Long non-coding RNAs enable precise diagnosis and prediction of early relapse after nephrectomy in patients with renal cell carcinoma
Purpose Renal cell carcinoma belongs among the deadliest malignancies despite great progress in therapy and accessibility of primary care. One of the main unmet medical needs remains the possibility of early diagnosis before the tumor dissemination and prediction of early relapse and disease progres...
Gespeichert in:
Veröffentlicht in: | Journal of cancer research and clinical oncology 2023-08, Vol.149 (10), p.7587-7600 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7600 |
---|---|
container_issue | 10 |
container_start_page | 7587 |
container_title | Journal of cancer research and clinical oncology |
container_volume | 149 |
creator | Bohosova, Julia Kozelkova, Katerina Al Tukmachi, Dagmar Trachtova, Karolina Naar, Ondrej Ruckova, Michaela Kolarikova, Eva Stanik, Michal Poprach, Alexandr Slaby, Ondrej |
description | Purpose
Renal cell carcinoma belongs among the deadliest malignancies despite great progress in therapy and accessibility of primary care. One of the main unmet medical needs remains the possibility of early diagnosis before the tumor dissemination and prediction of early relapse and disease progression after a successful nephrectomy. In our study, we aimed to identify novel diagnostic and prognostic biomarkers using next-generation sequencing on a novel cohort of RCC patients.
Methods
Global expression profiles have been obtained using next-generation sequencing of paired tumor and non-tumor tissue of 48 RCC patients. Twenty candidate lncRNA have been selected for further validation on an independent cohort of paired tumor and non-tumor tissue of 198 RCC patients.
Results
Sequencing data analysis showed significant dysregulation of more than 2800 lncRNAs. Out of 20 candidate lncRNAs selected for validation, we confirmed that 14 of them are statistically significantly dysregulated. In order to yield better discriminatory results, we combined several best performing lncRNAs into diagnostic and prognostic models. A diagnostic model consisting of AZGP1P1, CDKN2B-AS1, COL18A1, and RMST achieved AUC 0.9808, sensitivity 95.96%, and specificity 90.4%. The model for prediction of early relapse after nephrectomy consists of COLCA1, RMST, SNHG3, and ZNF667-AS1 and achieved AUC 0.9241 with sensitivity 93.75% and specificity 71.07%. Notably, no combination has outperformed COLCA1 alone. Lastly, a model for stage consists of ZNF667-AS1, PVT1, RMST, LINC00955, and TCL6 and achieves AUC 0.812, sensitivity 85.71%, and specificity 69.41%.
Conclusion
In our work, we identified several lncRNAs as potential biomarkers and developed models for diagnosis and prognostication in relation to stage and early relapse after nephrectomy. |
doi_str_mv | 10.1007/s00432-023-04700-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10374689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2792502275</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-eb3f375e202763e9659feaf6d6bfbf23bbfa34ec6d5759ee6432c606031bf6b33</originalsourceid><addsrcrecordid>eNp9kU2PFCEQhonRuOPqH_BgSLx4aS2ggemT2WxcNZloYvRMaLqYYdMNLfRo5gfs_5Zx1vXj4IWPqqdeqngJecrgJQPQrwpAK3gDXDTQaoBG3yMrdgwxIeR9sgKmWSM5U2fkUSnXUO9S84fkTKhuvdawXpGbTYpbGlNsXBpCPX76cFEoRtuPSOeMLhSkQ7DbmEoo1MbhGB2CW0KKNHmKNo8HmnG0cyWtXzDTiPOuli5pOtAQ6WyXgHEp9HtYdhWNdqQOx7rY7EJMk31MHng7Fnxyu5-TL1dvPl--azYf376_vNg0rtVyabAXXmiJHLhWAjslO4_Wq0H1vvdc9L23okWnBqllh6jqXzgFCgTrveqFOCevT7rzvp9wcLWrbEcz5zDZfDDJBvN3Joad2aZvhoHQrVp3VeHFrUJOX_dYFjOFchzGRkz7YrjuuATOtazo83_Q67TPdfhKrVuuOqGAVYqfKJdTKRn9XTcMzNFmc7LZVJvNT5uNrkXP_pzjruSXrxUQJ6DUVNxi_v32f2R_ALSJte4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2842693601</pqid></control><display><type>article</type><title>Long non-coding RNAs enable precise diagnosis and prediction of early relapse after nephrectomy in patients with renal cell carcinoma</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Bohosova, Julia ; Kozelkova, Katerina ; Al Tukmachi, Dagmar ; Trachtova, Karolina ; Naar, Ondrej ; Ruckova, Michaela ; Kolarikova, Eva ; Stanik, Michal ; Poprach, Alexandr ; Slaby, Ondrej</creator><creatorcontrib>Bohosova, Julia ; Kozelkova, Katerina ; Al Tukmachi, Dagmar ; Trachtova, Karolina ; Naar, Ondrej ; Ruckova, Michaela ; Kolarikova, Eva ; Stanik, Michal ; Poprach, Alexandr ; Slaby, Ondrej</creatorcontrib><description>Purpose
