Minimum Reflection Measurement
Shot peening is a process wherein the surface of a material is impacted by small, spherical metal shots at high velocity to create residual stresses. Nickel-based superalloy is a material with high strength and hardness along with excellent corrosion and fatigue resistance, and it is therefore used...
Gespeichert in:
Veröffentlicht in: | Materials 2023-07, Vol.16 (14), p.5075 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 14 |
container_start_page | 5075 |
container_title | Materials |
container_volume | 16 |
creator | Choi, Yeong-Won Lee, Taek-Gyu Yeom, Yun-Taek Kwon, Sung-Duk Kim, Hun-Hee Lee, Kee-Young Kim, Hak-Joon Song, Sung-Jin |
description | Shot peening is a process wherein the surface of a material is impacted by small, spherical metal shots at high velocity to create residual stresses. Nickel-based superalloy is a material with high strength and hardness along with excellent corrosion and fatigue resistance, and it is therefore used in nuclear power plants and aerospace applications. The application of shot peening to INCONEL, a nickel-based superalloy, has been actively researched, and the measurement of residual stresses has been studied as well. Previous studies have used methods such as perforation strain gauge analysis and X-ray diffraction (XRD) to measure residual stress, which can be evaluated with high accuracy, but doing so damages the specimen and involves critical risks to operator safety due to radiation. On the other hand, ultrasonic testing (UT), which utilizes ultrasonic wave, has the advantage of relatively low unit cost and short test time. One UT method, minimum reflection measurement, uses Rayleigh waves to evaluate the properties of material surfaces. Therefore, the present study utilized ultrasonic minimum reflectivity measurements to evaluate the residual stresses in INCONEL specimens. Specifically, this study utilized ultrasonic minimum reflection measurements to evaluate the residual stress in INCONEL 718 specimens. Moreover, an estimation equation was assumed using exponential functions to estimate the residual stress with depth using the obtained data, and an optimization problem was solved to determine it. Finally, to evaluate the estimated residual stress graph, the residual stress of the specimen was measured and compared using the XRD method. |
doi_str_mv | 10.3390/ma16145075 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10385900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A759155498</galeid><sourcerecordid>A759155498</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-f0bde879d9ee5fc6afcfd0943f89f3c238dcfb43ef6b0f6254886cbd0f3255433</originalsourceid><addsrcrecordid>eNpdktFuFCEUhonR2GbtjQ9gSLwxJlthgFm4Mk1Ta5NWjXWvCQOHLQ0DFWY28e1lu7VW4QIC3_8fzuEg9JqSY8YU-TAa2lMuyEo8Q4dUqX5JFefPn-wP0FGtt6QNxqjs1Et0wFaCdoyrQ1S_5OSgTmW2U9gCPtuaOJsp5ISzx9-hBjebiK-nArXikPD1TZ7wN4AEDl8kmxNEvK4hbfA6TsXUnILFVyGFcR6b3kew925XYOpcYIQ0vUIvvIkVjh7WBVp_Ovtx-nl5-fX84vTkcmk576elJ4MDuVJOAQhve-Otd0Rx5qXyzHZMOusHzsD3A_F9J7iUvR0c8awTgjO2QB_3vnfzMIKzLXQxUd-VMJryS2cT9L83KdzoTd5qSpgUqtVrgd49OJT8c25l0mOoFmI0CfJcdSc5Jw0VfUPf_ofe5rmklt-OYkRSstoZHu-pjYmgQ_K5BbZtOhjDrpg-tPOTlVC0paBkE7zfC2zJtRbwj8-nRO8aQP9tgAa_eZrwI_rnu9lvBiqtiA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2843081070</pqid></control><display><type>article</type><title>Nondestructive Evaluation of Residual Stress in Shot Peened Inconel Using Ultrasonic Minimum Reflection Measurement</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Choi, Yeong-Won ; Lee, Taek-Gyu ; Yeom, Yun-Taek ; Kwon, Sung-Duk ; Kim, Hun-Hee ; Lee, Kee-Young ; Kim, Hak-Joon ; Song, Sung-Jin</creator><creatorcontrib>Choi, Yeong-Won ; Lee, Taek-Gyu ; Yeom, Yun-Taek ; Kwon, Sung-Duk ; Kim, Hun-Hee ; Lee, Kee-Young ; Kim, Hak-Joon ; Song, Sung-Jin</creatorcontrib><description>Shot peening is a process wherein the surface of a material is impacted by small, spherical metal shots at high velocity to create residual stresses. Nickel-based superalloy is a material with high strength and hardness along with excellent corrosion and fatigue resistance, and it is therefore used in nuclear