Targeting m6A reader YTHDF1 augments antitumour immunity and boosts anti-PD-1 efficacy in colorectal cancer
ObjectiveThe role of N6-methyladenosine (m6A) in tumour immune microenvironment (TIME) remains understudied. Here, we elucidate function and mechanism of YTH N6-methyladenosine RNA binding protein 1 (YTHDF1) in colorectal cancer (CRC) TIME.DesignClinical significance of YTHDF1 was assessed in tissue...
Gespeichert in:
Veröffentlicht in: | Gut 2023-08, Vol.72 (8), p.1497-1509 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1509 |
---|---|
container_issue | 8 |
container_start_page | 1497 |
container_title | Gut |
container_volume | 72 |
creator | Bao, Yi Zhai, Jianning Chen, Huarong Wong, Chi Chun Liang, Cong Ding, Yanqiang Huang, Dan Gou, Hongyan Chen, Danyu Pan, Yasi Kang, Wei To, Ka Fai Yu, Jun |
description | ObjectiveThe role of N6-methyladenosine (m6A) in tumour immune microenvironment (TIME) remains understudied. Here, we elucidate function and mechanism of YTH N6-methyladenosine RNA binding protein 1 (YTHDF1) in colorectal cancer (CRC) TIME.DesignClinical significance of YTHDF1 was assessed in tissue microarrays (N=408) and TCGA (N=526) cohorts. YTHDF1 function was determined in syngeneic tumours, intestine-specific Ythdf1 knockin mice, and humanised mice. Single-cell RNA-seq (scRNA-seq) was employed to profile TIME. Methylated RNA immunoprecipitation sequencing (MeRIP-seq), RNA sequencing (RNA-seq) and ribosome sequencing (Ribo-seq) were used to identify YTHDF1 direct targets. Vesicle-like nanoparticles (VNPs)-encapsulated YTHDF1-siRNA was used for YTHDF1 silencing in vivo.ResultsYTHDF1 expression negatively correlated with interferon-γ gene signature in TCGA-CRC. Concordantly, YTHDF1 protein negatively correlated with CD8+ T-cell infiltration in independent tissue microarrays cohorts, implying its role in TIME. Genetic depletion of Ythdf1 augmented antitumour immunity in CT26 (MSS-CRC) and MC38 (MSI-H-CRC) syngeneic tumours, while Ythdf1 knockin promoted an immunosuppressive TIME facilitating CRC in azoxymethane-dextran sulphate-sodium or ApcMin/+ models. scRNA-seq identified reduction of myeloid-derived suppressor cells (MDSCs), concomitant with increased cytotoxic T cells in Ythdf1 knockout tumours. Integrated MeRIP-seq, RNA-seq and Ribo-seq revealed p65/Rela as a YTHDF1 target. YTHDF1 promoted p65 translation to upregulate CXCL1, which increased MDSC migration via CXCL1-CXCR2 axis. Increased MSDCs in turn antagonised functional CD8+ T cells in TIME. Importantly, targeting YTHDF1 by CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) or VNPs-siYTHDF1 boosted anti-PD1 efficacy in MSI-H CRC, and overcame anti-PD1 resistance in MSS CRC.ConclusionYTHDF1 impairs antitumour immunity via an m6A-p65-CXCL1/CXCR2 axis to promote CRC and serves as a therapeutic target in immune checkpoint blockade therapy. |
doi_str_mv | 10.1136/gutjnl-2022-328845 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10359538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2770770463</sourcerecordid><originalsourceid>FETCH-LOGICAL-b313t-4ff70d33b9d639de352a64f0ba1c0a0a3dff59895c335e283ef426ed52cf099e3</originalsourceid><addsrcrecordid>eNp9kU-LFDEQxYMo7uzqF_AU8OKl1yTV-XeSZdd1Fxb0MB48hXQ6aTN2kjXdvTDf3h5nQPQgFBRV9ePBq4fQG0ouKQXxfljmXR4bRhhrgCnV8mdoQ1uhfk_P0YYQKhsuW32GzqdpRwhRStOX6AyEpJIxskE_trYOfo55wElc4ept7yv-tr27uaXYLkPyeZ6wzXOcl1SWimNKS47zft31uCtlOp2bLzcNxT6E6Kzb45ixK2Op3s12xM5m5-sr9CLYcfKvT_0Cfb39uL2-ax4-f7q_vnpoOqAwN20IkvQAne4F6N4DZ1a0gXSWOmKJhT4ErpXmDoB7psCHlgnfc-YC0drDBfpw1H1cuuR7t1qodjSPNSZb96bYaP6-5PjdDOXJUAJcc1CrwruTQi0_Fz_NJsXJ-XG02ZdlMkxKCtByECv69h90t74pr_4MU-2BkVL_l5KSrNUKWKnLI9Wl3R-AEnOI2xzjNoe4zTFu-AV4Tp1j</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2770770463</pqid></control><display><type>article</type><title>Targeting