Renal cell carcinoma belongs among the deadliest malignancies despite great progress in therapy and accessibility of primary care. One of the main unmet medical needs remains the possibility of early diagnosis before the tumor dissemination and prediction of early relapse and disease progression after a successful nephrectomy. In our study, we aimed to identify novel diagnostic and prognostic biomarkers using next-generation sequencing on a novel cohort of RCC patients.
Methods
Global expression profiles have been obtained using next-generation sequencing of paired tumor and non-tumor tissue of 48 RCC patients. Twenty candidate lncRNA have been selected for further validation on an independent cohort of paired tumor and non-tumor tissue of 198 RCC patients.
Results
Sequencing data analysis showed significant dysregulation of more than 2800 lncRNAs. Out of 20 candidate lncRNAs selected for validation, we confirmed that 14 of them are statistically significantly dysregulated. In order to yield better discriminatory results, we combined several best performing lncRNAs into diagnostic and prognostic models. A diagnostic model consisting of AZGP1P1, CDKN2B-AS1, COL18A1, and RMST achieved AUC 0.9808, sensitivity 95.96%, and specificity 90.4%. The model for prediction of early relapse after nephrectomy consists of COLCA1, RMST, SNHG3, and ZNF667-AS1 and achieved AUC 0.9241 with sensitivity 93.75% and specificity 71.07%. Notably, no combination has outperformed COLCA1 alone. Lastly, a model for stage consists of ZNF667-AS1, PVT1, RMST, LINC00955, and TCL6 and achieves AUC 0.812, sensitivity 85.71%, and specificity 69.41%.
Conclusion
In our work, we identified several lncRNAs as potential biomarkers and developed models for diagnosis and prognostication in relation to stage and early relapse after nephrectomy.</description><identifier>ISSN: 0171-5216</identifier><identifier>EISSN: 1432-1335</identifier><identifier>DOI: 10.1007/s00432-023-04700-7</identifier><identifier>PMID: 36988708</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biomarkers ; Biomarkers, Tumor - genetics ; Cancer Research ; Carcinoma, Renal Cell - diagnosis ; Carcinoma, Renal Cell - genetics ; Carcinoma, Renal Cell - surgery ; Diagnosis ; Gene Expression Regulation, Neoplastic ; Hematology ; Humans ; Internal Medicine ; Kidney cancer ; Kidney Neoplasms - diagnosis ; Kidney Neoplasms - genetics ; Kidney Neoplasms - surgery ; Malignancy ; Medicine ; Medicine & Public Health ; Neoplasm Recurrence, Local - diagnosis ; Neoplasm Recurrence, Local - genetics ; Neoplasm Recurrence, Local - surgery ; Nephrectomy ; Next-generation sequencing ; Non-coding RNA ; Oncology ; Predictions ; Primary care ; Renal cell carcinoma ; RNA, Long Noncoding - genetics ; Tumors</subject><ispartof>Journal of cancer research and clinical oncology, 2023-08, Vol.149 (10), p.7587-7600</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-eb3f375e202763e9659feaf6d6bfbf23bbfa34ec6d5759ee6432c606031bf6b33</citedby><cites>FETCH-LOGICAL-c475t-eb3f375e202763e9659feaf6d6bfbf23bbfa34ec6d5759ee6432c606031bf6b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00432-023-04700-7$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00432-023-04700-7$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36988708$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bohosova, Julia</creatorcontrib><creatorcontrib>Kozelkova, Katerina</creatorcontrib><creatorcontrib>Al Tukmachi, Dagmar</creatorcontrib><creatorcontrib>Trachtova, Karolina</creatorcontrib><creatorcontrib>Naar, Ondrej</creatorcontrib><creatorcontrib>Ruckova, Michaela</creatorcontrib><creatorcontrib>Kolarikova, Eva</creatorcontrib><creatorcontrib>Stanik, Michal</creatorcontrib><creatorcontrib>Poprach, Alexandr</creatorcontrib><creatorcontrib>Slaby, Ondrej</creatorcontrib><title>Long non-coding RNAs enable precise diagnosis and prediction of early relapse after nephrectomy in patients with renal cell carcinoma</title><title>Journal of cancer research and clinical oncology</title><addtitle>J Cancer Res Clin Oncol</addtitle><addtitle>J Cancer Res Clin Oncol</addtitle><description>Purpose