power plants and aerospace applications. The application of shot peening to INCONEL, a nickel-based superalloy, has been actively researched, and the measurement of residual stresses has been studied as well. Previous studies have used methods such as perforation strain gauge analysis and X-ray diffraction (XRD) to measure residual stress, which can be evaluated with high accuracy, but doing so damages the specimen and involves critical risks to operator safety due to radiation. On the other hand, ultrasonic testing (UT), which utilizes ultrasonic wave, has the advantage of relatively low unit cost and short test time. One UT method, minimum reflection measurement, uses Rayleigh waves to evaluate the properties of material surfaces. Therefore, the present study utilized ultrasonic minimum reflectivity measurements to evaluate the residual stresses in INCONEL specimens. Specifically, this study utilized ultrasonic minimum reflection measurements to evaluate the residual stress in INCONEL 718 specimens. Moreover, an estimation equation was assumed using exponential functions to estimate the residual stress with depth using the obtained data, and an optimization problem was solved to determine it. Finally, to evaluate the estimated residual stress graph, the residual stress of the specimen was measured and compared using the XRD method.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma16145075</identifier><identifier>PMID: 37512349</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Analysis ; Corrosion fatigue ; Corrosion resistance ; Deformation ; Diffraction ; Exponential functions ; Fatigue strength ; Hardness ; Heat resistant alloys ; Mechanical properties ; Nickel alloys ; Nickel base alloys ; Nondestructive testing ; Nuclear energy ; Nuclear power plants ; Nuclear safety ; Optimization ; Rayleigh waves ; Residual stress ; Shot peening ; Strain analysis ; Strain gauges ; Stress measurement ; Superalloys ; Technology application ; Ultrasonic testing ; Ultrasonic waves ; Velocity ; Wave reflection ; X-ray diffraction ; X-rays</subject><ispartof>Materials, 2023-07, Vol.16 (14), p.5075</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-f0bde879d9ee5fc6afcfd0943f89f3c238dcfb43ef6b0f6254886cbd0f3255433</citedby><cites>FETCH-LOGICAL-c446t-f0bde879d9ee5fc6afcfd0943f89f3c238dcfb43ef6b0f6254886cbd0f3255433</cites><orcidid>0000-0001-6218-3779</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10385900/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10385900/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37512349$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Choi, Yeong-Won</creatorcontrib><creatorcontrib>Lee, Taek-Gyu</creatorcontrib><creatorcontrib>Yeom, Yun-Taek</creatorcontrib><creatorcontrib>Kwon, Sung-Duk</creatorcontrib><creatorcontrib>Kim, Hun-Hee</creatorcontrib><creatorcontrib>Lee, Kee-Young</creatorcontrib><creatorcontrib>Kim, Hak-Joon</creatorcontrib><creatorcontrib>Song, Sung-Jin</creatorcontrib><title>Nondestructive Evaluation of Residual Stress in Shot Peened Inconel Using Ultrasonic Minimum Reflection Measurement</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Shot peening is a process wherein the surface of a material is impacted by small, spherical metal shots at high velocity to create residual stresses. Nickel-based superalloy is a material with high strength and hardness along with excellent corrosion and fatigue resistance, and it is therefore used in nuclear power plants and aerospace applications. The application of shot peening to INCONEL, a nickel-based superalloy, has been actively researched, and the measurement of residual stresses has been studied as well. Previous studies have used methods such as perforation strain gauge analysis and X-ray diffraction (XRD) to measure residual stress, which can be evaluated with high accuracy, but doing so damages the specimen and involves critical risks to operator safety due to radiation. On the other hand, ultrasonic testing (UT), which utilizes ultrasonic wave, has the advantage of relatively low unit cost and short test time. One UT method, minimum reflection measurement, uses