m6A reader YTHDF1 augments antitumour immunity and boosts anti-PD-1 efficacy in colorectal cancer</title><source>PubMed Central</source><creator>Bao, Yi ; Zhai, Jianning ; Chen, Huarong ; Wong, Chi Chun ; Liang, Cong ; Ding, Yanqiang ; Huang, Dan ; Gou, Hongyan ; Chen, Danyu ; Pan, Yasi ; Kang, Wei ; To, Ka Fai ; Yu, Jun</creator><creatorcontrib>Bao, Yi ; Zhai, Jianning ; Chen, Huarong ; Wong, Chi Chun ; Liang, Cong ; Ding, Yanqiang ; Huang, Dan ; Gou, Hongyan ; Chen, Danyu ; Pan, Yasi ; Kang, Wei ; To, Ka Fai ; Yu, Jun</creatorcontrib><description>ObjectiveThe role of N6-methyladenosine (m6A) in tumour immune microenvironment (TIME) remains understudied. Here, we elucidate function and mechanism of YTH N6-methyladenosine RNA binding protein 1 (YTHDF1) in colorectal cancer (CRC) TIME.DesignClinical significance of YTHDF1 was assessed in tissue microarrays (N=408) and TCGA (N=526) cohorts. YTHDF1 function was determined in syngeneic tumours, intestine-specific Ythdf1 knockin mice, and humanised mice. Single-cell RNA-seq (scRNA-seq) was employed to profile TIME. Methylated RNA immunoprecipitation sequencing (MeRIP-seq), RNA sequencing (RNA-seq) and ribosome sequencing (Ribo-seq) were used to identify YTHDF1 direct targets. Vesicle-like nanoparticles (VNPs)-encapsulated YTHDF1-siRNA was used for YTHDF1 silencing in vivo.ResultsYTHDF1 expression negatively correlated with interferon-γ gene signature in TCGA-CRC. Concordantly, YTHDF1 protein negatively correlated with CD8+ T-cell infiltration in independent tissue microarrays cohorts, implying its role in TIME. Genetic depletion of Ythdf1 augmented antitumour immunity in CT26 (MSS-CRC) and MC38 (MSI-H-CRC) syngeneic tumours, while Ythdf1 knockin promoted an immunosuppressive TIME facilitating CRC in azoxymethane-dextran sulphate-sodium or ApcMin/+ models. scRNA-seq identified reduction of myeloid-derived suppressor cells (MDSCs), concomitant with increased cytotoxic T cells in Ythdf1 knockout tumours. Integrated MeRIP-seq, RNA-seq and Ribo-seq revealed p65/Rela as a YTHDF1 target. YTHDF1 promoted p65 translation to upregulate CXCL1, which increased MDSC migration via CXCL1-CXCR2 axis. Increased MSDCs in turn antagonised functional CD8+ T cells in TIME. Importantly, targeting YTHDF1 by CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) or VNPs-siYTHDF1 boosted anti-PD1 efficacy in MSI-H CRC, and overcame anti-PD1 resistance in MSS CRC.ConclusionYTHDF1 impairs antitumour immunity via an m6A-p65-CXCL1/CXCR2 axis to promote CRC and serves as a therapeutic target in immune checkpoint blockade therapy.</description><identifier>ISSN: 0017-5749</identifier><identifier>ISSN: 1468-3288</identifier><identifier>EISSN: 1468-3288</identifier><identifier>DOI: 10.1136/gutjnl-2022-328845</identifier><identifier>PMID: 36717220</identifier><language>eng</language><publisher>London: BMJ Publishing Group Ltd and British Society of Gastroenterology</publisher><subject>Azoxymethane ; CD8 antigen ; Colon ; colon carcinogenesis ; Colorectal cancer ; Colorectal carcinoma ; CRISPR ; CXCR2 protein ; Cytotoxicity ; Data analysis ; Dextran ; DNA