Machine Learning Identifies a Signature of Nine Exosomal RNAs That Predicts Hepatocellular Carcinoma

Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. Although alpha fetoprotein (AFP) remains a commonly used serological marker of HCC, the sensitivity and specificity of AFP in detecting HCC is often limited. Exosomal RNA has emerged as a promising diagnosti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancers 2023-07, Vol.15 (14), p.3749
Hauptverfasser: Yap, Josephine Yu Yan, Goh, Laura Shih Hui, Lim, Ashley Jun Wei, Chong, Samuel S, Lim, Lee Jin, Lee, Caroline G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 14
container_start_page 3749
container_title Cancers
container_volume 15
creator Yap, Josephine Yu Yan
Goh, Laura Shih Hui
Lim, Ashley Jun Wei
Chong, Samuel S
Lim, Lee Jin
Lee, Caroline G
description Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. Although alpha fetoprotein (AFP) remains a commonly used serological marker of HCC, the sensitivity and specificity of AFP in detecting HCC is often limited. Exosomal RNA has emerged as a promising diagnostic tool for various cancers, but its use in HCC detection has yet to be fully explored. Here, we employed Machine Learning on 114,602 exosomal RNAs to identify a signature that can predict HCC. The exosomal expression data of 118 HCC patients and 112 healthy individuals were stratified split into Training, Validation and Unseen Test datasets. Feature selection was then performed on the initial training dataset using permutation importance, and the predictive performance of the selected features were tested on the validation dataset using Support Vector Machine (SVM) Classifier. A minimum of nine features were identified to be predictive of HCC and these nine features were then evaluated across six different models in an unseen test set. These features, mainly in the immune, platelet/neutrophil and cytoskeletal pathways, exhibited good predictive performance with ROC-AUC from 0.79-0.88 in the unseen test set. Hence, these nine exosomal RNAs have potential to be clinically useful minimally invasive biomarkers for HCC.
doi_str_mv 10.3390/cancers15143749
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10377993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A758922152</galeid><sourcerecordid>A758922152</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-a4f9f65fa8f33fe524fc48b925f02ff37d0723b90fdd6aebf9a3287ebcd9addd3</originalsourceid><addsrcrecordid>eNptkcFPHCEYxSdNTTXWc28NSc-rDDDDcGo2G1tNttaoPZNv4GMXMwNbmGnqfy9Ga7UpHCDwey_fy6uqDzU95lzREwPBYMp1UwsuhXpTHTAq2aJtlXj74r5fHeV8S8vivJatfFftc9lQJWp6UNlvYLY-IFkjpODDhpxbDJN3HjMBcu03AaY5IYmOXDxwp79jjiMM5OpimcnNFiZymdB6M2VyhjuYosFhmAdIZAXJ-FDg99WegyHj0dN5WP34cnqzOlusv389Xy3XCyOadlqAcMq1jYPOce6wYcIZ0fWKNY4y57i0JRLvFXXWtoC9U8BZJ7E3VoG1lh9Wnx99d3M_ojUlSIJB75IfId3pCF6__gl-qzfxl64pl1IpXhw-PTmk-HPGPOnbOKdQhtasE5zyTojuL7WBAbUPLhY3M_ps9FI2nWKsblihjv9DlW1x9CYGdL68vxKcPApMijkndM-T11Q_NK7_abwoPr4M_Mz_6ZffA-ksqQ4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2843038448</pqid></control><display><type>article</type><title>Machine Learning Identifies a Signature of Nine Exosomal RNAs That Predicts Hepatocellular Carcinoma</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><creator>Yap, Josephine Yu Yan ; Goh, Laura Shih Hui ; Lim, Ashley Jun Wei ; Chong, Samuel S ; Lim, Lee Jin ; Lee, Caroline G</creator><creatorcontrib>Yap, Josephine Yu Yan ; Goh, Laura Shih Hui ; Lim, Ashley Jun Wei ; Chong, Samuel S ; Lim, Lee Jin ; Lee, Caroline G</creatorcontrib><description>Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. Although alpha fetoprotein (AFP) remains a commonly used