Polymeric Biomaterial Scaffolds for Tumoricidal Stem Cell Glioblastoma Therapy
Glioblastoma (GBM) is the most common primary brain tumor and has a poor prognosis; as such, there is an urgent need to develop innovative new therapies. Tumoricidal stem cells are an emerging therapy that has the potential to combat limitations of traditional local and systemic chemotherapeutic str...
Gespeichert in:
Veröffentlicht in: | ACS biomaterials science & engineering 2020-07, Vol.6 (7), p.3762-3777 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3777 |
---|---|
container_issue | 7 |
container_start_page | 3762 |
container_title | ACS biomaterials science & engineering |
container_volume | 6 |
creator | Moore, Kathryn M Murthy, Ananya B Graham-Gurysh, Elizabeth G Hingtgen, Shawn D Bachelder, Eric M Ainslie, Kristy M |
description | Glioblastoma (GBM) is the most common primary brain tumor and has a poor prognosis; as such, there is an urgent need to develop innovative new therapies. Tumoricidal stem cells are an emerging therapy that has the potential to combat limitations of traditional local and systemic chemotherapeutic strategies for GBM by providing a source for high, sustained concentrations of tumoricidal agents locally to the tumor. One major roadblock for tumoricidal stem cell therapy is that the persistence of tumoricidal stem cells injected as a cell suspension into the GBM surgical resection cavity is limited. Polymeric biomaterial scaffolds have been utilized to enhance the delivery of tumoricidal stem cells in the surgical resection cavity and extend their persistence in the brain, ultimately increasing their therapeutic efficacy against GBM. In this review, we examine three main scaffold categories explored for tumoricidal stem cell therapy: microcapsules, hydrogels, and electrospun scaffolds. Furthermore, considering the significant impact of surgery on the brain and recurrent GBM, we survey a brief history of orthotopic models of GBM surgical resection. |
doi_str_mv | 10.1021/acsbiomaterials.0c00477 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10373914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2479042150</sourcerecordid><originalsourceid>FETCH-LOGICAL-a462t-a2dd2f8c18ffc5fc6a9620301ca655262a3dee7b0b94483061da2ecb027f46323</originalsourceid><addsrcrecordid>eNqFkUtPAjEUhRujEYL8BZ2lG_D2Ma-VUaJoQtREXDedTislM1NsZ0z495aAiG5ctck95-vpPQhdYBhjIPhKSF8YW4tWOSMqPwYJwNL0CPUJTekoz9Ls-ODeQ0PvlwCAaRYzxk5Rj1KWUEpYHz292GpdB5CMbn-Y0asUWtuq9JG2Lpp3tQ0KU24mraqjiaqqaFoZW1TCt8EWzRfKidX6DJ3oEEkNd-cAvd3fzScPo9nz9HFyMxsJlpB2JEhZEp1JnGktYy0TkScEKGApkjgmCRG0VCotoMgZyygkuBREyQJIqkNyQgfoestddUWtSqma1omKr5yphVtzKwz_PWnMgr_bT44hrCXHLBAudwRnPzrlW14bL8O_RKNs5zlhaQ6M4BiCNN1KpbPeO6X372Dgm0b4n0b4rpHgPD-Mufd97z8I6FYQCHxpO9ds7P9hvwDmR5-Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2479042150</pqid></control><display><type>article</type><title>Polymeric Biomaterial Scaffolds for Tumoricidal Stem Cell Glioblastoma Therapy</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Moore, Kathryn M ; Murthy, Ananya B ; Graham-Gurysh, Elizabeth G ; Hingtgen, Shawn D ; Bachelder, Eric M ; Ainslie, Kristy M</creator><creatorcontrib>Moore, Kathryn M ; Murthy, Ananya B ; Graham-Gurysh, Elizabeth G ; Hingtgen, Shawn D ; Bachelder, Eric M ; Ainslie, Kristy M</creatorcontrib><description>Glioblastoma (GBM) is the most common primary brain tumor and has a poor prognosis; as such, there is an urgent need to develop innovative new therapies. Tumoricidal stem cells are an emerging therapy that has the potential to combat limitations of traditional local and systemic chemotherapeutic strategies for GBM by providing a source for high, sustained concentrations of tumoricidal agents locally to the tumor. One major roadblock for tumoricidal stem cell therapy is that the persistence of tumoricidal stem cells injected as a cell suspension into the GBM surgical resection cavity is limited. Polymeric biomaterial scaffolds have been utilized to enhance the delivery of tumoricidal stem cells in the surgical resection cavity and extend their persistence in the brain, ultimately increasing their therapeutic efficacy against GBM. In this review, we examine three main scaffold categories explored for tumoricidal stem cell therapy: microcapsules, hydrogels, and electrospun scaffolds. Furthermore, considering the significant impact of surgery on the brain and recurrent GBM, we survey a brief history of orthotopic models of GBM surgical resection.