Long non-coding RNAs enable precise diagnosis and prediction of early relapse after nephrectomy in patients with renal cell carcinoma

Purpose Renal cell carcinoma belongs among the deadliest malignancies despite great progress in therapy and accessibility of primary care. One of the main unmet medical needs remains the possibility of early diagnosis before the tumor dissemination and prediction of early relapse and disease progres...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cancer research and clinical oncology 2023-08, Vol.149 (10), p.7587-7600
Hauptverfasser: Bohosova, Julia, Kozelkova, Katerina, Al Tukmachi, Dagmar, Trachtova, Karolina, Naar, Ondrej, Ruckova, Michaela, Kolarikova, Eva, Stanik, Michal, Poprach, Alexandr, Slaby, Ondrej
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7600
container_issue 10
container_start_page 7587
container_title Journal of cancer research and clinical oncology
container_volume 149
creator Bohosova, Julia
Kozelkova, Katerina
Al Tukmachi, Dagmar
Trachtova, Karolina
Naar, Ondrej
Ruckova, Michaela
Kolarikova, Eva
Stanik, Michal
Poprach, Alexandr
Slaby, Ondrej
description Purpose Renal cell carcinoma belongs among the deadliest malignancies despite great progress in therapy and accessibility of primary care. One of the main unmet medical needs remains the possibility of early diagnosis before the tumor dissemination and prediction of early relapse and disease progression after a successful nephrectomy. In our study, we aimed to identify novel diagnostic and prognostic biomarkers using next-generation sequencing on a novel cohort of RCC patients. Methods Global expression profiles have been obtained using next-generation sequencing of paired tumor and non-tumor tissue of 48 RCC patients. Twenty candidate lncRNA have been selected for further validation on an independent cohort of paired tumor and non-tumor tissue of 198 RCC patients. Results Sequencing data analysis showed significant dysregulation of more than 2800 lncRNAs. Out of 20 candidate lncRNAs selected for validation, we confirmed that 14 of them are statistically significantly dysregulated. In order to yield better discriminatory results, we combined several best performing lncRNAs into diagnostic and prognostic models. A diagnostic model consisting of AZGP1P1, CDKN2B-AS1, COL18A1, and RMST achieved AUC 0.9808, sensitivity 95.96%, and specificity 90.4%. The model for prediction of early relapse after nephrectomy consists of COLCA1, RMST, SNHG3, and ZNF667-AS1 and achieved AUC 0.9241 with sensitivity 93.75% and specificity 71.07%. Notably, no combination has outperformed COLCA1 alone. Lastly, a model for stage consists of ZNF667-AS1, PVT1, RMST, LINC00955, and TCL6 and achieves AUC 0.812, sensitivity 85.71%, and specificity 69.41%. Conclusion In our work, we identified several lncRNAs as potential biomarkers and developed models for diagnosis and prognostication in relation to stage and early relapse after nephrectomy.
doi_str_mv 10.1007/s00432-023-04700-7
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10374689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2792502275</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-eb3f375e202763e9659feaf6d6bfbf23bbfa34ec6d5759ee6432c606031bf6b33</originalsourceid><addsrcrecordid>eNp9kU2PFCEQhonRuOPqH_BgSLx4aS2ggemT2WxcNZloYvRMaLqYYdMNLfRo5gfs_5Zx1vXj4IWPqqdeqngJecrgJQPQrwpAK3gDXDTQaoBG3yMrdgwxIeR9sgKmWSM5U2fkUSnXUO9S84fkTKhuvdawXpGbTYpbGlNsXBpCPX76cFEoRtuPSOeMLhSkQ7DbmEoo1MbhGB2CW0KKNHmKNo8HmnG0cyWtXzDTiPOuli5pOtAQ6WyXgHEp9HtYdhWNdqQOx7rY7EJMk31MHng7Fnxyu5-TL1dvPl--azYf376_vNg0rtVyabAXXmiJHLhWAjslO4_Wq0H1vvdc9L23okWnBqllh6jqXzgFCgTrveqFOCevT7rzvp9wcLWrbEcz5zDZfDDJBvN3Joad2aZvhoHQrVp3VeHFrUJOX_dYFjOFchzGRkz7YrjuuATOtazo83_Q67TPdfhKrVuuOqGAVYqfKJdTKRn9XTcMzNFmc7LZVJvNT5uNrkXP_pzjruSXrxUQJ6DUVNxi_v32f2R_ALSJte4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2842693601</pqid></control><display><type>article</type><title>Long