microarrays ; Genes ; Genomes ; GI cancer ; Immune checkpoint inhibitors ; Immunity ; Immunoprecipitation ; Immunotherapy ; Interferon ; Lymphocytes ; Lymphocytes T ; Medical prognosis ; Metastases ; Microenvironments ; N6-methyladenosine ; Nanoparticles ; PD-1 protein ; Protein expression ; Proteins ; RNA-binding protein ; siRNA ; Statistical analysis ; Stem cells ; Suppressor cells ; Therapeutic targets ; Tumors ; γ-Interferon</subject><ispartof>Gut, 2023-08, Vol.72 (8), p.1497-1509</ispartof><rights>Author(s) (or their employer(s)) 2023. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.</rights><rights>2023 Author(s) (or their employer(s)) 2023. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. http://creativecommons.org/licenses/by-nc/4.0/ This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/ . Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Author(s) (or their employer(s)) 2023. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-b313t-4ff70d33b9d639de352a64f0ba1c0a0a3dff59895c335e283ef426ed52cf099e3</cites><orcidid>0000-0002-4651-677X ; 0000-0003-2192-1864 ; 0000-0001-5008-2153</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10359538/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10359538/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27922,27923,53789,53791</link.rule.ids></links><search><creatorcontrib>Bao, Yi</creatorcontrib><creatorcontrib>Zhai, Jianning</creatorcontrib><creatorcontrib>Chen, Huarong</creatorcontrib><creatorcontrib>Wong, Chi Chun</creatorcontrib><creatorcontrib>Liang, Cong</creatorcontrib><creatorcontrib>Ding, Yanqiang</creatorcontrib><creatorcontrib>Huang, Dan</creatorcontrib><creatorcontrib>Gou, Hongyan</creatorcontrib><creatorcontrib>Chen, Danyu</creatorcontrib><creatorcontrib>Pan, Yasi</creatorcontrib><creatorcontrib>Kang, Wei</creatorcontrib><creatorcontrib>To, Ka Fai</creatorcontrib><creatorcontrib>Yu, Jun</creatorcontrib><title>Targeting m6A reader YTHDF1 augments antitumour immunity and boosts anti-PD-1 efficacy in colorectal cancer</title><title>Gut</title><addtitle>Gut</addtitle><description>ObjectiveThe role of N6-methyladenosine (m6A) in tumour immune microenvironment (TIME) remains understudied. Here, we elucidate function and mechanism of YTH N6-methyladenosine RNA binding protein 1 (YTHDF1) in colorectal cancer (CRC) TIME.DesignClinical significance of YTHDF1 was assessed in tissue microarrays (N=408) and TCGA (N=526) cohorts. YTHDF1 function was determined in syngeneic tumours, intestine-specific Ythdf1 knockin mice, and humanised mice. Single-cell RNA-seq (scRNA-seq) was employed to profile TIME. Methylated RNA immunoprecipitation sequencing (MeRIP-seq), RNA sequencing (RNA-seq) and ribosome sequencing (Ribo-seq) were used to identify YTHDF1 direct targets. Vesicle-like nanoparticles (VNPs)-encapsulated YTHDF1-siRNA was used for YTHDF1 silencing in vivo.ResultsYTHDF1 expression negatively correlated with interferon-γ gene signature in TCGA-CRC. Concordantly, YTHDF1 protein negatively correlated with CD8+ T-cell infiltration in independent tissue microarrays cohorts, implying its role in TIME. Genetic depletion of Ythdf1 augmented antitumour immunity in CT26 (MSS-CRC) and MC38 (MSI-H-CRC) syngeneic tumours, while Ythdf1 knockin promoted an immunosuppressive TIME facilitating CRC in azoxymethane-dextran sulphate-sodium or ApcMin/+ models. scRNA-seq identified reduction of myeloid-derived suppressor cells (MDSCs), concomitant with