The Influence of Halide Ion Substitution on Energy Structure and Luminescence Efficiency in CeBr2I and CeBrI2 Crystals
This study aims to determine the optimum composition of the CeBr1−xIx compound to achieve the maximum light output. It is based on calculations of the band energy structure of crystals, specifically taking into account the characteristics of the mutual location of local and band 5d states of the Ce3...
Gespeichert in:
Veröffentlicht in: | Materials 2023-07, Vol.16 (14), p.5085 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 14 |
container_start_page | 5085 |
container_title | Materials |
container_volume | 16 |
creator | Przystupa, Krzysztof Chornodolskyy, Yaroslav M. Selech, Jarosław Karnaushenko, Vladyslav O. Demkiv, Taras M. Kochan, Orest Syrotyuk, Stepan V. Voloshinovskii, Anatolii S. |
description | This study aims to determine the optimum composition of the CeBr1−xIx compound to achieve the maximum light output. It is based on calculations of the band energy structure of crystals, specifically taking into account the characteristics of the mutual location of local and band 5d states of the Ce3+ ions. The band energy structures for CeBr2I and CeBrI2 crystals were calculated using the projector augmented wave method. The valence band was found to be formed by the hybridized states of 4p Br and 5p I. The 4f states of Ce3+ are located in the energy forbidden band gap. The conduction band is formed by the localized 5d1 states, which are created by the interaction between the 5d states of Ce3+ and the 4f0 hole of the cerium ion. The higher-lying delocalized 5d2 states of Ce3+ correspond to the energy levels of the 5d states of Ce3+ in the field of the halide Cl0 (Br0) hole. The relative location of 5d1 and 5d2 bands determines the intensity of 5d–4f luminescence. The bottom of the conduction band is formed by localized 5d1 states in the CeBr2I crystal. The local character of the bottom of the conduction band in the CeBr2I crystal favors the formation of self-trapped Frenkel excitons. Transitions between the 5d1 and 4f states are responsible for 5d–4f exciton luminescence. In the CeBrI2 crystal, the conduction band is formed by mixing the localized 5d1 and delocalized 5d2 states, which leads to quenching the 5d–4f luminescence and a decrease in the light output despite the decrease in the forbidden band gap. CsBr2I is the optimum composition of the system to achieve the maximum light output. |
doi_str_mv | 10.3390/ma16145085 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10383953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2844086087</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-5057f83f2f2122a62bd67e696783d40dd3525a415d32ff84790a58fa197b4b503</originalsourceid><addsrcrecordid>eNpdkd9LHDEQx0OxVLG-9C8I9KUIp0km2U2eih6nHhz4oH0O2d1EI7tZmx_C_ffmVGo1DMw3k0--zDAI_aDkBECR08nQhnJBpPiCDqhSzYIqzvf-0_voKKUHUg8AlUx9Q_vQCspAqAP0dHtv8Tq4sdjQWzw7fGVGP9TaHPBN6VL2uWRfLzVWwca7Lb7JsfS5RItNGPCmTD7Y1L_8Xznne1_lFvuAl_Y8svULtZNrhpdxm7IZ03f01dVkj97yIfpzsbpdXi0215fr5dlm0YPkeSGIaJ0ExxyjjJmGdUPT2kY1rYSBk2EAwYThVAzAnJO8VcQI6QxVbcc7QeAQ_X71fSzdZIfaZI5m1I_RTyZu9Wy8_vgS_L2-m580JSBBCagOv94c4vy32JT15Ouw42iCnUvSTHJOZENkW9Gfn9CHucRQ59tRQCRRnFXq-JXq45xStO5fN5To3Ur1-0rhGXgLkOQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2843080942</pqid></control><display><type>article</type><title>The Influence of Halide Ion Substitution on Energy Structure and Luminescence Efficiency in CeBr2I and CeBrI2 Crystals</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Przystupa, Krzysztof ; Chornodolskyy, Yaroslav M. ; Selech, Jarosław ; Karnaushenko, Vladyslav O. ; Demkiv, Taras M. ; Kochan, Orest ; Syrotyuk, Stepan V. ; Voloshinovskii, Anatolii S.</creator><creatorcontrib>Przystupa, Krzysztof ; Chornodolskyy, Yaroslav M. ; Selech, Jarosław ; Karnaushenko, Vladyslav O. ; Demkiv, Taras M. ; Kochan, Orest ; Syrotyuk, Stepan V. ; Voloshinovskii, Anatolii S.