non-coding RNAs enable precise diagnosis and prediction of early relapse after nephrectomy in patients with renal cell carcinoma</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Bohosova, Julia ; Kozelkova, Katerina ; Al Tukmachi, Dagmar ; Trachtova, Karolina ; Naar, Ondrej ; Ruckova, Michaela ; Kolarikova, Eva ; Stanik, Michal ; Poprach, Alexandr ; Slaby, Ondrej</creator><creatorcontrib>Bohosova, Julia ; Kozelkova, Katerina ; Al Tukmachi, Dagmar ; Trachtova, Karolina ; Naar, Ondrej ; Ruckova, Michaela ; Kolarikova, Eva ; Stanik, Michal ; Poprach, Alexandr ; Slaby, Ondrej</creatorcontrib><description>Purpose Renal cell carcinoma belongs among the deadliest malignancies despite great progress in therapy and accessibility of primary care. One of the main unmet medical needs remains the possibility of early diagnosis before the tumor dissemination and prediction of early relapse and disease progression after a successful nephrectomy. In our study, we aimed to identify novel diagnostic and prognostic biomarkers using next-generation sequencing on a novel cohort of RCC patients. Methods Global expression profiles have been obtained using next-generation sequencing of paired tumor and non-tumor tissue of 48 RCC patients. Twenty candidate lncRNA have been selected for further validation on an independent cohort of paired tumor and non-tumor tissue of 198 RCC patients. Results Sequencing data analysis showed significant dysregulation of more than 2800 lncRNAs. Out of 20 candidate lncRNAs selected for validation, we confirmed that 14 of them are statistically significantly dysregulated. In order to yield better discriminatory results, we combined several best performing lncRNAs into diagnostic and prognostic models. A diagnostic model consisting of AZGP1P1, CDKN2B-AS1, COL18A1, and RMST achieved AUC 0.9808, sensitivity 95.96%, and specificity 90.4%. The model for prediction of early relapse after nephrectomy consists of COLCA1, RMST, SNHG3, and ZNF667-AS1 and achieved AUC 0.9241 with sensitivity 93.75% and specificity 71.07%. Notably, no combination has outperformed COLCA1 alone. Lastly, a model for stage consists of ZNF667-AS1, PVT1, RMST, LINC00955, and TCL6 and achieves AUC 0.812, sensitivity 85.71%, and specificity 69.41%. Conclusion In our work, we identified several lncRNAs as potential biomarkers and developed models for diagnosis and prognostication in relation to stage and early relapse after nephrectomy.</description><identifier>ISSN: 0171-5216</identifier><identifier>EISSN: 1432-1335</identifier><identifier>DOI: 10.1007/s00432-023-04700-7</identifier><identifier>PMID: 36988708</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biomarkers ; Biomarkers, Tumor - genetics ; Cancer Research ; Carcinoma, Renal Cell - diagnosis ; Carcinoma, Renal Cell - genetics ; Carcinoma, Renal Cell - surgery ; Diagnosis ; Gene Expression Regulation, Neoplastic ; Hematology ; Humans ; Internal Medicine ; Kidney cancer ; Kidney Neoplasms - diagnosis ; Kidney Neoplasms - genetics ; Kidney Neoplasms - surgery ; Malignancy ; Medicine ; Medicine &amp; Public Health ; Neoplasm Recurrence, Local - diagnosis ; Neoplasm Recurrence, Local - genetics ; Neoplasm Recurrence, Local - surgery ; Nephrectomy ; Next-generation sequencing ; Non-coding RNA ; Oncology ; Predictions ; Primary care ; Renal cell carcinoma ; RNA, Long Noncoding - genetics ; Tumors</subject><ispartof>Journal of cancer research and clinical oncology, 2023-08, Vol.149 (10), p.7587-7600</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-eb3f375e202763e9659feaf6d6bfbf23bbfa34ec6d5759ee6432c606031bf6b33</citedby><cites>FETCH-LOGICAL-c475t-eb3f375e202763e9659feaf6d6bfbf23bbfa34ec6d5759ee6432c606031bf6b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00432-023-04700-7$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00432-023-04700-7$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36988708$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bohosova, Julia</creatorcontrib><creatorcontrib>Kozelkova, Katerina</creatorcontrib><creatorcontrib>Al