Nondestructive Evaluation of Residual Stress in Shot Peened Inconel Using Ultrasonic Minimum Reflection Measurement

Shot peening is a process wherein the surface of a material is impacted by small, spherical metal shots at high velocity to create residual stresses. Nickel-based superalloy is a material with high strength and hardness along with excellent corrosion and fatigue resistance, and it is therefore used...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2023-07, Vol.16 (14), p.5075
Hauptverfasser: Choi, Yeong-Won, Lee, Taek-Gyu, Yeom, Yun-Taek, Kwon, Sung-Duk, Kim, Hun-Hee, Lee, Kee-Young, Kim, Hak-Joon, Song, Sung-Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 14
container_start_page 5075
container_title Materials
container_volume 16
creator Choi, Yeong-Won
Lee, Taek-Gyu
Yeom, Yun-Taek
Kwon, Sung-Duk
Kim, Hun-Hee
Lee, Kee-Young
Kim, Hak-Joon
Song, Sung-Jin
description Shot peening is a process wherein the surface of a material is impacted by small, spherical metal shots at high velocity to create residual stresses. Nickel-based superalloy is a material with high strength and hardness along with excellent corrosion and fatigue resistance, and it is therefore used in nuclear power plants and aerospace applications. The application of shot peening to INCONEL, a nickel-based superalloy, has been actively researched, and the measurement of residual stresses has been studied as well. Previous studies have used methods such as perforation strain gauge analysis and X-ray diffraction (XRD) to measure residual stress, which can be evaluated with high accuracy, but doing so damages the specimen and involves critical risks to operator safety due to radiation. On the other hand, ultrasonic testing (UT), which utilizes ultrasonic wave, has the advantage of relatively low unit cost and short test time. One UT method, minimum reflection measurement, uses Rayleigh waves to evaluate the properties of material surfaces. Therefore, the present study utilized ultrasonic minimum reflectivity measurements to evaluate the residual stresses in INCONEL specimens. Specifically, this study utilized ultrasonic minimum reflection measurements to evaluate the residual stress in INCONEL 718 specimens. Moreover, an estimation equation was assumed using exponential functions to estimate the residual stress with depth using the obtained data, and an optimization problem was solved to determine it. Finally, to evaluate the estimated residual stress graph, the residual stress of the specimen was measured and compared using the XRD method.
doi_str_mv 10.3390/ma16145075
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10385900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A759155498</galeid><sourcerecordid>A759155498</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-f0bde879d9ee5fc6afcfd0943f89f3c238dcfb43ef6b0f6254886cbd0f3255433</originalsourceid><addsrcrecordid>eNpdktFuFCEUhonR2GbtjQ9gSLwxJlthgFm4Mk1Ta5NWjXWvCQOHLQ0DFWY28e1lu7VW4QIC3_8fzuEg9JqSY8YU-TAa2lMuyEo8Q4dUqX5JFefPn-wP0FGtt6QNxqjs1Et0wFaCdoyrQ1S_5OSgTmW2U9gCPtuaOJsp5ISzx9-hBjebiK-nArXikPD1TZ7wN4AEDl8kmxNEvK4hbfA6TsXUnILFVyGFcR6b3kew925XYOpcYIQ0vUIvvIkVjh7WBVp_Ovtx-nl5-fX84vTkcmk576elJ4MDuVJOAQhve-Otd0Rx5qXyzHZMOusHzsD3A_F9J7iUvR0c8awTgjO2QB_3vnfzMIKzLXQxUd-VMJryS2cT9L83KdzoTd5qSpgUqtVrgd49OJT8c25l0mOoFmI0CfJcdSc5Jw0VfUPf_ofe5rmklt-OYkRSstoZHu-pjYmgQ_K5BbZtOhjDrpg-tPOTlVC0paBkE7zfC2zJtRbwj8-nRO8aQP9tgAa_eZrwI_rnu9lvBiqtiA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2843081070</pqid></control><display><type>article</type><title>Nondestructive Evaluation of Residual Stress in Shot Peened Inconel Using Ultrasonic Minimum Reflection Measurement</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Choi, Yeong-Won ; Lee, Taek-Gyu ; Yeom, Yun-Taek ; Kwon, Sung-Duk ; Kim, Hun-Hee ; Lee, Kee-Young ; Kim, Hak-Joon ; Song, Sung-Jin</creator><creatorcontrib>Choi, Yeong-Won ; Lee, Taek-Gyu ; Yeom, Yun-Taek ; Kwon, Sung-Duk ; Kim, Hun-Hee ; Lee, Kee-Young ; Kim, Hak-Joon ; Song, Sung-Jin</creatorcontrib><description>Shot peening is a process wherein the surface of a material is impacted by small, spherical metal shots at high velocity to create residual stresses. Nickel-based superalloy