</description><identifier>ISSN: 2373-9878</identifier><identifier>EISSN: 2373-9878</identifier><identifier>DOI: 10.1021/acsbiomaterials.0c00477</identifier><identifier>PMID: 33463324</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Biocompatible Materials ; Brain Neoplasms - therapy ; Glioblastoma - therapy ; Humans ; Neoplasm Recurrence, Local ; Stem Cells</subject><ispartof>ACS biomaterials science & engineering, 2020-07, Vol.6 (7), p.3762-3777</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a462t-a2dd2f8c18ffc5fc6a9620301ca655262a3dee7b0b94483061da2ecb027f46323</citedby><cites>FETCH-LOGICAL-a462t-a2dd2f8c18ffc5fc6a9620301ca655262a3dee7b0b94483061da2ecb027f46323</cites><orcidid>0000-0002-8572-888X ; 0000-0002-1820-8382 ; 0000-0002-2130-5706</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsbiomaterials.0c00477$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsbiomaterials.0c00477$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33463324$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Moore, Kathryn M</creatorcontrib><creatorcontrib>Murthy, Ananya B</creatorcontrib><creatorcontrib>Graham-Gurysh, Elizabeth G</creatorcontrib><creatorcontrib>Hingtgen, Shawn D</creatorcontrib><creatorcontrib>Bachelder, Eric M</creatorcontrib><creatorcontrib>Ainslie, Kristy M</creatorcontrib><title>Polymeric Biomaterial Scaffolds for Tumoricidal Stem Cell Glioblastoma Therapy</title><title>ACS biomaterials science & engineering</title><addtitle>ACS Biomater. Sci. Eng</addtitle><description>Glioblastoma (GBM) is the most common primary brain tumor and has a poor prognosis; as such, there is an urgent need to develop innovative new therapies. Tumoricidal stem cells are an emerging therapy that has the potential to combat limitations of traditional local and systemic chemotherapeutic strategies for GBM by providing a source for high, sustained concentrations of tumoricidal agents locally to the tumor. One major roadblock for tumoricidal stem cell therapy is that the persistence of tumoricidal stem cells injected as a cell suspension into the GBM surgical resection cavity is limited. Polymeric biomaterial scaffolds have been utilized to enhance the delivery of tumoricidal stem cells in the surgical resection cavity and extend their persistence in the brain, ultimately increasing their therapeutic efficacy against GBM. In this review, we examine three main scaffold categories explored for tumoricidal stem cell therapy: microcapsules, hydrogels, and electrospun scaffolds. Furthermore, considering the significant impact of surgery on the brain and recurrent GBM, we survey a brief history of orthotopic models of GBM surgical resection.</description><subject>Biocompatible Materials</subject><subject>Brain Neoplasms - therapy</subject><subject>Glioblastoma - therapy</subject><subject>Humans</subject><subject>Neoplasm Recurrence, Local</subject><subject>Stem Cells</subject><issn>2373-9878</issn><issn>2373-9878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtPAjEUhRujEYL8BZ2lG_D2Ma-VUaJoQtREXDedTislM1NsZ0z495aAiG5ctck95-vpPQhdYBhjIPhKSF8YW4tWOSMqPwYJwNL0CPUJTekoz9Ls-ODeQ0PvlwCAaRYzxk5Rj1KWUEpYHz292GpdB5CMbn-Y0asUWtuq9JG2Lpp3tQ0KU24mraqjiaqqaFoZW1TCt8EWzRfKidX6DJ3oEEkNd-cAvd3fzScPo9nz9HFyMxsJlpB2JEhZEp1JnGktYy0TkScEKGApkjgmCRG0VCotoMgZyygkuBREyQJIqkNyQgfoestddUWtSqma1omKr5yphVtzKwz_PWnMgr_bT44hrCXHLBAudwRnPzrlW14bL8O_RKNs5zlhaQ6M4BiCNN1KpbPeO6X372Dgm0b4n0b4rpHgPD-Mufd97z8I6FYQCHxpO9ds7P9hvwDmR5-Q</recordid><startdate>20200713</startdate><enddate>20200713</enddate><creator>Moore, Kathryn M</creator><creator>Murthy, Ananya B</creator><creator>Graham-Gurysh, Elizabeth G</creator><creator>Hingtgen, Shawn D</creator><creator>Bachelder, Eric M</creator><creator>Ainslie, Kristy M</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8572-888X</orcidid><orcidid>https://orcid.org/0000-0002-1820-8382</orcidid><orcidid>https://orcid.org/0000-0002-2130-5706</orcidid></search><sort><creationdate>20200713</creationdate><title>Polymeric