Mechanical Stability and Energy Gap Evolution in Cs-Based Ag, Bi Halide Double Perovskites under High Pressure: A Theoretical DFT Approach

Due to their intrinsic stability and reduced toxicity, lead-free halide double perovskite semiconductors have become potential alternatives to lead-based perovskites. In the present study, we used density functional theory simulations to investigate the mechanical stability and band gap evolution of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS omega 2023-07, Vol.8 (29), p.26577-26589
Hauptverfasser: Parrey, Ismahan Duz, Bilican, Fuat, Kursun, Celal, Kart, Hasan Huseyin, Parrey, Khursheed Ahmad
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 26589
container_issue 29
container_start_page 26577
container_title ACS omega
container_volume 8
creator Parrey, Ismahan Duz
Bilican, Fuat
Kursun, Celal
Kart, Hasan Huseyin
Parrey, Khursheed Ahmad
description Due to their intrinsic stability and reduced toxicity, lead-free halide double perovskite semiconductors have become potential alternatives to lead-based perovskites. In the present study, we used density functional theory simulations to investigate the mechanical stability and band gap evolution of double perovskites Cs2AgBiX6 (X = Cl and Br) under an applied pressure. To investigate the pressure-dependent properties, the hydrostatic pressure induced was in the range of 0–100 GPa. The mechanical behaviors indicated that the materials under study are both ductile and mechanically stable and that the induced pressure enhances the ductility. As a result of the induced pressure, the covalent bonds transformed into metallic bonds with a reduction in bond lengths. Electronic properties, energy bands, and electronic density of states were obtained with the hybrid HSE06 functional, including spin–orbit coupling (HSE06 + SOC) calculations. The electronic structure study revealed that Cs2AgBiX6 samples behave as X−Γ indirect gap semiconductors, and the gap reduces with the applied pressure. The pressure-driven samples ultimately transform from the semiconductor to a metallic phase at the given pressure range. Also, the calculations demonstrated that the applied pressure and spin–orbit coupling of the states pushed VBM and CBM toward the Fermi level which caused the evolution of the band gap. The relationship between the structure and band gap demonstrates the potential for designing lead-free inorganic perovskites for optoelectronic applications, including solar cells as well as X-ray detectors.
doi_str_mv 10.1021/acsomega.3c03469
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10373459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2844094576</sourcerecordid><originalsourceid>FETCH-LOGICAL-a434t-1c44b36a88f79d034936e9ab595c696c6de5fcf7618d1011abac5c5150474ed03</originalsourceid><addsrcrecordid>eNp1UUtv1DAQjhCIVqV3TshHDk2x40cSLmi73XaRiqjEcrYmziRxydrBTlbav8CvJrDbqhw4zUjzPWbmS5K3jF4ymrEPYKLfYguX3FAuVPkiOc1ETlPGBX_5rD9JzmN8oJQyVWRFpl4nJzyXGVOyOE1-fUHTgbMGevJthMr2dtwTcDVZOQztntzCQFY730-j9Y5YR5YxvYKINVm0F-TKkjX0tkZy7aeqR3KPwe_iDztiJJOrMZC1bTtyHzDGKeBHsiCbDn3A8a_l9c2GLIYheDDdm-RVA33E82M9S77frDbLdXr39fbzcnGXguBiTJkRouIKiqLJy3q-vOQKS6hkKY0qlVE1ysY0uWJFzShjUIGRRjJJRS5wJpwlnw66w1RtsTboxgC9HoLdQthrD1b_O3G2063faUZ5zoUsZ4X3R4Xgf04YR7210WDfg0M_RZ0VQtBSyFzNUHqAmuBjDNg8-TCq_8SoH2PUxxhnyrvn-z0RHkObARcHwEzVD34Kbn7X__V-A65kqiE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2844094576</pqid></control><display><type>article</type><title>Mechanical Stability and Energy Gap Evolution in Cs-Based Ag, Bi Halide Double Perovskites under High Pressure: A Theoretical DFT Approach</title><source>PubMed Central database</source><source>American Chemical Society (ACS) Open Access</source><source>Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Parrey, Ismahan Duz ; Bilican, Fuat ; Kursun, Celal ; Kart, Hasan Huseyin ; Parrey, Khursheed Ahmad</creator><creatorcontrib>Parrey, Ismahan Duz ; Bilican, Fuat ; Kursun, Celal ; Kart, Hasan Huseyin ; Parrey, Khursheed Ahmad</creatorcontrib><description>Due to their intrinsic stability and reduced toxicity, lead-free halide double perovskite semiconductors have become potential alternatives to lead-based perovskites. In the present study, we used density functional theory simulations to investigate the mechanical stability and band gap evolution of double perovskites Cs2AgBiX6 (X = Cl and Br) under an applied pressure. To investigate the pressure-dependent properties, the hydrostatic pressure induced was in the range of 0–100 GPa. The mechanical behaviors indicated that the materials under study are both ductile and mechanically stable and that the induced pressure enhances the ductility. As a result of the induced pressure, the covalent bonds transformed