Dual-ratio approach for detection of point fluorophores in biological tissue

Diffuse flow cytometry (DiFC) is an emerging fluorescence sensing method to non-invasively detect labeled circulating cells . However, due to signal-to-noise ratio (SNR) constraints largely attributed to background tissue autofluorescence (AF), DiFC's measurement depth is limited. The dual rati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical optics 2023-07, Vol.28 (7), p.077001
Hauptverfasser: Blaney, Giles, Ivich, Fernando, Sassaroli, Angelo, Niedre, Mark, Fantini, Sergio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page 077001
container_title Journal of biomedical optics
container_volume 28
creator Blaney, Giles
Ivich, Fernando
Sassaroli, Angelo
Niedre, Mark
Fantini, Sergio
description Diffuse flow cytometry (DiFC) is an emerging fluorescence sensing method to non-invasively detect labeled circulating cells . However, due to signal-to-noise ratio (SNR) constraints largely attributed to background tissue autofluorescence (AF), DiFC's measurement depth is limited. The dual ratio (DR)/dual slope is an optical measurement method that aims to suppress noise and enhance SNR to deep tissue regions. We aim to investigate the combination of DR and near-infrared (NIR) DiFC to improve circulating cells' maximum detectable depth and SNR. Phantom experiments were used to estimate the key parameters in a diffuse fluorescence excitation and emission model. This model and parameters were implemented in Monte Carlo to simulate DR DiFC while varying noise and AF parameters to identify the advantages and limitations of the proposed technique. Two key factors must be true to give DR DiFC an advantage over traditional DiFC: first, the fraction of noise that DR methods cannot cancel cannot be above the order of 10% for acceptable SNR. Second, DR DiFC has an advantage, in terms of SNR, if the distribution of tissue AF contributors is surface-weighted. DR cancelable noise may be designed (e.g., through the use of source multiplexing), and indications point to the AF contributors' distribution being truly surface-weighted . Successful and worthwhile implementation of DR DiFC depends on these considerations, but results point to DR DiFC having possible advantages over traditional DiFC.
doi_str_mv 10.1117/1.JBO.28.7.077001
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10362801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2858378846</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-900a2e16355cadd1483588e553c49d882933f393f36663e118f2ad60479c54dd3</originalsourceid><addsrcrecordid>eNpdkc1rFTEUxUNR-mX_gG4k4MbNjLn5vLMSW6utPOjGrkOayfSlzJuMyYzgf2_ktUVdhISb3zncwyHkHFgLAOYDtN8ubluOrWmZMYzBATkGpVnDOcKr-mYoGqE1HpGTUh4ZY6g7fUiOhJEoO2OOyebz6sYmuyUm6uY5J-e3dEiZ9mEJvk4nmgY6pzgtdBjXlNO8TTkUGid6H9OYHqJ3I11iKWt4Q14Pbizh7Ok-JXdfrr5fXjeb2683l582jZccl6ZjzPEAWijlXd-DRKEQg1LCy65H5J0Qg-jq0VqLAIADd71m0nReyb4Xp-Tj3nde73eh92FashvtnOPO5V82uWj__Zni1j6knxaY0BwZVIf3Tw45_VhDWewuFh_G0U0hrcVylCAZV4AVffcf-pjWPNV8lVIoDKLUlYI95XMqJYfhZRtg9k9ZFmwtq0qssfuyqubt3zFeFM_tiN9mno-m</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2858378846</pqid></control><display><type>article</type><title>Dual-ratio approach for detection of point fluorophores in biological tissue</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>ProQuest Central</source><creator>Blaney, Giles ; Ivich, Fernando ; Sassaroli, Angelo ; Niedre, Mark ; Fantini, Sergio</creator><creatorcontrib>Blaney, Giles ; Ivich, Fernando ; Sassaroli, Angelo ; Niedre, Mark ; Fantini, Sergio</creatorcontrib><description>Diffuse flow cytometry (DiFC) is an emerging fluorescence sensing method to non-invasively detect labeled circulating cells . However, due to signal-to-noise ratio (SNR) constraints largely attributed to background tissue autofluorescence (AF), DiFC's measurement depth is limited. The