Renal cell carcinoma belongs among the deadliest malignancies despite great progress in therapy and accessibility of primary care. One of the main unmet medical needs remains the possibility of early diagnosis before the tumor dissemination and prediction of early relapse and disease progression after a successful nephrectomy. In our study, we aimed to identify novel diagnostic and prognostic biomarkers using next-generation sequencing on a novel cohort of RCC patients.
Methods
Global expression profiles have been obtained using next-generation sequencing of paired tumor and non-tumor tissue of 48 RCC patients. Twenty candidate lncRNA have been selected for further validation on an independent cohort of paired tumor and non-tumor tissue of 198 RCC patients.
Results
Sequencing data analysis showed significant dysregulation of more than 2800 lncRNAs. Out of 20 candidate lncRNAs selected for validation, we confirmed that 14 of them are statistically significantly dysregulated. In order to yield better discriminatory results, we combined several best performing lncRNAs into diagnostic and prognostic models. A diagnostic model consisting of AZGP1P1, CDKN2B-AS1, COL18A1, and RMST achieved AUC 0.9808, sensitivity 95.96%, and specificity 90.4%. The model for prediction of early relapse after nephrectomy consists of COLCA1, RMST, SNHG3, and ZNF667-AS1 and achieved AUC 0.9241 with sensitivity 93.75% and specificity 71.07%. Notably, no combination has outperformed COLCA1 alone. Lastly, a model for stage consists of ZNF667-AS1, PVT1, RMST, LINC00955, and TCL6 and achieves AUC 0.812, sensitivity 85.71%, and specificity 69.41%.
Conclusion
In our work, we identified several lncRNAs as potential biomarkers and developed models for diagnosis and prognostication in relation to stage and early relapse after nephrectomy.</description><subject>Biomarkers</subject><subject>Biomarkers, Tumor - genetics</subject><subject>Cancer Research</subject><subject>Carcinoma, Renal Cell - diagnosis</subject><subject>Carcinoma, Renal Cell - genetics</subject><subject>Carcinoma, Renal Cell - surgery</subject><subject>Diagnosis</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Hematology</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Kidney cancer</subject><subject>Kidney Neoplasms - diagnosis</subject><subject>Kidney Neoplasms - genetics</subject><subject>Kidney Neoplasms - surgery</subject><subject>Malignancy</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Neoplasm Recurrence, Local - diagnosis</subject><subject>Neoplasm Recurrence, Local - genetics</subject><subject>Neoplasm Recurrence, Local - surgery</subject><subject>Nephrectomy</subject><subject>Next-generation sequencing</subject><subject>Non-coding RNA</subject><subject>Oncology</subject><subject>Predictions</subject><subject>Primary care</subject><subject>Renal cell carcinoma</subject><subject>RNA, Long Noncoding - genetics</subject><subject>Tumors</subject><issn>0171-5216</issn><issn>1432-1335</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kU2PFCEQhonRuOPqH_BgSLx4aS2ggemT2WxcNZloYvRMaLqYYdMNLfRo5gfs_5Zx1vXj4IWPqqdeqngJecrgJQPQrwpAK3gDXDTQaoBG3yMrdgwxIeR9sgKmWSM5U2fkUSnXUO9S84fkTKhuvdawXpGbTYpbGlNsXBpCPX76cFEoRtuPSOeMLhSkQ7DbmEoo1MbhGB2CW0KKNHmKNo8HmnG0cyWtXzDTiPOuli5pOtAQ6WyXgHEp9HtYdhWNdqQOx7rY7EJMk31MHng7Fnxyu5-TL1dvPl--azYf376_vNg0rtVyabAXXmiJHLhWAjslO4_Wq0H1vvdc9L23okWnBqllh6jqXzgFCgTrveqFOCevT7rzvp9wcLWrbEcz5zDZfDDJBvN3Joad2aZvhoHQrVp3VeHFrUJOX_dYFjOFchzGRkz7YrjuuATOtazo83_Q67TPdfhKrVuuOqGAVYqfKJdTKRn9XTcMzNFmc7LZVJvNT5uNrkXP_pzjruSXrxUQJ6DUVNxi_v32f2R_ALSJte4</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Bohosova, Julia</creator><creator>Kozelkova, Katerina</creator><creator>Al