into metallic bonds with a reduction in bond lengths. Electronic properties, energy bands, and electronic density of states were obtained with the hybrid HSE06 functional, including spin–orbit coupling (HSE06 + SOC) calculations. The electronic structure study revealed that Cs2AgBiX6 samples behave as X−Γ indirect gap semiconductors, and the gap reduces with the applied pressure. The pressure-driven samples ultimately transform from the semiconductor to a metallic phase at the given pressure range. Also, the calculations demonstrated that the applied pressure and spin–orbit coupling of the states pushed VBM and CBM toward the Fermi level which caused the evolution of the band gap. The relationship between the structure and band gap demonstrates the potential for designing lead-free inorganic perovskites for optoelectronic applications, including solar cells as well as X-ray detectors.</description><identifier>ISSN: 2470-1343</identifier><identifier>EISSN: 2470-1343</identifier><identifier>DOI: 10.1021/acsomega.3c03469</identifier><identifier>PMID: 37521658</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS omega, 2023-07, Vol.8 (29), p.26577-26589</ispartof><rights>2023 The Authors. Published by American Chemical Society</rights><rights>2023 The Authors. Published by American Chemical Society.</rights><rights>2023 The Authors. Published by American Chemical Society 2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a434t-1c44b36a88f79d034936e9ab595c696c6de5fcf7618d1011abac5c5150474ed03</citedby><cites>FETCH-LOGICAL-a434t-1c44b36a88f79d034936e9ab595c696c6de5fcf7618d1011abac5c5150474ed03</cites><orcidid>0000-0001-9010-1937</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsomega.3c03469$$EPDF$$P50$$Gacs$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsomega.3c03469$$EHTML$$P50$$Gacs$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27080,27924,27925,53791,53793,56762,56812</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37521658$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Parrey, Ismahan Duz</creatorcontrib><creatorcontrib>Bilican, Fuat</creatorcontrib><creatorcontrib>Kursun, Celal</creatorcontrib><creatorcontrib>Kart, Hasan Huseyin</creatorcontrib><creatorcontrib>Parrey, Khursheed Ahmad</creatorcontrib><title>Mechanical Stability and Energy Gap Evolution in Cs-Based Ag, Bi Halide Double Perovskites under High Pressure: A Theoretical DFT Approach</title><title>ACS omega</title><addtitle>ACS Omega</addtitle><description>Due to their intrinsic stability and reduced toxicity, lead-free halide double perovskite semiconductors have become potential alternatives to lead-based perovskites. In the present study, we used density functional theory simulations to investigate the mechanical stability and band gap evolution of double perovskites Cs2AgBiX6 (X = Cl and Br) under an applied pressure. To investigate the pressure-dependent properties, the hydrostatic pressure induced was in the range of 0–100 GPa. The mechanical behaviors indicated that the materials under study are both ductile and mechanically stable and that the induced pressure enhances the ductility. As a result of the induced pressure, the covalent bonds transformed into metallic bonds with a reduction in bond lengths. Electronic properties, energy bands, and electronic density of states were obtained with the hybrid HSE06 functional, including spin–orbit coupling (HSE06 + SOC) calculations. The electronic structure study revealed that Cs2AgBiX6 samples behave as X−Γ indirect gap semiconductors, and the gap reduces with the applied pressure. The pressure-driven samples ultimately transform from the semiconductor to a metallic phase at the given pressure range. Also, the calculations demonstrated that the applied pressure and spin–orbit coupling of the states pushed VBM and CBM toward the Fermi level which caused the evolution of the band gap. The relationship between the structure and band gap demonstrates the potential for designing lead-free inorganic perovskites for optoelectronic applications, including solar cells as well as X-ray detectors.</description><issn>2470-1343</issn><issn>2470-1343</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>N~.</sourceid><recordid>eNp1UUtv1DAQjhCIVqV3TshHDk2x40cSLmi73XaRiqjEcrYmziRxydrBTlbav8CvJrDbqhw4zUjzPWbmS5K3jF4ymrEPYKLfYguX3FAuVPkiOc1ETlPGBX_5rD9JzmN8oJQyVWRFpl4nJzyXGVOyOE1-fUHTgbMGevJthMr2dtwTcDVZOQztntzCQFY730-j9Y5YR5YxvYKINVm0F-TKkjX0tkZy7aeqR3KPwe_iDztiJJOrMZC1bTtyHzDGKeBHsiCbDn3A8a_l9c2GLIYheDDdm-RVA33E82M9S77frDbLdXr39fbzcnGXguBiTJkRouIKiqLJy3q-vOQKS6hkKY0qlVE1ysY0uWJFzShjUIGRRjJJRS5wJpwlnw66w1RtsTboxgC9HoLdQthrD1b_O3G2063faUZ5zoUsZ4X3R4Xgf04YR7210WDfg0M_RZ0VQtBSyFzNUHqAmuBjDNg8-TCq_8SoH2PUxxhnyrvn-z0RHkObARcHwEzVD34Kbn7X__V-A65kqiE</recordid><startdate>20230725</startdate><enddate>20230725</enddate><creator>Parrey, Ismahan Duz</creator><creator>Bilican, Fuat</creator><creator>Kursun, Celal</creator><creator>Kart, Hasan Huseyin</creator><creator>Parrey, Khursheed Ahmad</creator><general>American Chemical Society</general><scope>N~.