dual ratio (DR)/dual slope is an optical measurement method that aims to suppress noise and enhance SNR to deep tissue regions. We aim to investigate the combination of DR and near-infrared (NIR) DiFC to improve circulating cells' maximum detectable depth and SNR. Phantom experiments were used to estimate the key parameters in a diffuse fluorescence excitation and emission model. This model and parameters were implemented in Monte Carlo to simulate DR DiFC while varying noise and AF parameters to identify the advantages and limitations of the proposed technique. Two key factors must be true to give DR DiFC an advantage over traditional DiFC: first, the fraction of noise that DR methods cannot cancel cannot be above the order of 10% for acceptable SNR. Second, DR DiFC has an advantage, in terms of SNR, if the distribution of tissue AF contributors is surface-weighted. DR cancelable noise may be designed (e.g., through the use of source multiplexing), and indications point to the AF contributors' distribution being truly surface-weighted . Successful and worthwhile implementation of DR DiFC depends on these considerations, but results point to DR DiFC having possible advantages over traditional DiFC.</description><identifier>ISSN: 1083-3668</identifier><identifier>ISSN: 1560-2281</identifier><identifier>EISSN: 1560-2281</identifier><identifier>DOI: 10.1117/1.JBO.28.7.077001</identifier><identifier>PMID: 37484977</identifier><language>eng</language><publisher>United States: S P I E - International Society for</publisher><subject>Background noise ; Blood ; Blood vessels ; Cancer ; Chemical compounds ; Flow cytometry ; Fluorescence ; Fluorophores ; In vivo methods and tests ; Mathematical models ; Measurement methods ; Medical prognosis ; Medical research ; Multiplexing ; Optical measurement ; Parameter identification ; Phantoms, Imaging ; Sensing ; Sensors ; Signal to noise ratio ; Tissues ; Veins &amp; arteries</subject><ispartof>Journal of biomedical optics, 2023-07, Vol.28 (7), p.077001</ispartof><rights>2023 The Authors.</rights><rights>2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 The Authors 2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-900a2e16355cadd1483588e553c49d882933f393f36663e118f2ad60479c54dd3</citedby><cites>FETCH-LOGICAL-c428t-900a2e16355cadd1483588e553c49d882933f393f36663e118f2ad60479c54dd3</cites><orcidid>0000-0001-5116-525X ; 0000-0003-2830-3161 ; 0000-0003-3419-4547</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2858378846/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2858378846?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,21367,27901,27902,33721,33722,43781,53766,53768,74045</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37484977$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Blaney, Giles</creatorcontrib><creatorcontrib>Ivich, Fernando</creatorcontrib><creatorcontrib>Sassaroli, Angelo</creatorcontrib><creatorcontrib>Niedre, Mark</creatorcontrib><creatorcontrib>Fantini, Sergio</creatorcontrib><title>Dual-ratio approach for detection of point fluorophores in biological tissue</title><title>Journal of biomedical optics</title><addtitle>J Biomed Opt</addtitle><description>Diffuse flow cytometry (DiFC) is an emerging fluorescence sensing method to non-invasively detect labeled circulating cells . However, due to signal-to-noise ratio (SNR) constraints largely attributed to background tissue autofluorescence (AF), DiFC's measurement depth is limited. The dual ratio (DR)/dual slope is an optical measurement method that aims to suppress noise and enhance SNR to deep tissue regions. We aim to investigate the combination of DR and near-infrared (NIR) DiFC to improve circulating cells' maximum detectable depth and SNR. Phantom experiments were used to estimate the key parameters in a diffuse fluorescence excitation and emission model. This