serological marker of HCC, the sensitivity and specificity of AFP in detecting HCC is often limited. Exosomal RNA has emerged as a promising diagnostic tool for various cancers, but its use in HCC detection has yet to be fully explored. Here, we employed Machine Learning on 114,602 exosomal RNAs to identify a signature that can predict HCC. The exosomal expression data of 118 HCC patients and 112 healthy individuals were stratified split into Training, Validation and Unseen Test datasets. Feature selection was then performed on the initial training dataset using permutation importance, and the predictive performance of the selected features were tested on the validation dataset using Support Vector Machine (SVM) Classifier. A minimum of nine features were identified to be predictive of HCC and these nine features were then evaluated across six different models in an unseen test set. These features, mainly in the immune, platelet/neutrophil and cytoskeletal pathways, exhibited good predictive performance with ROC-AUC from 0.79-0.88 in the unseen test set. Hence, these nine exosomal RNAs have potential to be clinically useful minimally invasive biomarkers for HCC.</description><identifier>ISSN: 2072-6694</identifier><identifier>EISSN: 2072-6694</identifier><identifier>DOI: 10.3390/cancers15143749</identifier><identifier>PMID: 37509410</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accuracy ; Artificial intelligence ; Biomarkers ; Classification ; Cytoskeleton ; Datasets ; Exosomes ; Feature selection ; Health aspects ; Hepatocellular carcinoma ; Hepatoma ; Invasiveness ; Learning algorithms ; Leukocytes (neutrophilic) ; Liver cancer ; Machine learning ; Medical prognosis ; Platelets ; Prognosis ; RNA ; Support vector machines ; Tumorigenesis</subject><ispartof>Cancers, 2023-07, Vol.15 (14), p.3749</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-a4f9f65fa8f33fe524fc48b925f02ff37d0723b90fdd6aebf9a3287ebcd9addd3</citedby><cites>FETCH-LOGICAL-c456t-a4f9f65fa8f33fe524fc48b925f02ff37d0723b90fdd6aebf9a3287ebcd9addd3</cites><orcidid>0000-0002-5641-075X ; 0000-0002-4323-3635 ; 0009-0005-4996-4892 ; 0000-0002-9563-9063</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10377993/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10377993/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37509410$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yap, Josephine Yu Yan</creatorcontrib><creatorcontrib>Goh, Laura Shih Hui</creatorcontrib><creatorcontrib>Lim, Ashley Jun Wei</creatorcontrib><creatorcontrib>Chong, Samuel S</creatorcontrib><creatorcontrib>Lim, Lee Jin</creatorcontrib><creatorcontrib>Lee, Caroline G</creatorcontrib><title>Machine Learning Identifies a Signature of Nine Exosomal RNAs That Predicts Hepatocellular Carcinoma</title><title>Cancers</title><addtitle>Cancers (Basel)</addtitle><description>Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. Although alpha fetoprotein (AFP) remains a commonly used serological marker of HCC, the sensitivity and specificity of AFP in detecting HCC is often limited. Exosomal RNA has emerged as a promising diagnostic tool for various cancers, but its use in HCC detection has yet to be fully explored. Here, we employed Machine Learning on 114,602 exosomal RNAs to identify a signature that can predict HCC. The exosomal expression data of 118 HCC patients and 112 healthy individuals were stratified split into Training, Validation and Unseen Test datasets. Feature selection was then performed on the initial training dataset using permutation importance, and the predictive performance of the selected features were tested on the validation dataset using Support Vector Machine (SVM) Classifier. A minimum of nine features were identified to be predictive of HCC and these nine features were then evaluated across six different models in an unseen test set. These features, mainly in the immune, platelet/neutrophil and cytoskeletal pathways, exhibited good predictive performance with ROC-AUC from 0.79-0.88 in the unseen test set. Hence, these nine exosomal RNAs have potential to be clinically useful minimally invasive biomarkers for HCC.