</creatorcontrib><description>This study aims to determine the optimum composition of the CeBr1−xIx compound to achieve the maximum light output. It is based on calculations of the band energy structure of crystals, specifically taking into account the characteristics of the mutual location of local and band 5d states of the Ce3+ ions. The band energy structures for CeBr2I and CeBrI2 crystals were calculated using the projector augmented wave method. The valence band was found to be formed by the hybridized states of 4p Br and 5p I. The 4f states of Ce3+ are located in the energy forbidden band gap. The conduction band is formed by the localized 5d1 states, which are created by the interaction between the 5d states of Ce3+ and the 4f0 hole of the cerium ion. The higher-lying delocalized 5d2 states of Ce3+ correspond to the energy levels of the 5d states of Ce3+ in the field of the halide Cl0 (Br0) hole. The relative location of 5d1 and 5d2 bands determines the intensity of 5d–4f luminescence. The bottom of the conduction band is formed by localized 5d1 states in the CeBr2I crystal. The local character of the bottom of the conduction band in the CeBr2I crystal favors the formation of self-trapped Frenkel excitons. Transitions between the 5d1 and 4f states are responsible for 5d–4f exciton luminescence. In the CeBrI2 crystal, the conduction band is formed by mixing the localized 5d1 and delocalized 5d2 states, which leads to quenching the 5d–4f luminescence and a decrease in the light output despite the decrease in the forbidden band gap. CsBr2I is the optimum composition of the system to achieve the maximum light output.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma16145085</identifier><identifier>PMID: 37512359</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Cerium ; Composition ; Conduction bands ; Crystals ; Efficiency ; Energy gap ; Energy industry ; Energy levels ; Excitons ; Forbidden bands ; Iodine ; Light ; Luminescence ; Luminescence quenching ; Mathematical analysis ; Nanocrystals ; Radiation ; Sensors ; Tomography ; Valence band</subject><ispartof>Materials, 2023-07, Vol.16 (14), p.5085</ispartof><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-5057f83f2f2122a62bd67e696783d40dd3525a415d32ff84790a58fa197b4b503</citedby><cites>FETCH-LOGICAL-c384t-5057f83f2f2122a62bd67e696783d40dd3525a415d32ff84790a58fa197b4b503</cites><orcidid>0000-0003-4361-2763 ; 0000-0003-1140-5743 ; 0000-0002-3164-3821 ; 0000-0002-2656-3800</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10383953/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10383953/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Przystupa, Krzysztof</creatorcontrib><creatorcontrib>Chornodolskyy, Yaroslav M.</creatorcontrib><creatorcontrib>Selech, Jarosław</creatorcontrib><creatorcontrib>Karnaushenko, Vladyslav O.</creatorcontrib><creatorcontrib>Demkiv, Taras M.</creatorcontrib><creatorcontrib>Kochan, Orest</creatorcontrib><creatorcontrib>Syrotyuk, Stepan V.</creatorcontrib><creatorcontrib>Voloshinovskii, Anatolii S.</creatorcontrib><title>The Influence of Halide Ion Substitution on Energy Structure and Luminescence Efficiency in CeBr2I and CeBrI2 Crystals</title><title>Materials</title><description>This study aims to determine the optimum composition of the CeBr1−xIx compound to achieve the maximum light output. It is based on calculations of the band energy structure of crystals, specifically taking into account the characteristics of the mutual location of local and band 5d states of the Ce3+ ions. The band energy structures for CeBr2I and CeBrI2 crystals were calculated using the projector augmented wave method. The valence band was found to be formed by the hybridized states of 4p Br and 5p I. The 4f states of Ce3+ are located in the energy forbidden band gap. The conduction band is formed by the localized 5d1 states, which are created by the interaction between the 5d states of Ce3+ and the 4f0 hole of the cerium