increased cytotoxic T cells in Ythdf1 knockout tumours. Integrated MeRIP-seq, RNA-seq and Ribo-seq revealed p65/Rela as a YTHDF1 target. YTHDF1 promoted p65 translation to upregulate CXCL1, which increased MDSC migration via CXCL1-CXCR2 axis. Increased MSDCs in turn antagonised functional CD8+ T cells in TIME. Importantly, targeting YTHDF1 by CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) or VNPs-siYTHDF1 boosted anti-PD1 efficacy in MSI-H CRC, and overcame anti-PD1 resistance in MSS CRC.ConclusionYTHDF1 impairs antitumour immunity via an m6A-p65-CXCL1/CXCR2 axis to promote CRC and serves as a therapeutic target in immune checkpoint blockade therapy.</description><subject>Azoxymethane</subject><subject>CD8 antigen</subject><subject>Colon</subject><subject>colon carcinogenesis</subject><subject>Colorectal cancer</subject><subject>Colorectal carcinoma</subject><subject>CRISPR</subject><subject>CXCR2 protein</subject><subject>Cytotoxicity</subject><subject>Data analysis</subject><subject>Dextran</subject><subject>DNA microarrays</subject><subject>Genes</subject><subject>Genomes</subject><subject>GI cancer</subject><subject>Immune checkpoint inhibitors</subject><subject>Immunity</subject><subject>Immunoprecipitation</subject><subject>Immunotherapy</subject><subject>Interferon</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Medical prognosis</subject><subject>Metastases</subject><subject>Microenvironments</subject><subject>N6-methyladenosine</subject><subject>Nanoparticles</subject><subject>PD-1 protein</subject><subject>Protein expression</subject><subject>Proteins</subject><subject>RNA-binding protein</subject><subject>siRNA</subject><subject>Statistical analysis</subject><subject>Stem cells</subject><subject>Suppressor cells</subject><subject>Therapeutic targets</subject><subject>Tumors</subject><subject>γ-Interferon</subject><issn>0017-5749</issn><issn>1468-3288</issn><issn>1468-3288</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>9YT</sourceid><sourceid>ACMMV</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU-LFDEQxYMo7uzqF_AU8OKl1yTV-XeSZdd1Fxb0MB48hXQ6aTN2kjXdvTDf3h5nQPQgFBRV9ePBq4fQG0ouKQXxfljmXR4bRhhrgCnV8mdoQ1uhfk_P0YYQKhsuW32GzqdpRwhRStOX6AyEpJIxskE_trYOfo55wElc4ept7yv-tr27uaXYLkPyeZ6wzXOcl1SWimNKS47zft31uCtlOp2bLzcNxT6E6Kzb45ixK2Op3s12xM5m5-sr9CLYcfKvT_0Cfb39uL2-ax4-f7q_vnpoOqAwN20IkvQAne4F6N4DZ1a0gXSWOmKJhT4ErpXmDoB7psCHlgnfc-YC0drDBfpw1H1cuuR7t1qodjSPNSZb96bYaP6-5PjdDOXJUAJcc1CrwruTQi0_Fz_NJsXJ-XG02ZdlMkxKCtByECv69h90t74pr_4MU-2BkVL_l5KSrNUKWKnLI9Wl3R-AEnOI2xzjNoe4zTFu-AV4Tp1j</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Bao, Yi</creator><creator>Zhai, Jianning</creator><creator>Chen, Huarong</creator><creator>Wong, Chi Chun</creator><creator>Liang, Cong</creator><creator>Ding, Yanqiang</creator><creator>Huang, Dan</creator><creator>Gou, Hongyan</creator><creator>Chen, Danyu</creator><creator>Pan, Yasi</creator><creator>Kang, Wei</creator><creator>To, Ka Fai</creator><creator>Yu, Jun</creator><general>BMJ Publishing Group Ltd and British Society of Gastroenterology</general><general>BMJ Publishing Group LTD</general><general>BMJ Publishing Group</general><scope>9YT</scope><scope>ACMMV</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BTHHO</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4651-677X</orcidid><orcidid>https://orcid.org/0000-0003-2192-1864</orcidid><orcidid>https://orcid.org/0000-0001-5008-2153</orcidid></search><sort><creationdate>20230801</creationdate><title>Targeting