model and parameters were implemented in Monte Carlo to simulate DR DiFC while varying noise and AF parameters to identify the advantages and limitations of the proposed technique. Two key factors must be true to give DR DiFC an advantage over traditional DiFC: first, the fraction of noise that DR methods cannot cancel cannot be above the order of 10% for acceptable SNR. Second, DR DiFC has an advantage, in terms of SNR, if the distribution of tissue AF contributors is surface-weighted. DR cancelable noise may be designed (e.g., through the use of source multiplexing), and indications point to the AF contributors' distribution being truly surface-weighted . Successful and worthwhile implementation of DR DiFC depends on these considerations, but results point to DR DiFC having possible advantages over traditional DiFC.</description><subject>Background noise</subject><subject>Blood</subject><subject>Blood vessels</subject><subject>Cancer</subject><subject>Chemical compounds</subject><subject>Flow cytometry</subject><subject>Fluorescence</subject><subject>Fluorophores</subject><subject>In vivo methods and tests</subject><subject>Mathematical models</subject><subject>Measurement methods</subject><subject>Medical prognosis</subject><subject>Medical research</subject><subject>Multiplexing</subject><subject>Optical measurement</subject><subject>Parameter identification</subject><subject>Phantoms, Imaging</subject><subject>Sensing</subject><subject>Sensors</subject><subject>Signal to noise ratio</subject><subject>Tissues</subject><subject>Veins &amp; arteries</subject><issn>1083-3668</issn><issn>1560-2281</issn><issn>1560-2281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNpdkc1rFTEUxUNR-mX_gG4k4MbNjLn5vLMSW6utPOjGrkOayfSlzJuMyYzgf2_ktUVdhISb3zncwyHkHFgLAOYDtN8ubluOrWmZMYzBATkGpVnDOcKr-mYoGqE1HpGTUh4ZY6g7fUiOhJEoO2OOyebz6sYmuyUm6uY5J-e3dEiZ9mEJvk4nmgY6pzgtdBjXlNO8TTkUGid6H9OYHqJ3I11iKWt4Q14Pbizh7Ok-JXdfrr5fXjeb2683l582jZccl6ZjzPEAWijlXd-DRKEQg1LCy65H5J0Qg-jq0VqLAIADd71m0nReyb4Xp-Tj3nde73eh92FashvtnOPO5V82uWj__Zni1j6knxaY0BwZVIf3Tw45_VhDWewuFh_G0U0hrcVylCAZV4AVffcf-pjWPNV8lVIoDKLUlYI95XMqJYfhZRtg9k9ZFmwtq0qssfuyqubt3zFeFM_tiN9mno-m</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Blaney, Giles</creator><creator>Ivich, Fernando</creator><creator>Sassaroli, Angelo</creator><creator>Niedre, Mark</creator><creator>Fantini, Sergio</creator><general>S P I E - International Society for</general><general>Society of Photo-Optical Instrumentation Engineers</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5116-525X</orcidid><orcidid>https://orcid.org/0000-0003-2830-3161</orcidid><orcidid>https://orcid.org/0000-0003-3419-4547</orcidid></search><sort><creationdate>20230701</creationdate><title>Dual-ratio approach for detection of point fluorophores in biological tissue</title><author>Blaney, Giles ; Ivich, Fernando ; Sassaroli, Angelo ; Niedre, Mark ; Fantini, Sergio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-900a2e16355cadd1483588e553c49d882933f393f36663e118f2ad60479c54dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Background noise</topic><topic>Blood</topic><topic>Blood vessels</topic><topic>Cancer</topic><topic>Chemical compounds</topic><topic>Flow cytometry</topic><topic>Fluorescence</topic><topic>Fluorophores</topic><topic>In vivo methods and tests</topic><topic>Mathematical models</topic><topic>Measurement methods</topic><topic>Medical prognosis</topic><topic>Medical research</topic><topic>Multiplexing</topic><topic>Optical measurement</topic><topic>Parameter identification</topic><topic>Phantoms, Imaging</topic><topic>Sensing</topic><topic>Sensors</topic><topic>Signal to noise ratio</topic><topic>Tissues</topic><topic>Veins &amp; arteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blaney, Giles</creatorcontrib><creatorcontrib>Ivich, Fernando</creatorcontrib><creatorcontrib>Sassaroli, Angelo</creatorcontrib><creatorcontrib>Niedre, Mark</creatorcontrib><creatorcontrib>Fantini, Sergio</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of