Tukmachi, Dagmar</creator><creator>Trachtova, Karolina</creator><creator>Naar, Ondrej</creator><creator>Ruckova, Michaela</creator><creator>Kolarikova, Eva</creator><creator>Stanik, Michal</creator><creator>Poprach, Alexandr</creator><creator>Slaby, Ondrej</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20230801</creationdate><title>Long non-coding RNAs enable precise diagnosis and prediction of early relapse after nephrectomy in patients with renal cell carcinoma</title><author>Bohosova, Julia ; Kozelkova, Katerina ; Al Tukmachi, Dagmar ; Trachtova, Karolina ; Naar, Ondrej ; Ruckova, Michaela ; Kolarikova, Eva ; Stanik, Michal ; Poprach, Alexandr ; Slaby, Ondrej</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-eb3f375e202763e9659feaf6d6bfbf23bbfa34ec6d5759ee6432c606031bf6b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biomarkers</topic><topic>Biomarkers, Tumor - genetics</topic><topic>Cancer Research</topic><topic>Carcinoma, Renal Cell - diagnosis</topic><topic>Carcinoma, Renal Cell - genetics</topic><topic>Carcinoma, Renal Cell - surgery</topic><topic>Diagnosis</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Hematology</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Kidney cancer</topic><topic>Kidney Neoplasms - diagnosis</topic><topic>Kidney Neoplasms - genetics</topic><topic>Kidney Neoplasms - surgery</topic><topic>Malignancy</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Neoplasm Recurrence, Local - diagnosis</topic><topic>Neoplasm Recurrence, Local - genetics</topic><topic>Neoplasm Recurrence, Local - surgery</topic><topic>Nephrectomy</topic><topic>Next-generation sequencing</topic><topic>Non-coding RNA</topic><topic>Oncology</topic><topic>Predictions</topic><topic>Primary care</topic><topic>Renal cell carcinoma</topic><topic>RNA, Long Noncoding - genetics</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bohosova, Julia</creatorcontrib><creatorcontrib>Kozelkova, Katerina</creatorcontrib><creatorcontrib>Al Tukmachi, Dagmar</creatorcontrib><creatorcontrib>Trachtova, Karolina</creatorcontrib><creatorcontrib>Naar, Ondrej</creatorcontrib><creatorcontrib>Ruckova, Michaela</creatorcontrib><creatorcontrib>Kolarikova, Eva</creatorcontrib><creatorcontrib>Stanik, Michal</creatorcontrib><creatorcontrib>Poprach, Alexandr</creatorcontrib><creatorcontrib>Slaby, Ondrej</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cancer research and clinical oncology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bohosova, Julia</au><au>Kozelkova, Katerina</au><au>Al Tukmachi, Dagmar</au><au>Trachtova, Karolina</au><au>Naar, Ondrej</au><au>Ruckova, Michaela</au><au>Kolarikova, Eva</au><au>Stanik, Michal</au><au>Poprach, Alexandr</au><au>Slaby, Ondrej</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Long non-coding RNAs enable precise diagnosis and prediction of early relapse after nephrectomy in patients with renal cell carcinoma</atitle><jtitle>Journal of cancer research and clinical oncology</jtitle><stitle>J Cancer Res Clin Oncol</stitle><addtitle>J Cancer Res Clin Oncol</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>149</volume><issue>10</issue><spage>7587</spage><epage>7600</epage><pages>7587-7600</pages><issn>0171-5216</issn><eissn>1432-1335</eissn><abstract>Purpose
Renal cell carcinoma belongs among the deadliest malignancies despite great progress in therapy and accessibility of primary care. One of the main unmet medical needs remains the possibility of early diagnosis before the tumor dissemination and prediction of early relapse and disease progression after a successful nephrectomy. In our study, we aimed to identify novel diagnostic and prognostic biomarkers using next-generation sequencing on a novel cohort of RCC patients.