m6A reader YTHDF1 augments antitumour immunity and boosts anti-PD-1 efficacy in colorectal cancer</title><author>Bao, Yi ; Zhai, Jianning ; Chen, Huarong ; Wong, Chi Chun ; Liang, Cong ; Ding, Yanqiang ; Huang, Dan ; Gou, Hongyan ; Chen, Danyu ; Pan, Yasi ; Kang, Wei ; To, Ka Fai ; Yu, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b313t-4ff70d33b9d639de352a64f0ba1c0a0a3dff59895c335e283ef426ed52cf099e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Azoxymethane</topic><topic>CD8 antigen</topic><topic>Colon</topic><topic>colon carcinogenesis</topic><topic>Colorectal cancer</topic><topic>Colorectal carcinoma</topic><topic>CRISPR</topic><topic>CXCR2 protein</topic><topic>Cytotoxicity</topic><topic>Data analysis</topic><topic>Dextran</topic><topic>DNA microarrays</topic><topic>Genes</topic><topic>Genomes</topic><topic>GI cancer</topic><topic>Immune checkpoint inhibitors</topic><topic>Immunity</topic><topic>Immunoprecipitation</topic><topic>Immunotherapy</topic><topic>Interferon</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Medical prognosis</topic><topic>Metastases</topic><topic>Microenvironments</topic><topic>N6-methyladenosine</topic><topic>Nanoparticles</topic><topic>PD-1 protein</topic><topic>Protein expression</topic><topic>Proteins</topic><topic>RNA-binding protein</topic><topic>siRNA</topic><topic>Statistical analysis</topic><topic>Stem cells</topic><topic>Suppressor cells</topic><topic>Therapeutic targets</topic><topic>Tumors</topic><topic>γ-Interferon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bao, Yi</creatorcontrib><creatorcontrib>Zhai, Jianning</creatorcontrib><creatorcontrib>Chen, Huarong</creatorcontrib><creatorcontrib>Wong, Chi Chun</creatorcontrib><creatorcontrib>Liang, Cong</creatorcontrib><creatorcontrib>Ding, Yanqiang</creatorcontrib><creatorcontrib>Huang, Dan</creatorcontrib><creatorcontrib>Gou, Hongyan</creatorcontrib><creatorcontrib>Chen, Danyu</creatorcontrib><creatorcontrib>Pan, Yasi</creatorcontrib><creatorcontrib>Kang, Wei</creatorcontrib><creatorcontrib>To, Ka Fai</creatorcontrib><creatorcontrib>Yu, Jun</creatorcontrib><collection>BMJ Open Access Journals</collection><collection>BMJ Journals:Open Access</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>BMJ Journals</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Gut</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bao, Yi</au><au>Zhai, Jianning</au><au>Chen, Huarong</au><au>Wong, Chi Chun</au><au>Liang, Cong</au><au>Ding, Yanqiang</au><au>Huang, Dan</au><au>Gou, Hongyan</au><au>Chen, Danyu</au><au>Pan, Yasi</au><au>Kang, Wei</au><au>To, Ka Fai</au><au>Yu, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Targeting m6A reader YTHDF1 augments antitumour immunity and boosts anti-PD-1 efficacy in colorectal cancer</atitle><jtitle>Gut</jtitle><stitle>Gut</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>72</volume><issue>8</issue><spage>1497</spage><epage>1509</epage><pages>1497-1509</pages><issn>0017-5749</issn><issn>1468-3288</issn><eissn>1468-3288</eissn><abstract>ObjectiveThe role of N6-methyladenosine (m6A) in tumour immune microenvironment (TIME) remains understudied. Here, we elucidate function and mechanism of YTH N6-methyladenosine RNA binding protein 1 (YTHDF1) in colorectal cancer (CRC) TIME.DesignClinical significance of YTHDF1 was assessed in tissue microarrays (N=408) and TCGA (N=526) cohorts. YTHDF1 function was determined in syngeneic tumours, intestine-specific