Effective Governing Equations for Viscoelastic Composites

We derive the governing equations for the overall behaviour of linear viscoelastic composites comprising two families of elastic inclusions, subphases and/or fibres, and an incompressible Newtonian fluid interacting with the solid phases at the microscale. We assume that the distance between each of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2023-07, Vol.16 (14), p.4944
Hauptverfasser: Miller, Laura, Ramírez-Torres, Ariel, Rodríguez-Ramos, Reinaldo, Penta, Raimondo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 14
container_start_page 4944
container_title Materials
container_volume 16
creator Miller, Laura
Ramírez-Torres, Ariel
Rodríguez-Ramos, Reinaldo
Penta, Raimondo
description We derive the governing equations for the overall behaviour of linear viscoelastic composites comprising two families of elastic inclusions, subphases and/or fibres, and an incompressible Newtonian fluid interacting with the solid phases at the microscale. We assume that the distance between each of the subphases is very small in comparison to the length of the whole material (the macroscale). We can exploit this sharp scale separation and apply the asymptotic (periodic) homogenization method (AHM) which decouples spatial scales and leads to the derivation of the new homogenised model. It does this via upscaling the fluid-structure interaction problem that arises between the multiple elastic phases and the fluid. As we do not assume that the fluid flow is characterised by a parabolic profile, the new macroscale model, which consists of partial differential equations, is of Kelvin-Voigt viscoelastic type (rather than poroelastic). The novel model has coefficients that encode the properties of the microstructure and are to be computed by solving a single local differential fluid-structure interaction (FSI) problem where the solid and the fluid phases are all present and described by the one problem. The model reduces to the case described by Burridge and Keller (1981) when there is only one elastic phase in contact with the fluid. This model is applicable when the distance between adjacent phases is smaller than the average radius of the fluid flowing in the pores, which can be the case for various highly heterogeneous systems encountered in real-world (e.g., biological, or geological) scenarios of interest.
doi_str_mv 10.3390/ma16144944
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10381759</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A759155385</galeid><sourcerecordid>A759155385</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-77acd751c28f6a2269847eb4aeedb12ef18c0f963518adfd4b0f225fac21a4053</originalsourceid><addsrcrecordid>eNpdkV1rHCEUhiW0NCHdm_6AMtCbEtjUo86MXpWwbD4gkJsmt-I6x61hRjc6s9B_X5dNNh964UGf876-HEK-AT3nXNFfg4EGhFBCHJETUKqZQ6k_vamPySznR1oW5yCZ-kKOeVsDYyBPiFo6h3b0W6yu4hZT8GFdLZ8mM_oYcuViqh58thF7k0dvq0UcNjH7EfNX8tmZPuPs-Twl95fLP4vr-e3d1c3i4nZuhWjGedsa2xU7y6RrDGONkqLFlTCI3QoYOpCWOtXwGqTpXCdW1DFWO2MZGEFrfkp-73U302rAzmIYk-n1JvnBpH86Gq_fvwT_V6_jVgPlEtpaFYWfzwopPk2YRz2USNj3JmCcsmZSCCrrpm0K-uMD-hinFEq-HcWppFxBoc731Nr0qH1wsRjbsjscvI0BnS_3F8Ub6prLXYazfYNNMeeE7vB9oHo3Rv06xgJ_fxv4gL4Mjf8H-pSXbQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2843080391</pqid></control><display><type>article</type><title>Effective Governing Equations for Viscoelastic Composites</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Miller, Laura ; Ramírez-Torres, Ariel ; Rodríguez-Ramos, Reinaldo ; Penta, Raimondo</creator><creatorcontrib>Miller, Laura ; Ramírez-Torres, Ariel ; Rodríguez-Ramos, Reinaldo ; Penta, Raimondo</creatorcontrib><description>We derive the governing equations for the overall behaviour of linear viscoelastic composites comprising two families of elastic inclusions, subphases and/or fibres, and an incompressible Newtonian fluid interacting with the solid phases at the microscale. We assume that the distance between each of the subphases is very small in comparison to the length of the whole material (the macroscale). We can exploit this sharp scale separation and apply the asymptotic (periodic) homogenization method (AHM) which decouples spatial scales and leads to the derivation of the new homogenised model. It does this via upscaling the fluid-structure interaction problem that arises between the multiple elastic phases and the fluid. As we do not assume that the fluid flow is characterised by a parabolic profile, the new macroscale model, which consists of partial differential equations, is of Kelvin-Voigt viscoelastic type (rather than poroelastic). The novel model has coefficients that encode the properties of the microstructure and are to be computed by solving a single local differential fluid-structure interaction (FSI) problem where the solid and the fluid phases are all present and described by the one problem. The model reduces to the case described by Burridge and Keller (1981) when there is only one elastic phase in contact with the fluid. This model is applicable when the distance between adjacent phases is smaller than the average radius of the fluid flowing in the pores, which can be the case for various highly heterogeneous systems encountered in real-world (e.g., biological, or geological) scenarios of interest.