</description><subject>Accuracy</subject><subject>Artificial intelligence</subject><subject>Biomarkers</subject><subject>Classification</subject><subject>Cytoskeleton</subject><subject>Datasets</subject><subject>Exosomes</subject><subject>Feature selection</subject><subject>Health aspects</subject><subject>Hepatocellular carcinoma</subject><subject>Hepatoma</subject><subject>Invasiveness</subject><subject>Learning algorithms</subject><subject>Leukocytes (neutrophilic)</subject><subject>Liver cancer</subject><subject>Machine learning</subject><subject>Medical prognosis</subject><subject>Platelets</subject><subject>Prognosis</subject><subject>RNA</subject><subject>Support vector machines</subject><subject>Tumorigenesis</subject><issn>2072-6694</issn><issn>2072-6694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkcFPHCEYxSdNTTXWc28NSc-rDDDDcGo2G1tNttaoPZNv4GMXMwNbmGnqfy9Ga7UpHCDwey_fy6uqDzU95lzREwPBYMp1UwsuhXpTHTAq2aJtlXj74r5fHeV8S8vivJatfFftc9lQJWp6UNlvYLY-IFkjpODDhpxbDJN3HjMBcu03AaY5IYmOXDxwp79jjiMM5OpimcnNFiZymdB6M2VyhjuYosFhmAdIZAXJ-FDg99WegyHj0dN5WP34cnqzOlusv389Xy3XCyOadlqAcMq1jYPOce6wYcIZ0fWKNY4y57i0JRLvFXXWtoC9U8BZJ7E3VoG1lh9Wnx99d3M_ojUlSIJB75IfId3pCF6__gl-qzfxl64pl1IpXhw-PTmk-HPGPOnbOKdQhtasE5zyTojuL7WBAbUPLhY3M_ps9FI2nWKsblihjv9DlW1x9CYGdL68vxKcPApMijkndM-T11Q_NK7_abwoPr4M_Mz_6ZffA-ksqQ4</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Yap, Josephine Yu Yan</creator><creator>Goh, Laura Shih Hui</creator><creator>Lim, Ashley Jun Wei</creator><creator>Chong, Samuel S</creator><creator>Lim, Lee Jin</creator><creator>Lee, Caroline G</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7TO</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5641-075X</orcidid><orcidid>https://orcid.org/0000-0002-4323-3635</orcidid><orcidid>https://orcid.org/0009-0005-4996-4892</orcidid><orcidid>https://orcid.org/0000-0002-9563-9063</orcidid></search><sort><creationdate>20230701</creationdate><title>Machine Learning Identifies a Signature of Nine Exosomal RNAs That Predicts Hepatocellular Carcinoma</title><author>Yap, Josephine Yu Yan ; Goh, Laura Shih Hui ; Lim, Ashley Jun Wei ; Chong, Samuel S ; Lim, Lee Jin ; Lee, Caroline G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-a4f9f65fa8f33fe524fc48b925f02ff37d0723b90fdd6aebf9a3287ebcd9addd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Artificial intelligence</topic><topic>Biomarkers</topic><topic>Classification</topic><topic>Cytoskeleton</topic><topic>Datasets</topic><topic>Exosomes</topic><topic>Feature selection</topic><topic>Health aspects</topic><topic>Hepatocellular carcinoma</topic><topic>Hepatoma</topic><topic>Invasiveness</topic><topic>Learning algorithms</topic><topic>Leukocytes (neutrophilic)</topic><topic>Liver cancer</topic><topic>Machine learning</topic><topic>Medical prognosis</topic><topic>Platelets</topic><topic>Prognosis</topic><topic>RNA</topic><topic>Support vector machines</topic><topic>Tumorigenesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yap, Josephine Yu Yan</creatorcontrib><creatorcontrib>Goh, Laura Shih Hui</creatorcontrib><creatorcontrib>Lim, Ashley Jun Wei</creatorcontrib><creatorcontrib>Chong, Samuel