Rayleigh waves to evaluate the properties of material surfaces. Therefore, the present study utilized ultrasonic minimum reflectivity measurements to evaluate the residual stresses in INCONEL specimens. Specifically, this study utilized ultrasonic minimum reflection measurements to evaluate the residual stress in INCONEL 718 specimens. Moreover, an estimation equation was assumed using exponential functions to estimate the residual stress with depth using the obtained data, and an optimization problem was solved to determine it. Finally, to evaluate the estimated residual stress graph, the residual stress of the specimen was measured and compared using the XRD method.</description><subject>Analysis</subject><subject>Corrosion fatigue</subject><subject>Corrosion resistance</subject><subject>Deformation</subject><subject>Diffraction</subject><subject>Exponential functions</subject><subject>Fatigue strength</subject><subject>Hardness</subject><subject>Heat resistant alloys</subject><subject>Mechanical properties</subject><subject>Nickel alloys</subject><subject>Nickel base alloys</subject><subject>Nondestructive testing</subject><subject>Nuclear energy</subject><subject>Nuclear power plants</subject><subject>Nuclear safety</subject><subject>Optimization</subject><subject>Rayleigh waves</subject><subject>Residual stress</subject><subject>Shot peening</subject><subject>Strain analysis</subject><subject>Strain gauges</subject><subject>Stress measurement</subject><subject>Superalloys</subject><subject>Technology application</subject><subject>Ultrasonic testing</subject><subject>Ultrasonic waves</subject><subject>Velocity</subject><subject>Wave reflection</subject><subject>X-ray diffraction</subject><subject>X-rays</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdktFuFCEUhonR2GbtjQ9gSLwxJlthgFm4Mk1Ta5NWjXWvCQOHLQ0DFWY28e1lu7VW4QIC3_8fzuEg9JqSY8YU-TAa2lMuyEo8Q4dUqX5JFefPn-wP0FGtt6QNxqjs1Et0wFaCdoyrQ1S_5OSgTmW2U9gCPtuaOJsp5ISzx9-hBjebiK-nArXikPD1TZ7wN4AEDl8kmxNEvK4hbfA6TsXUnILFVyGFcR6b3kew925XYOpcYIQ0vUIvvIkVjh7WBVp_Ovtx-nl5-fX84vTkcmk576elJ4MDuVJOAQhve-Otd0Rx5qXyzHZMOusHzsD3A_F9J7iUvR0c8awTgjO2QB_3vnfzMIKzLXQxUd-VMJryS2cT9L83KdzoTd5qSpgUqtVrgd49OJT8c25l0mOoFmI0CfJcdSc5Jw0VfUPf_ofe5rmklt-OYkRSstoZHu-pjYmgQ_K5BbZtOhjDrpg-tPOTlVC0paBkE7zfC2zJtRbwj8-nRO8aQP9tgAa_eZrwI_rnu9lvBiqtiA</recordid><startdate>20230718</startdate><enddate>20230718</enddate><creator>Choi, Yeong-Won</creator><creator>Lee, Taek-Gyu</creator><creator>Yeom, Yun-Taek</creator><creator>Kwon, Sung-Duk</creator><creator>Kim, Hun-Hee</creator><creator>Lee, Kee-Young</creator><creator>Kim, Hak-Joon</creator><creator>Song, Sung-Jin</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6218-3779</orcidid></search><sort><creationdate>20230718</creationdate><title>Nondestructive Evaluation of Residual Stress in Shot Peened Inconel Using Ultrasonic Minimum Reflection Measurement</title><author>Choi, Yeong-Won ; Lee, Taek-Gyu ; Yeom, Yun-Taek ; Kwon, Sung-Duk ; Kim, Hun-Hee ; Lee, Kee-Young ; Kim, Hak-Joon ; Song, Sung-Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-f0bde879d9ee5fc6afcfd0943f89f3c238dcfb43ef6b0f6254886cbd0f3255433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Corrosion fatigue</topic><topic>Corrosion resistance</topic><topic>Deformation</topic><topic>Diffraction</topic><topic>Exponential functions</topic><topic>Fatigue strength</topic><topic>Hardness</topic><topic>Heat resistant alloys</topic><topic>Mechanical properties</topic><topic>Nickel alloys</topic><topic>Nickel base alloys</topic><topic>Nondestructive testing</topic><topic>Nuclear energy</topic><topic>Nuclear power plants</topic><topic>Nuclear safety</topic><topic>Optimization</topic><topic>Rayleigh waves</topic><topic>Residual stress</topic><topic>Shot peening</topic><topic>Strain analysis</topic><topic>Strain gauges</topic><topic>Stress measurement</topic><topic>Superalloys</topic><topic>Technology application</topic><topic>Ultrasonic testing</topic><topic>Ultrasonic waves</topic><topic>Velocity</topic><topic>Wave reflection</topic><topic>X-ray