Study on stability of filling wall under lateral large-span composite hinge fracture of hard critical block

There is still a lack of mature researches on the stability mechanism, influencing factors and control technology of the gob-side filling wall, and systematic researches on the cracking forms and characteristics of the stope roof and the stability of the filling wall are rather insufficient. This pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science progress (1916) 2021-04, Vol.104 (2), p.368504211021694-368504211021694
Hauptverfasser: Li, Chenghai, Liu, Yajie, Bai, Jianbiao, Ge, Qing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:There is still a lack of mature researches on the stability mechanism, influencing factors and control technology of the gob-side filling wall, and systematic researches on the cracking forms and characteristics of the stope roof and the stability of the filling wall are rather insufficient. This paper is aimed at investigating the deformation law of the filling wall under the large-span composite hinge fracture of the hard critical block and solving the difficulty that the large-span critical block lateral fracture poses to gob-side entry retaining. Research methods such as theoretical calculation, mechanical analysis, numerical simulation and field test were adopted comprehensively in this study. When the large-span critical block B is divided into two or three parts, its force on the immediate roof decreases with the increase in the number of segments. Meanwhile, as the number of segments grows, the displacement and axial stress of the filling wall both decrease gradually; the tensile failure weakens relatively, while the shear failure changes slightly. Moreover, both the number of shear cracks and the number of tensile cracks in the filling wall are positively correlated with the strain. When the critical block divided into four parts, the amount of lateral displacement is about 190 mm, and the axial displacement reaches the minimum (about 235 mm). The stability of the filling wall along the gob-side entry is closely related to the lateral fracture span of the stope roof. Under the lateral fracture of the hard critical block, a smaller span of the lateral fracture of the critical block corresponds to a smaller force on the filling wall and a weaker damage to the filling wall. The field test result verifies that cleaving the large-span critical block into smaller segments is conducive to reducing surrounding rock and filling wall deformation.
ISSN:0036-8504
2047-7163
DOI:10.1177/00368504211021694