Ythdf1 knockin mice, and humanised mice. Single-cell RNA-seq (scRNA-seq) was employed to profile TIME. Methylated RNA immunoprecipitation sequencing (MeRIP-seq), RNA sequencing (RNA-seq) and ribosome sequencing (Ribo-seq) were used to identify YTHDF1 direct targets. Vesicle-like nanoparticles (VNPs)-encapsulated YTHDF1-siRNA was used for YTHDF1 silencing in vivo.ResultsYTHDF1 expression negatively correlated with interferon-γ gene signature in TCGA-CRC. Concordantly, YTHDF1 protein negatively correlated with CD8+ T-cell infiltration in independent tissue microarrays cohorts, implying its role in TIME. Genetic depletion of Ythdf1 augmented antitumour immunity in CT26 (MSS-CRC) and MC38 (MSI-H-CRC) syngeneic tumours, while Ythdf1 knockin promoted an immunosuppressive TIME facilitating CRC in azoxymethane-dextran sulphate-sodium or ApcMin/+ models. scRNA-seq identified reduction of myeloid-derived suppressor cells (MDSCs), concomitant with increased cytotoxic T cells in Ythdf1 knockout tumours. Integrated MeRIP-seq, RNA-seq and Ribo-seq revealed p65/Rela as a YTHDF1 target. YTHDF1 promoted p65 translation to upregulate CXCL1, which increased MDSC migration via CXCL1-CXCR2 axis. Increased MSDCs in turn antagonised functional CD8+ T cells in TIME. Importantly, targeting YTHDF1 by CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) or VNPs-siYTHDF1 boosted anti-PD1 efficacy in MSI-H CRC, and overcame anti-PD1 resistance in MSS CRC.ConclusionYTHDF1 impairs antitumour immunity via an m6A-p65-CXCL1/CXCR2 axis to promote CRC and serves as a therapeutic target in immune checkpoint blockade therapy.</abstract><cop>London</cop><pub>BMJ Publishing Group Ltd and British Society of Gastroenterology</pub><pmid>36717220</pmid><doi>10.1136/gutjnl-2022-328845</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4651-677X</orcidid><orcidid>https://orcid.org/0000-0003-2192-1864</orcidid><orcidid>https://orcid.org/0000-0001-5008-2153</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0017-5749 |
ispartof | Gut, 2023-08, Vol.72 (8), p.1497-1509 |
issn | 0017-5749 1468-3288 1468-3288 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10359538 |
source | PubMed Central |
subjects | Azoxymethane CD8 antigen Colon colon carcinogenesis Colorectal cancer Colorectal carcinoma CRISPR CXCR2 protein Cytotoxicity Data analysis Dextran DNA microarrays Genes Genomes GI cancer Immune checkpoint inhibitors Immunity Immunoprecipitation Immunotherapy Interferon Lymphocytes Lymphocytes T Medical prognosis Metastases Microenvironments N6-methyladenosine Nanoparticles PD-1 protein Protein expression Proteins RNA-binding protein siRNA Statistical analysis Stem cells Suppressor cells Therapeutic targets Tumors γ-Interferon |
title | Targeting m6A reader YTHDF1 augments antitumour immunity and boosts anti-PD-1 efficacy in colorectal cancer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T11%3A52%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Targeting%20m6A%20reader%20YTHDF1%20augments%20antitumour%20immunity%20and%20boosts%20anti-PD-1%20efficacy%20in%20colorectal%20cancer&rft.jtitle=Gut&rft.au=Bao,%20Yi&rft.date=2023-08-01&rft.volume=72&rft.issue=8&rft.spage=1497&rft.epage=1509&rft.pages=1497-1509&rft.issn=0017-5749&rft.eissn=1468-3288&rft_id=info:doi/10.1136/gutjnl-2022-328845&rft_dat=%3Cproquest_pubme%3E2770770463%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2770770463&rft_id=info:pmid/36717220&rfr_iscdi=true |