ion. The higher-lying delocalized 5d2 states of Ce3+ correspond to the energy levels of the 5d states of Ce3+ in the field of the halide Cl0 (Br0) hole. The relative location of 5d1 and 5d2 bands determines the intensity of 5d–4f luminescence. The bottom of the conduction band is formed by localized 5d1 states in the CeBr2I crystal. The local character of the bottom of the conduction band in the CeBr2I crystal favors the formation of self-trapped Frenkel excitons. Transitions between the 5d1 and 4f states are responsible for 5d–4f exciton luminescence. In the CeBrI2 crystal, the conduction band is formed by mixing the localized 5d1 and delocalized 5d2 states, which leads to quenching the 5d–4f luminescence and a decrease in the light output despite the decrease in the forbidden band gap. CsBr2I is the optimum composition of the system to achieve the maximum light output.</description><subject>Cerium</subject><subject>Composition</subject><subject>Conduction bands</subject><subject>Crystals</subject><subject>Efficiency</subject><subject>Energy gap</subject><subject>Energy industry</subject><subject>Energy levels</subject><subject>Excitons</subject><subject>Forbidden bands</subject><subject>Iodine</subject><subject>Light</subject><subject>Luminescence</subject><subject>Luminescence quenching</subject><subject>Mathematical analysis</subject><subject>Nanocrystals</subject><subject>Radiation</subject><subject>Sensors</subject><subject>Tomography</subject><subject>Valence band</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkd9LHDEQx0OxVLG-9C8I9KUIp0km2U2eih6nHhz4oH0O2d1EI7tZmx_C_ffmVGo1DMw3k0--zDAI_aDkBECR08nQhnJBpPiCDqhSzYIqzvf-0_voKKUHUg8AlUx9Q_vQCspAqAP0dHtv8Tq4sdjQWzw7fGVGP9TaHPBN6VL2uWRfLzVWwca7Lb7JsfS5RItNGPCmTD7Y1L_8Xznne1_lFvuAl_Y8svULtZNrhpdxm7IZ03f01dVkj97yIfpzsbpdXi0215fr5dlm0YPkeSGIaJ0ExxyjjJmGdUPT2kY1rYSBk2EAwYThVAzAnJO8VcQI6QxVbcc7QeAQ_X71fSzdZIfaZI5m1I_RTyZu9Wy8_vgS_L2-m580JSBBCagOv94c4vy32JT15Ouw42iCnUvSTHJOZENkW9Gfn9CHucRQ59tRQCRRnFXq-JXq45xStO5fN5To3Ur1-0rhGXgLkOQ</recordid><startdate>20230719</startdate><enddate>20230719</enddate><creator>Przystupa, Krzysztof</creator><creator>Chornodolskyy, Yaroslav M.</creator><creator>Selech, Jarosław</creator><creator>Karnaushenko, Vladyslav O.</creator><creator>Demkiv, Taras M.</creator><creator>Kochan, Orest</creator><creator>Syrotyuk, Stepan V.</creator><creator>Voloshinovskii, Anatolii S.</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4361-2763</orcidid><orcidid>https://orcid.org/0000-0003-1140-5743</orcidid><orcidid>https://orcid.org/0000-0002-3164-3821</orcidid><orcidid>https://orcid.org/0000-0002-2656-3800</orcidid></search><sort><creationdate>20230719</creationdate><title>The Influence of Halide Ion Substitution on Energy Structure and Luminescence Efficiency in CeBr2I and CeBrI2 Crystals</title><author>Przystupa, Krzysztof ; Chornodolskyy, Yaroslav M. ; Selech, Jarosław ; Karnaushenko, Vladyslav O. ; Demkiv, Taras M. ; Kochan, Orest ; Syrotyuk, Stepan V. ; Voloshinovskii, Anatolii S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-5057f83f2f2122a62bd67e696783d40dd3525a415d32ff84790a58fa197b4b503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cerium</topic><topic>Composition</topic><topic>Conduction bands</topic><topic>Crystals</topic><topic>Efficiency</topic><topic>Energy gap</topic><topic>Energy industry</topic><topic>Energy levels</topic><topic>Excitons</topic><topic>Forbidden bands</topic><topic>Iodine</topic><topic>Light</topic><topic>Luminescence</topic><topic>Luminescence quenching</topic><topic>Mathematical analysis</topic><topic>Nanocrystals</topic><topic>Radiation</topic><topic>Sensors</topic><topic>Tomography</topic><topic>Valence band</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Przystupa, Krzysztof</creatorcontrib><creatorcontrib>Chornodolskyy, Yaroslav M.</creatorcontrib><creatorcontrib>Selech, Jarosław</creatorcontrib><creatorcontrib>Karnaushenko, Vladyslav O.