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma16144944</identifier><identifier>PMID: 37512218</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Asymptotic methods ; Composite materials ; Fluid flow ; Fluid-structure interaction ; Homogenization ; Inclusions ; Incompressible flow ; Mathematical models ; Newtonian fluids ; Partial differential equations ; Porous materials ; Solid phases ; Viscoelasticity</subject><ispartof>Materials, 2023-07, Vol.16 (14), p.4944</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-77acd751c28f6a2269847eb4aeedb12ef18c0f963518adfd4b0f225fac21a4053</citedby><cites>FETCH-LOGICAL-c446t-77acd751c28f6a2269847eb4aeedb12ef18c0f963518adfd4b0f225fac21a4053</cites><orcidid>0000-0003-1202-8775 ; 0000-0002-5775-8985 ; 0000-0002-3093-6948</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10381759/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10381759/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37512218$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Miller, Laura</creatorcontrib><creatorcontrib>Ramírez-Torres, Ariel</creatorcontrib><creatorcontrib>Rodríguez-Ramos, Reinaldo</creatorcontrib><creatorcontrib>Penta, Raimondo</creatorcontrib><title>Effective Governing Equations for Viscoelastic Composites</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>We derive the governing equations for the overall behaviour of linear viscoelastic composites comprising two families of elastic inclusions, subphases and/or fibres, and an incompressible Newtonian fluid interacting with the solid phases at the microscale. We assume that the distance between each of the subphases is very small in comparison to the length of the whole material (the macroscale). We can exploit this sharp scale separation and apply the asymptotic (periodic) homogenization method (AHM) which decouples spatial scales and leads to the derivation of the new homogenised model. It does this via upscaling the fluid-structure interaction problem that arises between the multiple elastic phases and the fluid. As we do not assume that the fluid flow is characterised by a parabolic profile, the new macroscale model, which consists of partial differential equations, is of Kelvin-Voigt viscoelastic type (rather than poroelastic). The novel model has coefficients that encode the properties of the microstructure and are to be computed by solving a single local differential fluid-structure interaction (FSI) problem where the solid and the fluid phases are all present and described by the one problem. The model reduces to the case described by Burridge and Keller (1981) when there is only one elastic phase in contact with the fluid. This model is applicable when the distance between adjacent phases is smaller than the average radius of the fluid flowing in the pores, which can be the case for various highly heterogeneous systems encountered in real-world (e.g., biological, or geological) scenarios of interest.</description><subject>Asymptotic methods</subject><subject>Composite materials</subject><subject>Fluid flow</subject><subject>Fluid-structure interaction</subject><subject>Homogenization</subject><subject>Inclusions</subject><subject>Incompressible flow</subject><subject>Mathematical models</subject><subject>Newtonian fluids</subject><subject>Partial differential equations</subject><subject>Porous materials</subject><subject>Solid phases</subject><subject>Viscoelasticity</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkV1rHCEUhiW0NCHdm_6AMtCbEtjUo86MXpWwbD4gkJsmt-I6x61hRjc6s9B_X5dNNh964UGf876-HEK-AT3nXNFfg4EGhFBCHJETUKqZQ6k_vamPySznR1oW5yCZ-kKOeVsDYyBPiFo6h3b0W6yu4hZT8GFdLZ8mM_oYcuViqh58thF7k0dvq0UcNjH7EfNX8tmZPuPs-Twl95fLP4vr-e3d1c3i4nZuhWjGedsa2xU7y6RrDGONkqLFlTCI3QoYOpCWOtXwGqTpXCdW1DFWO2MZGEFrfkp-73U302rAzmIYk-n1JvnBpH86Gq_fvwT_V6_jVgPlEtpaFYWfzwopPk2YRz2USNj3JmCcsmZSCCrrpm0K-uMD-hinFEq-HcWppFxBoc731Nr0qH1wsRjbsjscvI0BnS_3F8Ub6prLXYazfYNNMeeE7vB9oHo3Rv06xgJ_fxv4gL4Mjf8H-pSXbQ</recordid><startdate>20230711</startdate><enddate>20230711</enddate><creator>Miller, Laura</creator><creator>Ramírez-Torres, Ariel</creator><creator>Rodríguez-Ramos, Reinaldo</creator><creator>Penta, Raimondo</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1202-8775</orcidid><orcidid>https://orcid.org/0000-0002-5775-8985</orcidid><orcidid>https://orcid.org/0000-0002-3093-6948</orcidid></search><sort><creationdate>20230711</creationdate><title>Effective