biomedical optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blaney, Giles</au><au>Ivich, Fernando</au><au>Sassaroli, Angelo</au><au>Niedre, Mark</au><au>Fantini, Sergio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual-ratio approach for detection of point fluorophores in biological tissue</atitle><jtitle>Journal of biomedical optics</jtitle><addtitle>J Biomed Opt</addtitle><date>2023-07-01</date><risdate>2023</risdate><volume>28</volume><issue>7</issue><spage>077001</spage><pages>077001-</pages><issn>1083-3668</issn><issn>1560-2281</issn><eissn>1560-2281</eissn><abstract>Diffuse flow cytometry (DiFC) is an emerging fluorescence sensing method to non-invasively detect labeled circulating cells . However, due to signal-to-noise ratio (SNR) constraints largely attributed to background tissue autofluorescence (AF), DiFC's measurement depth is limited. The dual ratio (DR)/dual slope is an optical measurement method that aims to suppress noise and enhance SNR to deep tissue regions. We aim to investigate the combination of DR and near-infrared (NIR) DiFC to improve circulating cells' maximum detectable depth and SNR. Phantom experiments were used to estimate the key parameters in a diffuse fluorescence excitation and emission model. This model and parameters were implemented in Monte Carlo to simulate DR DiFC while varying noise and AF parameters to identify the advantages and limitations of the proposed technique. Two key factors must be true to give DR DiFC an advantage over traditional DiFC: first, the fraction of noise that DR methods cannot cancel cannot be above the order of 10% for acceptable SNR. Second, DR DiFC has an advantage, in terms of SNR, if the distribution of tissue AF contributors is surface-weighted. DR cancelable noise may be designed (e.g., through the use of source multiplexing), and indications point to the AF contributors' distribution being truly surface-weighted . Successful and worthwhile implementation of DR DiFC depends on these considerations, but results point to DR DiFC having possible advantages over traditional DiFC.</abstract><cop>United States</cop><pub>S P I E - International Society for</pub><pmid>37484977</pmid><doi>10.1117/1.JBO.28.7.077001</doi><orcidid>https://orcid.org/0000-0001-5116-525X</orcidid><orcidid>https://orcid.org/0000-0003-2830-3161</orcidid><orcidid>https://orcid.org/0000-0003-3419-4547</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1083-3668
ispartof Journal of biomedical optics, 2023-07, Vol.28 (7), p.077001
issn 1083-3668
1560-2281
1560-2281
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10362801
source MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; ProQuest Central
subjects Background noise
Blood
Blood vessels
Cancer
Chemical compounds
Flow cytometry
Fluorescence
Fluorophores
In vivo methods and tests
Mathematical models
Measurement methods
Medical prognosis
Medical research
Multiplexing
Optical measurement
Parameter identification
Phantoms, Imaging
Sensing
Sensors
Signal to noise ratio
Tissues
Veins & arteries
title Dual-ratio approach for detection of point fluorophores in biological tissue
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A26%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual-ratio%20approach%20for%20detection%20of%20point%20fluorophores%20in%20biological%20tissue&rft.jtitle=Journal%20of%20biomedical%20optics&rft.au=Blaney,%20Giles&rft.date=2023-07-01&rft.volume=28&rft.issue=7&rft.spage=077001&rft.pages=077001-&rft.issn=1083-3668&rft.eissn=1560-2281&rft_id=info:doi/10.1117/1.JBO.28.7.077001&rft_dat=%3Cproquest_pubme%3E2858378846%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2858378846&rft_id=info:pmid/37484977&rfr_iscdi=true