is a material with high strength and hardness along with excellent corrosion and fatigue resistance, and it is therefore used in nuclear power plants and aerospace applications. The application of shot peening to INCONEL, a nickel-based superalloy, has been actively researched, and the measurement of residual stresses has been studied as well. Previous studies have used methods such as perforation strain gauge analysis and X-ray diffraction (XRD) to measure residual stress, which can be evaluated with high accuracy, but doing so damages the specimen and involves critical risks to operator safety due to radiation. On the other hand, ultrasonic testing (UT), which utilizes ultrasonic wave, has the advantage of relatively low unit cost and short test time. One UT method, minimum reflection measurement, uses Rayleigh waves to evaluate the properties of material surfaces. Therefore, the present study utilized ultrasonic minimum reflectivity measurements to evaluate the residual stresses in INCONEL specimens. Specifically, this study utilized ultrasonic minimum reflection measurements to evaluate the residual stress in INCONEL 718 specimens. Moreover, an estimation equation was assumed using exponential functions to estimate the residual stress with depth using the obtained data, and an optimization problem was solved to determine it. Finally, to evaluate the estimated residual stress graph, the residual stress of the specimen was measured and compared using the XRD method.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma16145075</identifier><identifier>PMID: 37512349</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Analysis ; Corrosion fatigue ; Corrosion resistance ; Deformation ; Diffraction ; Exponential functions ; Fatigue strength ; Hardness ; Heat resistant alloys ; Mechanical properties ; Nickel alloys ; Nickel base alloys ; Nondestructive testing ; Nuclear energy ; Nuclear power plants ; Nuclear safety ; Optimization ; Rayleigh waves ; Residual stress ; Shot peening ; Strain analysis ; Strain gauges ; Stress measurement ; Superalloys ; Technology application ; Ultrasonic testing ; Ultrasonic waves ; Velocity ; Wave reflection ; X-ray diffraction ; X-rays</subject><ispartof>Materials, 2023-07, Vol.16 (14), p.5075</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-f0bde879d9ee5fc6afcfd0943f89f3c238dcfb43ef6b0f6254886cbd0f3255433</citedby><cites>FETCH-LOGICAL-c446t-f0bde879d9ee5fc6afcfd0943f89f3c238dcfb43ef6b0f6254886cbd0f3255433</cites><orcidid>0000-0001-6218-3779</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10385900/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10385900/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37512349$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Choi, Yeong-Won</creatorcontrib><creatorcontrib>Lee, Taek-Gyu</creatorcontrib><creatorcontrib>Yeom, Yun-Taek</creatorcontrib><creatorcontrib>Kwon, Sung-Duk</creatorcontrib><creatorcontrib>Kim, Hun-Hee</creatorcontrib><creatorcontrib>Lee, Kee-Young</creatorcontrib><creatorcontrib>Kim, Hak-Joon</creatorcontrib><creatorcontrib>Song, Sung-Jin</creatorcontrib><title>Nondestructive Evaluation of Residual Stress in Shot Peened Inconel Using Ultrasonic Minimum Reflection Measurement</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Shot peening is a process wherein the surface of a material is impacted by small, spherical metal shots at high velocity to create residual stresses. Nickel-based superalloy is a material with high strength and hardness along with excellent corrosion and fatigue resistance, and it is therefore used in nuclear power plants and aerospace applications. The application of shot peening to INCONEL, a nickel-based superalloy, has been actively researched, and the measurement of residual stresses has been studied as well. Previous studies have used methods such as perforation strain gauge analysis and X-ray diffraction (XRD) to measure residual stress, which can be evaluated with high accuracy, but doing so damages the specimen and involves critical risks to operator safety due to radiation. On the other hand, ultrasonic testing (UT), which utilizes ultrasonic wave, has the advantage of relatively low