Methods
Global expression profiles have been obtained using next-generation sequencing of paired tumor and non-tumor tissue of 48 RCC patients. Twenty candidate lncRNA have been selected for further validation on an independent cohort of paired tumor and non-tumor tissue of 198 RCC patients.
Results
Sequencing data analysis showed significant dysregulation of more than 2800 lncRNAs. Out of 20 candidate lncRNAs selected for validation, we confirmed that 14 of them are statistically significantly dysregulated. In order to yield better discriminatory results, we combined several best performing lncRNAs into diagnostic and prognostic models. A diagnostic model consisting of AZGP1P1, CDKN2B-AS1, COL18A1, and RMST achieved AUC 0.9808, sensitivity 95.96%, and specificity 90.4%. The model for prediction of early relapse after nephrectomy consists of COLCA1, RMST, SNHG3, and ZNF667-AS1 and achieved AUC 0.9241 with sensitivity 93.75% and specificity 71.07%. Notably, no combination has outperformed COLCA1 alone. Lastly, a model for stage consists of ZNF667-AS1, PVT1, RMST, LINC00955, and TCL6 and achieves AUC 0.812, sensitivity 85.71%, and specificity 69.41%.
Conclusion
In our work, we identified several lncRNAs as potential biomarkers and developed models for diagnosis and prognostication in relation to stage and early relapse after nephrectomy.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>36988708</pmid><doi>10.1007/s00432-023-04700-7</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0171-5216 |
ispartof | Journal of cancer research and clinical oncology, 2023-08, Vol.149 (10), p.7587-7600 |
issn | 0171-5216 1432-1335 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10374689 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Biomarkers Biomarkers, Tumor - genetics Cancer Research Carcinoma, Renal Cell - diagnosis Carcinoma, Renal Cell - genetics Carcinoma, Renal Cell - surgery Diagnosis Gene Expression Regulation, Neoplastic Hematology Humans Internal Medicine Kidney cancer Kidney Neoplasms - diagnosis Kidney Neoplasms - genetics Kidney Neoplasms - surgery Malignancy Medicine Medicine & Public Health Neoplasm Recurrence, Local - diagnosis Neoplasm Recurrence, Local - genetics Neoplasm Recurrence, Local - surgery Nephrectomy Next-generation sequencing Non-coding RNA Oncology Predictions Primary care Renal cell carcinoma RNA, Long Noncoding - genetics Tumors |
title | Long non-coding RNAs enable precise diagnosis and prediction of early relapse after nephrectomy in patients with renal cell carcinoma |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T09%3A09%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Long%20non-coding%20RNAs%20enable%20precise%20diagnosis%20and%20prediction%20of%20early%20relapse%20after%20nephrectomy%20in%20patients%20with%20renal%20cell%20carcinoma&rft.jtitle=Journal%20of%20cancer%20research%20and%20clinical%20oncology&rft.au=Bohosova,%20Julia&rft.date=2023-08-01&rft.volume=149&rft.issue=10&rft.spage=7587&rft.epage=7600&rft.pages=7587-7600&rft.issn=0171-5216&rft.eissn=1432-1335&rft_id=info:doi/10.1007/s00432-023-04700-7&rft_dat=%3Cproquest_pubme%3E2792502275%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2842693601&rft_id=info:pmid/36988708&rfr_iscdi=true |