Biomaterial Scaffolds for Tumoricidal Stem Cell Glioblastoma Therapy</title><author>Moore, Kathryn M ; Murthy, Ananya B ; Graham-Gurysh, Elizabeth G ; Hingtgen, Shawn D ; Bachelder, Eric M ; Ainslie, Kristy M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a462t-a2dd2f8c18ffc5fc6a9620301ca655262a3dee7b0b94483061da2ecb027f46323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biocompatible Materials</topic><topic>Brain Neoplasms - therapy</topic><topic>Glioblastoma - therapy</topic><topic>Humans</topic><topic>Neoplasm Recurrence, Local</topic><topic>Stem Cells</topic><toplevel>online_resources</toplevel><creatorcontrib>Moore, Kathryn M</creatorcontrib><creatorcontrib>Murthy, Ananya B</creatorcontrib><creatorcontrib>Graham-Gurysh, Elizabeth G</creatorcontrib><creatorcontrib>Hingtgen, Shawn D</creatorcontrib><creatorcontrib>Bachelder, Eric M</creatorcontrib><creatorcontrib>Ainslie, Kristy M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS biomaterials science & engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moore, Kathryn M</au><au>Murthy, Ananya B</au><au>Graham-Gurysh, Elizabeth G</au><au>Hingtgen, Shawn D</au><au>Bachelder, Eric M</au><au>Ainslie, Kristy M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polymeric Biomaterial Scaffolds for Tumoricidal Stem Cell Glioblastoma Therapy</atitle><jtitle>ACS biomaterials science & engineering</jtitle><addtitle>ACS Biomater. Sci. Eng</addtitle><date>2020-07-13</date><risdate>2020</risdate><volume>6</volume><issue>7</issue><spage>3762</spage><epage>3777</epage><pages>3762-3777</pages><issn>2373-9878</issn><eissn>2373-9878</eissn><abstract>Glioblastoma (GBM) is the most common primary brain tumor and has a poor prognosis; as such, there is an urgent need to develop innovative new therapies. Tumoricidal stem cells are an emerging therapy that has the potential to combat limitations of traditional local and systemic chemotherapeutic strategies for GBM by providing a source for high, sustained concentrations of tumoricidal agents locally to the tumor. One major roadblock for tumoricidal stem cell therapy is that the persistence of tumoricidal stem cells injected as a cell suspension into the GBM surgical resection cavity is limited. Polymeric biomaterial scaffolds have been utilized to enhance the delivery of tumoricidal stem cells in the surgical resection cavity and extend their persistence in the brain, ultimately increasing their therapeutic efficacy against GBM. In this review, we examine three main scaffold categories explored for tumoricidal stem cell therapy: microcapsules, hydrogels, and electrospun scaffolds. Furthermore, considering the significant impact of surgery on the brain and recurrent GBM, we survey a brief history of orthotopic models of GBM surgical resection.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33463324</pmid><doi>10.1021/acsbiomaterials.0c00477</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-8572-888X</orcidid><orcidid>https://orcid.org/0000-0002-1820-8382</orcidid><orcidid>https://orcid.org/0000-0002-2130-5706</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2373-9878 |
ispartof | ACS biomaterials science & engineering, 2020-07, Vol.6 (7), p.3762-3777 |
issn | 2373-9878 2373-9878 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10373914 |
source | MEDLINE; American Chemical Society Journals |
subjects | Biocompatible Materials Brain Neoplasms - therapy Glioblastoma - therapy Humans Neoplasm Recurrence, Local Stem Cells |
title | Polymeric Biomaterial Scaffolds for Tumoricidal Stem Cell Glioblastoma Therapy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T19%3A40%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polymeric%20Biomaterial%20Scaffolds%20for%20Tumoricidal%20Stem%20Cell%20Glioblastoma%20Therapy&rft.jtitle=ACS%20biomaterials%20science%20&%20engineering&rft.au=Moore,%20Kathryn%20M&rft.date=2020-07-13&rft.volume=6&rft.issue=7&rft.spage=3762&rft.epage=3777&rft.pages=3762-3777&rft.issn=2373-9878&rft.eissn=2373-9878&rft_id=info:doi/10.1021/acsbiomaterials.0c00477&rft_dat=%3Cproquest_pubme%3E2479042150%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2479042150&rft_id=info:pmid/33463324&rfr_iscdi=true |