unit cost and short test time. One UT method, minimum reflection measurement, uses Rayleigh waves to evaluate the properties of material surfaces. Therefore, the present study utilized ultrasonic minimum reflectivity measurements to evaluate the residual stresses in INCONEL specimens. Specifically, this study utilized ultrasonic minimum reflection measurements to evaluate the residual stress in INCONEL 718 specimens. Moreover, an estimation equation was assumed using exponential functions to estimate the residual stress with depth using the obtained data, and an optimization problem was solved to determine it. Finally, to evaluate the estimated residual stress graph, the residual stress of the specimen was measured and compared using the XRD method.</description><subject>Analysis</subject><subject>Corrosion fatigue</subject><subject>Corrosion resistance</subject><subject>Deformation</subject><subject>Diffraction</subject><subject>Exponential functions</subject><subject>Fatigue strength</subject><subject>Hardness</subject><subject>Heat resistant alloys</subject><subject>Mechanical properties</subject><subject>Nickel alloys</subject><subject>Nickel base alloys</subject><subject>Nondestructive testing</subject><subject>Nuclear energy</subject><subject>Nuclear power plants</subject><subject>Nuclear safety</subject><subject>Optimization</subject><subject>Rayleigh waves</subject><subject>Residual stress</subject><subject>Shot peening</subject><subject>Strain analysis</subject><subject>Strain gauges</subject><subject>Stress measurement</subject><subject>Superalloys</subject><subject>Technology application</subject><subject>Ultrasonic testing</subject><subject>Ultrasonic waves</subject><subject>Velocity</subject><subject>Wave reflection</subject><subject>X-ray diffraction</subject><subject>X-rays</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdktFuFCEUhonR2GbtjQ9gSLwxJlthgFm4Mk1Ta5NWjXWvCQOHLQ0DFWY28e1lu7VW4QIC3_8fzuEg9JqSY8YU-TAa2lMuyEo8Q4dUqX5JFefPn-wP0FGtt6QNxqjs1Et0wFaCdoyrQ1S_5OSgTmW2U9gCPtuaOJsp5ISzx9-hBjebiK-nArXikPD1TZ7wN4AEDl8kmxNEvK4hbfA6TsXUnILFVyGFcR6b3kew925XYOpcYIQ0vUIvvIkVjh7WBVp_Ovtx-nl5-fX84vTkcmk576elJ4MDuVJOAQhve-Otd0Rx5qXyzHZMOusHzsD3A_F9J7iUvR0c8awTgjO2QB_3vnfzMIKzLXQxUd-VMJryS2cT9L83KdzoTd5qSpgUqtVrgd49OJT8c25l0mOoFmI0CfJcdSc5Jw0VfUPf_ofe5rmklt-OYkRSstoZHu-pjYmgQ_K5BbZtOhjDrpg-tPOTlVC0paBkE7zfC2zJtRbwj8-nRO8aQP9tgAa_eZrwI_rnu9lvBiqtiA</recordid><startdate>20230718</startdate><enddate>20230718</enddate><creator>Choi, Yeong-Won</creator><creator>Lee, Taek-Gyu</creator><creator>Yeom, Yun-Taek</creator><creator>Kwon, Sung-Duk</creator><creator>Kim, Hun-Hee</creator><creator>Lee, Kee-Young</creator><creator>Kim, Hak-Joon</creator><creator>Song, Sung-Jin</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6218-3779</orcidid></search><sort><creationdate>20230718</creationdate><title>Nondestructive Evaluation of Residual Stress in Shot Peened Inconel Using Ultrasonic Minimum Reflection Measurement</title><author>Choi, Yeong-Won ; Lee, Taek-Gyu ; Yeom, Yun-Taek ; Kwon, Sung-Duk ; Kim, Hun-Hee ; Lee, Kee-Young ; Kim, Hak-Joon ; Song, Sung-Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-f0bde879d9ee5fc6afcfd0943f89f3c238dcfb43ef6b0f6254886cbd0f3255433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Corrosion fatigue</topic><topic>Corrosion resistance</topic><topic>Deformation</topic><topic>Diffraction</topic><topic>Exponential functions</topic><topic>Fatigue strength</topic><topic>Hardness</topic><topic>Heat resistant alloys</topic><topic>Mechanical properties</topic><topic>Nickel alloys</topic><topic>Nickel base alloys</topic><topic>Nondestructive testing</topic><topic>Nuclear energy</topic><topic>Nuclear power plants</topic><topic>Nuclear safety</topic><topic>Optimization</topic><topic>Rayleigh waves</topic><topic>Residual stress</topic><topic>Shot peening</topic><topic>Strain analysis</topic><topic>Strain gauges</topic><topic>Stress measurement</topic><topic>Superalloys</topic><topic>Technology application</topic><topic>Ultrasonic testing</topic><topic>Ultrasonic waves</topic><topic>Velocity</topic><topic>Wave reflection</topic><topic>X-ray