</creatorcontrib><creatorcontrib>Demkiv, Taras M.</creatorcontrib><creatorcontrib>Kochan, Orest</creatorcontrib><creatorcontrib>Syrotyuk, Stepan V.</creatorcontrib><creatorcontrib>Voloshinovskii, Anatolii S.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Przystupa, Krzysztof</au><au>Chornodolskyy, Yaroslav M.</au><au>Selech, Jarosław</au><au>Karnaushenko, Vladyslav O.</au><au>Demkiv, Taras M.</au><au>Kochan, Orest</au><au>Syrotyuk, Stepan V.</au><au>Voloshinovskii, Anatolii S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Influence of Halide Ion Substitution on Energy Structure and Luminescence Efficiency in CeBr2I and CeBrI2 Crystals</atitle><jtitle>Materials</jtitle><date>2023-07-19</date><risdate>2023</risdate><volume>16</volume><issue>14</issue><spage>5085</spage><pages>5085-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>This study aims to determine the optimum composition of the CeBr1−xIx compound to achieve the maximum light output. It is based on calculations of the band energy structure of crystals, specifically taking into account the characteristics of the mutual location of local and band 5d states of the Ce3+ ions. The band energy structures for CeBr2I and CeBrI2 crystals were calculated using the projector augmented wave method. The valence band was found to be formed by the hybridized states of 4p Br and 5p I. The 4f states of Ce3+ are located in the energy forbidden band gap. The conduction band is formed by the localized 5d1 states, which are created by the interaction between the 5d states of Ce3+ and the 4f0 hole of the cerium ion. The higher-lying delocalized 5d2 states of Ce3+ correspond to the energy levels of the 5d states of Ce3+ in the field of the halide Cl0 (Br0) hole. The relative location of 5d1 and 5d2 bands determines the intensity of 5d–4f luminescence. The bottom of the conduction band is formed by localized 5d1 states in the CeBr2I crystal. The local character of the bottom of the conduction band in the CeBr2I crystal favors the formation of self-trapped Frenkel excitons. Transitions between the 5d1 and 4f states are responsible for 5d–4f exciton luminescence. In the CeBrI2 crystal, the conduction band is formed by mixing the localized 5d1 and delocalized 5d2 states, which leads to quenching the 5d–4f luminescence and a decrease in the light output despite the decrease in the forbidden band gap. CsBr2I is the optimum composition of the system to achieve the maximum light output.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>37512359</pmid><doi>10.3390/ma16145085</doi><orcidid>https://orcid.org/0000-0003-4361-2763</orcidid><orcidid>https://orcid.org/0000-0003-1140-5743</orcidid><orcidid>https://orcid.org/0000-0002-3164-3821</orcidid><orcidid>https://orcid.org/0000-0002-2656-3800</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2023-07, Vol.16 (14), p.5085 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10383953 |
source | PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Cerium Composition Conduction bands Crystals Efficiency Energy gap Energy industry Energy levels Excitons Forbidden bands Iodine Light Luminescence Luminescence quenching Mathematical analysis Nanocrystals Radiation Sensors Tomography Valence band |
title | The Influence of Halide Ion Substitution on Energy Structure and Luminescence Efficiency in CeBr2I and CeBrI2 Crystals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T03%3A56%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Influence%20of%20Halide%20Ion%20Substitution%20on%20Energy%20Structure%20and%20Luminescence%20Efficiency%20in%20CeBr2I%20and%20CeBrI2%20Crystals&rft.jtitle=Materials&rft.au=Przystupa,%20Krzysztof&rft.date=2023-07-19&rft.volume=16&rft.issue=14&rft.spage=5085&rft.pages=5085-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma16145085&rft_dat=%3Cproquest_pubme%3E2844086087%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2843080942&rft_id=info:pmid/37512359&rfr_iscdi=true |