Governing Equations for Viscoelastic Composites</title><author>Miller, Laura ; Ramírez-Torres, Ariel ; Rodríguez-Ramos, Reinaldo ; Penta, Raimondo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-77acd751c28f6a2269847eb4aeedb12ef18c0f963518adfd4b0f225fac21a4053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Asymptotic methods</topic><topic>Composite materials</topic><topic>Fluid flow</topic><topic>Fluid-structure interaction</topic><topic>Homogenization</topic><topic>Inclusions</topic><topic>Incompressible flow</topic><topic>Mathematical models</topic><topic>Newtonian fluids</topic><topic>Partial differential equations</topic><topic>Porous materials</topic><topic>Solid phases</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miller, Laura</creatorcontrib><creatorcontrib>Ramírez-Torres, Ariel</creatorcontrib><creatorcontrib>Rodríguez-Ramos, Reinaldo</creatorcontrib><creatorcontrib>Penta, Raimondo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miller, Laura</au><au>Ramírez-Torres, Ariel</au><au>Rodríguez-Ramos, Reinaldo</au><au>Penta, Raimondo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effective Governing Equations for Viscoelastic Composites</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2023-07-11</date><risdate>2023</risdate><volume>16</volume><issue>14</issue><spage>4944</spage><pages>4944-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>We derive the governing equations for the overall behaviour of linear viscoelastic composites comprising two families of elastic inclusions, subphases and/or fibres, and an incompressible Newtonian fluid interacting with the solid phases at the microscale. We assume that the distance between each of the subphases is very small in comparison to the length of the whole material (the macroscale). We can exploit this sharp scale separation and apply the asymptotic (periodic) homogenization method (AHM) which decouples spatial scales and leads to the derivation of the new homogenised model. It does this via upscaling the fluid-structure interaction problem that arises between the multiple elastic phases and the fluid. As we do not assume that the fluid flow is characterised by a parabolic profile, the new macroscale model, which consists of partial differential equations, is of Kelvin-Voigt viscoelastic type (rather than poroelastic). The novel model has coefficients that encode the properties of the microstructure and are to be computed by solving a single local differential fluid-structure interaction (FSI) problem where the solid and the fluid phases are all present and described by the one problem. The model reduces to the case described by Burridge and Keller (1981) when there is only one elastic phase in contact with the fluid. This model is applicable when the distance between adjacent phases is smaller than the average radius of the fluid flowing in the pores, which can be the case for various highly heterogeneous systems encountered in real-world (e.g., biological, or geological) scenarios of interest.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>37512218</pmid><doi>10.3390/ma16144944</doi><orcidid>https://orcid.org/0000-0003-1202-8775</orcidid><orcidid>https://orcid.org/0000-0002-5775-8985</orcidid><orcidid>https://orcid.org/0000-0002-3093-6948</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2023-07, Vol.16 (14), p.4944
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10381759
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central; Free Full-Text Journals in Chemistry
subjects Asymptotic methods
Composite materials
Fluid flow
Fluid-structure interaction
Homogenization
Inclusions
Incompressible flow
Mathematical models
Newtonian fluids
Partial differential equations
Porous materials
Solid phases
Viscoelasticity
title Effective Governing Equations for Viscoelastic Composites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T02%3A46%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effective%20Governing%20Equations%20for%20Viscoelastic%20Composites&rft.jtitle=Materials&rft.au=Miller,%20Laura&rft.date=2023-07-11&rft.volume=16&rft.issue=14&rft.spage=4944&rft.pages=4944-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma16144944&rft_dat=%3Cgale_pubme%3EA759155385%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2843080391&rft_id=info:pmid/37512218&rft_galeid=A759155385&rfr_iscdi=true