S</creatorcontrib><creatorcontrib>Lim, Lee Jin</creatorcontrib><creatorcontrib>Lee, Caroline G</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>Proquest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yap, Josephine Yu Yan</au><au>Goh, Laura Shih Hui</au><au>Lim, Ashley Jun Wei</au><au>Chong, Samuel S</au><au>Lim, Lee Jin</au><au>Lee, Caroline G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning Identifies a Signature of Nine Exosomal RNAs That Predicts Hepatocellular Carcinoma</atitle><jtitle>Cancers</jtitle><addtitle>Cancers (Basel)</addtitle><date>2023-07-01</date><risdate>2023</risdate><volume>15</volume><issue>14</issue><spage>3749</spage><pages>3749-</pages><issn>2072-6694</issn><eissn>2072-6694</eissn><abstract>Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. Although alpha fetoprotein (AFP) remains a commonly used serological marker of HCC, the sensitivity and specificity of AFP in detecting HCC is often limited. Exosomal RNA has emerged as a promising diagnostic tool for various cancers, but its use in HCC detection has yet to be fully explored. Here, we employed Machine Learning on 114,602 exosomal RNAs to identify a signature that can predict HCC. The exosomal expression data of 118 HCC patients and 112 healthy individuals were stratified split into Training, Validation and Unseen Test datasets. Feature selection was then performed on the initial training dataset using permutation importance, and the predictive performance of the selected features were tested on the validation dataset using Support Vector Machine (SVM) Classifier. A minimum of nine features were identified to be predictive of HCC and these nine features were then evaluated across six different models in an unseen test set. These features, mainly in the immune, platelet/neutrophil and cytoskeletal pathways, exhibited good predictive performance with ROC-AUC from 0.79-0.88 in the unseen test set. Hence, these nine exosomal RNAs have potential to be clinically useful minimally invasive biomarkers for HCC.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>37509410</pmid><doi>10.3390/cancers15143749</doi><orcidid>https://orcid.org/0000-0002-5641-075X</orcidid><orcidid>https://orcid.org/0000-0002-4323-3635</orcidid><orcidid>https://orcid.org/0009-0005-4996-4892</orcidid><orcidid>https://orcid.org/0000-0002-9563-9063</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-6694
ispartof Cancers, 2023-07, Vol.15 (14), p.3749
issn 2072-6694
2072-6694
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10377993
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central
subjects Accuracy
Artificial intelligence
Biomarkers
Classification
Cytoskeleton
Datasets
Exosomes
Feature selection
Health aspects
Hepatocellular carcinoma
Hepatoma
Invasiveness
Learning algorithms
Leukocytes (neutrophilic)
Liver cancer
Machine learning
Medical prognosis
Platelets
Prognosis
RNA
Support vector machines
Tumorigenesis
title Machine Learning Identifies a Signature of Nine Exosomal RNAs That Predicts Hepatocellular Carcinoma
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T09%3A00%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning%20Identifies%20a%20Signature%20of%20Nine%20Exosomal%20RNAs%20That%20Predicts%20Hepatocellular%20Carcinoma&rft.jtitle=Cancers&rft.au=Yap,%20Josephine%20Yu%20Yan&rft.date=2023-07-01&rft.volume=15&rft.issue=14&rft.spage=3749&rft.pages=3749-&rft.issn=2072-6694&rft.eissn=2072-6694&rft_id=info:doi/10.3390/cancers15143749&rft_dat=%3Cgale_pubme%3EA758922152%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2843038448&rft_id=info:pmid/37509410&rft_galeid=A758922152&rfr_iscdi=true