diffraction</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Yeong-Won</creatorcontrib><creatorcontrib>Lee, Taek-Gyu</creatorcontrib><creatorcontrib>Yeom, Yun-Taek</creatorcontrib><creatorcontrib>Kwon, Sung-Duk</creatorcontrib><creatorcontrib>Kim, Hun-Hee</creatorcontrib><creatorcontrib>Lee, Kee-Young</creatorcontrib><creatorcontrib>Kim, Hak-Joon</creatorcontrib><creatorcontrib>Song, Sung-Jin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Yeong-Won</au><au>Lee, Taek-Gyu</au><au>Yeom, Yun-Taek</au><au>Kwon, Sung-Duk</au><au>Kim, Hun-Hee</au><au>Lee, Kee-Young</au><au>Kim, Hak-Joon</au><au>Song, Sung-Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nondestructive Evaluation of Residual Stress in Shot Peened Inconel Using Ultrasonic Minimum Reflection Measurement</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2023-07-18</date><risdate>2023</risdate><volume>16</volume><issue>14</issue><spage>5075</spage><pages>5075-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Shot peening is a process wherein the surface of a material is impacted by small, spherical metal shots at high velocity to create residual stresses. Nickel-based superalloy is a material with high strength and hardness along with excellent corrosion and fatigue resistance, and it is therefore used in nuclear power plants and aerospace applications. The application of shot peening to INCONEL, a nickel-based superalloy, has been actively researched, and the measurement of residual stresses has been studied as well. Previous studies have used methods such as perforation strain gauge analysis and X-ray diffraction (XRD) to measure residual stress, which can be evaluated with high accuracy, but doing so damages the specimen and involves critical risks to operator safety due to radiation. On the other hand, ultrasonic testing (UT), which utilizes ultrasonic wave, has the advantage of relatively low unit cost and short test time. One UT method, minimum reflection measurement, uses Rayleigh waves to evaluate the properties of material surfaces. Therefore, the present study utilized ultrasonic minimum reflectivity measurements to evaluate the residual stresses in INCONEL specimens. Specifically, this study utilized ultrasonic minimum reflection measurements to evaluate the residual stress in INCONEL 718 specimens. Moreover, an estimation equation was assumed using exponential functions to estimate the residual stress with depth using the obtained data, and an optimization problem was solved to determine it. Finally, to evaluate the estimated residual stress graph, the residual stress of the specimen was measured and compared using the XRD method.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>37512349</pmid><doi>10.3390/ma16145075</doi><orcidid>https://orcid.org/0000-0001-6218-3779</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2023-07, Vol.16 (14), p.5075
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10385900
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central; Free Full-Text Journals in Chemistry
subjects Analysis
Corrosion fatigue
Corrosion resistance
Deformation
Diffraction
Exponential functions
Fatigue strength
Hardness
Heat resistant alloys
Mechanical properties
Nickel alloys
Nickel base alloys
Nondestructive testing
Nuclear energy
Nuclear power plants
Nuclear safety
Optimization
Rayleigh waves
Residual stress
Shot peening
Strain analysis
Strain gauges
Stress measurement
Superalloys
Technology application
Ultrasonic testing
Ultrasonic waves
Velocity
Wave reflection
X-ray diffraction
X-rays
title Nondestructive Evaluation of Residual Stress in Shot Peened Inconel Using Ultrasonic Minimum Reflection Measurement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A10%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nondestructive%20Evaluation%20of%20Residual%20Stress%20in%20Shot%20Peened%20Inconel%20Using%20Ultrasonic%20Minimum%20Reflection%20Measurement&rft.jtitle=Materials&rft.au=Choi,%20Yeong-Won&rft.date=2023-07-18&rft.volume=16&rft.issue=14&rft.spage=5075&rft.pages=5075-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma16145075&rft_dat=%3Cgale_pubme%3EA759155498%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2843081070&rft_id=info:pmid/37512349&rft_galeid=A759155498&rfr_iscdi=true