</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9010-1937</orcidid></search><sort><creationdate>20230725</creationdate><title>Mechanical Stability and Energy Gap Evolution in Cs-Based Ag, Bi Halide Double Perovskites under High Pressure: A Theoretical DFT Approach</title><author>Parrey, Ismahan Duz ; Bilican, Fuat ; Kursun, Celal ; Kart, Hasan Huseyin ; Parrey, Khursheed Ahmad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a434t-1c44b36a88f79d034936e9ab595c696c6de5fcf7618d1011abac5c5150474ed03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parrey, Ismahan Duz</creatorcontrib><creatorcontrib>Bilican, Fuat</creatorcontrib><creatorcontrib>Kursun, Celal</creatorcontrib><creatorcontrib>Kart, Hasan Huseyin</creatorcontrib><creatorcontrib>Parrey, Khursheed Ahmad</creatorcontrib><collection>American Chemical Society (ACS) Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS omega</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parrey, Ismahan Duz</au><au>Bilican, Fuat</au><au>Kursun, Celal</au><au>Kart, Hasan Huseyin</au><au>Parrey, Khursheed Ahmad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical Stability and Energy Gap Evolution in Cs-Based Ag, Bi Halide Double Perovskites under High Pressure: A Theoretical DFT Approach</atitle><jtitle>ACS omega</jtitle><addtitle>ACS Omega</addtitle><date>2023-07-25</date><risdate>2023</risdate><volume>8</volume><issue>29</issue><spage>26577</spage><epage>26589</epage><pages>26577-26589</pages><issn>2470-1343</issn><eissn>2470-1343</eissn><abstract>Due to their intrinsic stability and reduced toxicity, lead-free halide double perovskite semiconductors have become potential alternatives to lead-based perovskites. In the present study, we used density functional theory simulations to investigate the mechanical stability and band gap evolution of double perovskites Cs2AgBiX6 (X = Cl and Br) under an applied pressure. To investigate the pressure-dependent properties, the hydrostatic pressure induced was in the range of 0–100 GPa. The mechanical behaviors indicated that the materials under study are both ductile and mechanically stable and that the induced pressure enhances the ductility. As a result of the induced pressure, the covalent bonds transformed into metallic bonds with a reduction in bond lengths. Electronic properties, energy bands, and electronic density of states were obtained with the hybrid HSE06 functional, including spin–orbit coupling (HSE06 + SOC) calculations. The electronic structure study revealed that Cs2AgBiX6 samples behave as X−Γ indirect gap semiconductors, and the gap reduces with the applied pressure. The pressure-driven samples ultimately transform from the semiconductor to a metallic phase at the given pressure range. Also, the calculations demonstrated that the applied pressure and spin–orbit coupling of the states pushed VBM and CBM toward the Fermi level which caused the evolution of the band gap. The relationship between the structure and band gap demonstrates the potential for designing lead-free inorganic perovskites for optoelectronic applications, including solar cells as well as X-ray detectors.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37521658</pmid><doi>10.1021/acsomega.3c03469</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9010-1937</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2470-1343
ispartof ACS omega, 2023-07, Vol.8 (29), p.26577-26589
issn 2470-1343
2470-1343
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10373459
source PubMed Central database; American Chemical Society (ACS) Open Access; Directory of Open Access Journals; EZB Electronic Journals Library
title Mechanical Stability and Energy Gap Evolution in Cs-Based Ag, Bi Halide Double Perovskites under High Pressure: A Theoretical DFT Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T05%3A03%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20Stability%20and%20Energy%20Gap%20Evolution%20in%20Cs-Based%20Ag,%20Bi%20Halide%20Double%20Perovskites%20under%20High%20Pressure:%20A%20Theoretical%20DFT%20Approach&rft.jtitle=ACS%20omega&rft.au=Parrey,%20Ismahan%20Duz&rft.date=2023-07-25&rft.volume=8&rft.issue=29&rft.spage=26577&rft.epage=26589&rft.pages=26577-26589&rft.issn=2470-1343&rft.eissn=2470-1343&rft_id=info:doi/10.1021/acsomega.3c03469&rft_dat=%3Cproquest_pubme%3E2844094576%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2844094576&rft_id=info:pmid/37521658&rfr_iscdi=true