Tukmachi, Dagmar</creatorcontrib><creatorcontrib>Trachtova, Karolina</creatorcontrib><creatorcontrib>Naar, Ondrej</creatorcontrib><creatorcontrib>Ruckova, Michaela</creatorcontrib><creatorcontrib>Kolarikova, Eva</creatorcontrib><creatorcontrib>Stanik, Michal</creatorcontrib><creatorcontrib>Poprach, Alexandr</creatorcontrib><creatorcontrib>Slaby, Ondrej</creatorcontrib><title>Long non-coding RNAs enable precise diagnosis and prediction of early relapse after nephrectomy in patients with renal cell carcinoma</title><title>Journal of cancer research and clinical oncology</title><addtitle>J Cancer Res Clin Oncol</addtitle><addtitle>J Cancer Res Clin Oncol</addtitle><description>Purpose Renal cell carcinoma belongs among the deadliest malignancies despite great progress in therapy and accessibility of primary care. One of the main unmet medical needs remains the possibility of early diagnosis before the tumor dissemination and prediction of early relapse and disease progression after a successful nephrectomy. In our study, we aimed to identify novel diagnostic and prognostic biomarkers using next-generation sequencing on a novel cohort of RCC patients. Methods Global expression profiles have been obtained using next-generation sequencing of paired tumor and non-tumor tissue of 48 RCC patients. Twenty candidate lncRNA have been selected for further validation on an independent cohort of paired tumor and non-tumor tissue of 198 RCC patients. Results Sequencing data analysis showed significant dysregulation of more than 2800 lncRNAs. Out of 20 candidate lncRNAs selected for validation, we confirmed that 14 of them are statistically significantly dysregulated. In order to yield better discriminatory results, we combined several best performing lncRNAs into diagnostic and prognostic models. A diagnostic model consisting of AZGP1P1, CDKN2B-AS1, COL18A1, and RMST achieved AUC 0.9808, sensitivity 95.96%, and specificity 90.4%. The model for prediction of early relapse after nephrectomy consists of COLCA1, RMST, SNHG3, and ZNF667-AS1 and achieved AUC 0.9241 with sensitivity 93.75% and specificity 71.07%. Notably, no combination has outperformed COLCA1 alone. Lastly, a model for stage consists of ZNF667-AS1, PVT1, RMST, LINC00955, and TCL6 and achieves AUC 0.812, sensitivity 85.71%, and specificity 69.41%. Conclusion In our work, we identified several lncRNAs as potential biomarkers and developed models for diagnosis and prognostication in relation to stage and early relapse after nephrectomy.</description><subject>Biomarkers</subject><subject>Biomarkers, Tumor - genetics</subject><subject>Cancer Research</subject><subject>Carcinoma, Renal Cell - diagnosis</subject><subject>Carcinoma, Renal Cell - genetics</subject><subject>Carcinoma, Renal Cell - surgery</subject><subject>Diagnosis</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Hematology</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Kidney cancer</subject><subject>Kidney Neoplasms - diagnosis</subject><subject>Kidney Neoplasms - genetics</subject><subject>Kidney Neoplasms - surgery</subject><subject>Malignancy</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Neoplasm Recurrence, Local - diagnosis</subject><subject>Neoplasm Recurrence, Local - genetics</subject><subject>Neoplasm Recurrence, Local - surgery</subject><subject>Nephrectomy</subject><subject>Next-generation sequencing</subject><subject>Non-coding RNA</subject><subject>Oncology</subject><subject>Predictions</subject><subject>Primary care</subject><subject>Renal cell carcinoma</subject><subject>RNA, Long Noncoding - genetics</subject><subject>Tumors</subject><issn>0171-5216</issn><issn>1432-1335</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kU2PFCEQhonRuOPqH_BgSLx4aS2ggemT2WxcNZloYvRMaLqYYdMNLfRo5gfs_5Zx1vXj4IWPqqdeqngJecrgJQPQrwpAK3gDXDTQaoBG3yMrdgwxIeR9sgKmWSM5U2fkUSnXUO9S84fkTKhuvdawXpGbTYpbGlNsXBpCPX76cFEoRtuPSOeMLhSkQ7DbmEoo1MbhGB2CW0KKNHmKNo8HmnG0cyWtXzDTiPOuli5pOtAQ6WyXgHEp9HtYdhWNdqQOx7rY7EJMk31MHng7Fnxyu5-TL1dvPl--azYf376_vNg0rtVyabAXXmiJHLhWAjslO4_Wq0H1vvdc9L23okWnBqllh6jqXzgFCgTrveqFOCevT7rzvp9wcLWrbEcz5zDZfDDJBvN3Joad2aZvhoHQrVp3VeHFrUJOX_dYFjOFchzGRkz7YrjuuATOtazo83_Q67TPdfhKrVuuOqGAVYqfKJdTKRn9XTcMzNFmc7LZVJvNT5uNrkXP_pzjruSXrxUQJ6DUVNxi_v32f2R_ALSJte4</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Bohosova, Julia</creator><creator>Kozelkova, Katerina</creator><creator>Al Tukmachi, Dagmar</creator><creator>Trachtova, Karolina</creator><creator>Naar, Ondrej</creator><creator>Ruckova, Michaela</creator><creator>Kolarikova, Eva</creator><creator>Stanik, Michal</creator><creator>Poprach, Alexandr</creator><creator>Slaby, Ondrej</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20230801</creationdate><title>Long non-coding RNAs enable precise diagnosis and prediction of early relapse after nephrectomy in patients with renal cell carcinoma</title><author>Bohosova, Julia ; Kozelkova, Katerina ; Al Tukmachi, Dagmar ; Trachtova, Karolina ; Naar, Ondrej ; Ruckova, Michaela ; Kolarikova, Eva ; Stanik, Michal ; Poprach, Alexandr ; Slaby, Ondrej</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-eb3f375e202763e9659feaf6d6bfbf23bbfa34ec6d5759ee6432c606031bf6b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biomarkers</topic><topic>Biomarkers, Tumor - genetics</topic><topic>Cancer Research</topic><topic>Carcinoma, Renal Cell - diagnosis</topic><topic>Carcinoma, Renal Cell - genetics</topic><topic>Carcinoma, Renal Cell - surgery</topic><topic>Diagnosis</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Hematology</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Kidney cancer</topic><topic>Kidney Neoplasms - diagnosis</topic><topic>Kidney Neoplasms - genetics</topic><topic>Kidney Neoplasms - surgery</topic><topic>Malignancy</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Neoplasm Recurrence, Local - diagnosis</topic><topic>Neoplasm Recurrence, Local - genetics</topic><topic>Neoplasm Recurrence, Local - surgery</topic><topic>Nephrectomy</topic><topic>Next-generation sequencing</topic><topic>Non-coding RNA</topic><topic>Oncology</topic><topic>Predictions</topic><topic>Primary care</topic><topic>Renal cell carcinoma</topic><topic>RNA, Long Noncoding - genetics</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bohosova, Julia</creatorcontrib><creatorcontrib>Kozelkova, Katerina</creatorcontrib><creatorcontrib>Al Tukmachi, Dagmar</creatorcontrib><creatorcontrib>Trachtova, Karolina</creatorcontrib><creatorcontrib>Naar, Ondrej</creatorcontrib><creatorcontrib>Ruckova, Michaela</creatorcontrib><creatorcontrib>Kolarikova, Eva</creatorcontrib><creatorcontrib>Stanik, Michal</creatorcontrib><creatorcontrib>Poprach, Alexandr</creatorcontrib><creatorcontrib>Slaby, Ondrej</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cancer research and clinical oncology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bohosova, Julia</au><au>Kozelkova, Katerina</au><au>Al Tukmachi, Dagmar</au><au>Trachtova, Karolina</au><au>Naar, Ondrej</au><au>Ruckova, Michaela</au><au>Kolarikova, Eva</au><au>Stanik, Michal</au><au>Poprach, Alexandr</au><au>Slaby, Ondrej</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Long non-coding RNAs enable precise diagnosis and prediction of early relapse after nephrectomy in patients with renal cell carcinoma</atitle><jtitle>Journal of cancer research and clinical oncology</jtitle><stitle>J Cancer Res Clin Oncol</stitle><addtitle>J Cancer Res Clin