diffraction</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Yeong-Won</creatorcontrib><creatorcontrib>Lee, Taek-Gyu</creatorcontrib><creatorcontrib>Yeom, Yun-Taek</creatorcontrib><creatorcontrib>Kwon, Sung-Duk</creatorcontrib><creatorcontrib>Kim, Hun-Hee</creatorcontrib><creatorcontrib>Lee, Kee-Young</creatorcontrib><creatorcontrib>Kim, Hak-Joon</creatorcontrib><creatorcontrib>Song, Sung-Jin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Yeong-Won</au><au>Lee, Taek-Gyu</au><au>Yeom, Yun-Taek</au><au>Kwon, Sung-Duk</au><au>Kim, Hun-Hee</au><au>Lee, Kee-Young</au><au>Kim, Hak-Joon</au><au>Song, Sung-Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nondestructive Evaluation of Residual Stress in Shot Peened Inconel Using Ultrasonic Minimum Reflection Measurement</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2023-07-18</date><risdate>2023</risdate><volume>16</volume><issue>14</issue><spage>5075</spage><pages>5075-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Shot peening is a process wherein the surface of a material is impacted by small, spherical metal shots at high velocity to create residual stresses. Nickel-based superalloy is a material with high strength and hardness along with excellent corrosion and fatigue resistance, and it is therefore used in nuclear power plants and aerospace applications. The application of shot peening to INCONEL, a nickel-based superalloy, has been actively researched, and the measurement of residual stresses has been studied as well. Previous studies have used methods such as perforation strain gauge analysis and X-ray diffraction (XRD) to measure residual stress, which can be evaluated with high accuracy, but doing so damages the specimen and involves critical risks to operator safety due to radiation. On the other hand, ultrasonic testing (UT), which utilizes ultrasonic wave, has the advantage of relatively low unit cost and short test time. One UT method, minimum reflection measurement, uses Rayleigh waves to evaluate the properties of material surfaces. Therefore, the present study utilized ultrasonic minimum reflectivity measurements to evaluate the residual stresses in INCONEL specimens. Specifically, this study utilized ultrasonic minimum reflection measurements to evaluate the residual stress in INCONEL 718 specimens. Moreover, an estimation equation was assumed using exponential functions to estimate the residual stress with depth using the obtained data, and an optimization problem was solved to determine it. Finally, to evaluate the estimated residual stress graph, the residual stress of the specimen was measured and compared using the XRD method.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>37512349</pmid><doi>10.3390/ma16145075</doi><orcidid>https://orcid.org/0000-0001-6218-3779</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2023-07, Vol.16 (14), p.5075 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10385900 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Analysis Corrosion fatigue Corrosion resistance Deformation Diffraction Exponential functions Fatigue strength Hardness Heat resistant alloys Mechanical properties Nickel alloys Nickel base alloys Nondestructive testing Nuclear energy Nuclear power plants Nuclear safety Optimization Rayleigh waves Residual stress Shot peening Strain analysis Strain gauges Stress measurement Superalloys Technology application Ultrasonic testing Ultrasonic waves Velocity Wave reflection X-ray diffraction X-rays |
title | Nondestructive Evaluation of Residual Stress in Shot Peened Inconel Using Ultrasonic Minimum Reflection Measurement |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A10%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nondestructive%20Evaluation%20of%20Residual%20Stress%20in%20Shot%20Peened%20Inconel%20Using%20Ultrasonic%20Minimum%20Reflection%20Measurement&rft.jtitle=Materials&rft.au=Choi,%20Yeong-Won&rft.date=2023-07-18&rft.volume=16&rft.issue=14&rft.spage=5075&rft.pages=5075-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma16145075&rft_dat=%3Cgale_pubme%3EA759155498%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2843081070&rft_id=info:pmid/37512349&rft_galeid=A759155498&rfr_iscdi=true |