Oncol</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>149</volume><issue>10</issue><spage>7587</spage><epage>7600</epage><pages>7587-7600</pages><issn>0171-5216</issn><eissn>1432-1335</eissn><abstract>Purpose Renal cell carcinoma belongs among the deadliest malignancies despite great progress in therapy and accessibility of primary care. One of the main unmet medical needs remains the possibility of early diagnosis before the tumor dissemination and prediction of early relapse and disease progression after a successful nephrectomy. In our study, we aimed to identify novel diagnostic and prognostic biomarkers using next-generation sequencing on a novel cohort of RCC patients. Methods Global expression profiles have been obtained using next-generation sequencing of paired tumor and non-tumor tissue of 48 RCC patients. Twenty candidate lncRNA have been selected for further validation on an independent cohort of paired tumor and non-tumor tissue of 198 RCC patients. Results Sequencing data analysis showed significant dysregulation of more than 2800 lncRNAs. Out of 20 candidate lncRNAs selected for validation, we confirmed that 14 of them are statistically significantly dysregulated. In order to yield better discriminatory results, we combined several best performing lncRNAs into diagnostic and prognostic models. A diagnostic model consisting of AZGP1P1, CDKN2B-AS1, COL18A1, and RMST achieved AUC 0.9808, sensitivity 95.96%, and specificity 90.4%. The model for prediction of early relapse after nephrectomy consists of COLCA1, RMST, SNHG3, and ZNF667-AS1 and achieved AUC 0.9241 with sensitivity 93.75% and specificity 71.07%. Notably, no combination has outperformed COLCA1 alone. Lastly, a model for stage consists of ZNF667-AS1, PVT1, RMST, LINC00955, and TCL6 and achieves AUC 0.812, sensitivity 85.71%, and specificity 69.41%. Conclusion In our work, we identified several lncRNAs as potential biomarkers and developed models for diagnosis and prognostication in relation to stage and early relapse after nephrectomy.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>36988708</pmid><doi>10.1007/s00432-023-04700-7</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0171-5216
ispartof Journal of cancer research and clinical oncology, 2023-08, Vol.149 (10), p.7587-7600
issn 0171-5216
1432-1335
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10374689
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Biomarkers
Biomarkers, Tumor - genetics
Cancer Research
Carcinoma, Renal Cell - diagnosis
Carcinoma, Renal Cell - genetics
Carcinoma, Renal Cell - surgery
Diagnosis
Gene Expression Regulation, Neoplastic
Hematology
Humans
Internal Medicine
Kidney cancer
Kidney Neoplasms - diagnosis
Kidney Neoplasms - genetics
Kidney Neoplasms - surgery
Malignancy
Medicine
Medicine & Public Health
Neoplasm Recurrence, Local - diagnosis
Neoplasm Recurrence, Local - genetics
Neoplasm Recurrence, Local - surgery
Nephrectomy
Next-generation sequencing
Non-coding RNA
Oncology
Predictions
Primary care
Renal cell carcinoma
RNA, Long Noncoding - genetics
Tumors
title Long non-coding RNAs enable precise diagnosis and prediction of early relapse after nephrectomy in patients with renal cell carcinoma
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T09%3A09%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Long%20non-coding%20RNAs%20enable%20precise%20diagnosis%20and%20prediction%20of%20early%20relapse%20after%20nephrectomy%20in%20patients%20with%20renal%20cell%20carcinoma&rft.jtitle=Journal%20of%20cancer%20research%20and%20clinical%20oncology&rft.au=Bohosova,%20Julia&rft.date=2023-08-01&rft.volume=149&rft.issue=10&rft.spage=7587&rft.epage=7600&rft.pages=7587-7600&rft.issn=0171-5216&rft.eissn=1432-1335&rft_id=info:doi/10.1007/s00432-023-04700-7&rft_dat=%3Cproquest_pubme%3E2792502275%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2842693601&rft_id=info:pmid/36988708&rfr_iscdi=true