Small extracellular vesicles promote invadopodia activity in glioblastoma cells in a therapy-dependent manner

Purpose The therapeutic efficacy of radiotherapy/temozolomide treatment for glioblastoma (GBM) is limited by the augmented invasiveness mediated by invadopodia activity of surviving GBM cells. As yet, however the underlying mechanisms remain poorly understood. Due to their ability to transport oncog...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellular oncology (Dordrecht) 2023-08, Vol.46 (4), p.909-931
Hauptverfasser: Whitehead, Clarissa A., Fang, Haoyun, Su, Huaqi, Morokoff, Andrew P., Kaye, Andrew H., Hanssen, Eric, Nowell, Cameron J., Drummond, Katharine J., Greening, David W., Vella, Laura J., Mantamadiotis, Theo, Stylli, Stanley S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 931
container_issue 4
container_start_page 909
container_title Cellular oncology (Dordrecht)
container_volume 46
creator Whitehead, Clarissa A.
Fang, Haoyun
Su, Huaqi
Morokoff, Andrew P.
Kaye, Andrew H.
Hanssen, Eric
Nowell, Cameron J.
Drummond, Katharine J.
Greening, David W.
Vella, Laura J.
Mantamadiotis, Theo
Stylli, Stanley S.
description Purpose The therapeutic efficacy of radiotherapy/temozolomide treatment for glioblastoma (GBM) is limited by the augmented invasiveness mediated by invadopodia activity of surviving GBM cells. As yet, however the underlying mechanisms remain poorly understood. Due to their ability to transport oncogenic material between cells, small extracellular vesicles (sEVs) have emerged as key mediators of tumour progression. We hypothesize that the sustained growth and invasion of cancer cells depends on bidirectional sEV-mediated cell–cell communication. Methods Invadopodia assays and zymography gels were used to examine the invadopodia activity capacity of GBM cells. Differential ultracentrifugation was utilized to isolate sEVs from conditioned medium and proteomic analyses were conducted on both GBM cell lines and their sEVs to determine the cargo present within the sEVs. In addition, the impact of radiotherapy and temozolomide treatment of GBM cells was studied. Results We found that GBM cells form active invadopodia and secrete sEVs containing the matrix metalloproteinase MMP-2. Subsequent proteomic studies revealed the presence of an invadopodia-related protein sEV cargo and that sEVs from highly invadopodia active GBM cells (LN229) increase invadopodia activity in sEV recipient GBM cells. We also found that GBM cells displayed increases in invadopodia activity and sEV secretion post radiation/temozolomide treatment. Together, these data reveal a relationship between invadopodia and sEV composition/secretion/uptake in promoting the invasiveness of GBM cells. Conclusions Our data indicate that sEVs secreted by GBM cells can facilitate tumour invasion by promoting invadopodia activity in recipient cells, which may be enhanced by treatment with radio-chemotherapy. The transfer of pro-invasive cargos may yield important insights into the functional capacity of sEVs in invadopodia.
doi_str_mv 10.1007/s13402-023-00786-w
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10356899</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2839816021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-3471ecf503384fdbe29711f1f68825a1ceec9e3573666e4761687ad5420e68063</originalsourceid><addsrcrecordid>eNp9UctuFDEQtBCIRCE_wAFZ4sJlwI_xY04IRbykSByAs-X19GwceezB9mzYv8fLhuVxwBe7u6vLVSqEnlLykhKiXhXKe8I6wnjXSi27uwfonDFKO95z-fD0ZvoMXZZyS9rpJZVCPkZnXBHaC0HP0fx5tiFg-F6zdRDCGmzGOyjeBSh4yWlOFbCPOzumJY3eYuuq3_m6b028DT5tgi01zRYf1suha3G9gWyXfTfCAnGEWPFsY4T8BD2abChweX9foK_v3n65-tBdf3r_8erNded6JWpTrSi4SRDOdT-NG2CDonSik9SaCUsdgBuAC8WllNCrZksrO4qeEZCaSH6BXh95l3Uzw-iagmyDWbKfbd6bZL35exL9jdmmnaGEC6mHoTG8uGfI6dsKpZrZl4NDGyGtxTA1iCZAKdGgz_-B3qY1x-bPMM0HTSVhtKHYEeVyKiXDdFJDiTkkao6Jmpao-ZmouWtLz_70cVr5lV8D8COgtFHcQv79939ofwDeb64V</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2839816021</pqid></control><display><type>article</type><title>Small extracellular vesicles promote invadopodia activity in glioblastoma cells in a therapy-dependent manner</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Whitehead, Clarissa A. ; Fang, Haoyun ; Su, Huaqi ; Morokoff, Andrew P. ; Kaye, Andrew H. ; Hanssen, Eric ; Nowell, Cameron J. ; Drummond, Katharine J. ; Greening, David W. ; Vella, Laura J. ; Mantamadiotis, Theo ; Stylli, Stanley S.</creator><creatorcontrib>Whitehead, Clarissa A. ; Fang, Haoyun ; Su, Huaqi ; Morokoff, Andrew P. ; Kaye, Andrew H. ; Hanssen, Eric ; Nowell, Cameron J. ; Drummond, Katharine J. ; Greening, David W. ; Vella, Laura J. ; Mantamadiotis, Theo ; Stylli, Stanley S.</creatorcontrib><description>Purpose The therapeutic efficacy of radiotherapy/temozolomide treatment for glioblastoma (GBM) is limited by the augmented invasiveness mediated by invadopodia activity of surviving GBM cells. As yet, however the underlying mechanisms remain poorly understood. Due to their ability to transport oncogenic material between cells, small extracellular vesicles (sEVs) have emerged as key mediators of tumour progression. We hypothesize that the sustained growth and invasion of cancer cells depends on bidirectional sEV-mediated cell–cell communication. Methods Invadopodia assays and zymography gels were used to examine the invadopodia activity capacity of GBM cells. Differential ultracentrifugation was utilized to isolate sEVs from conditioned medium and proteomic analyses were conducted on both GBM cell lines and their sEVs to determine the cargo present within the sEVs. In addition, the impact of radiotherapy and temozolomide treatment of GBM cells was studied. Results We found that GBM cells form active invadopodia and secrete sEVs containing the matrix metalloproteinase MMP-2. Subsequent proteomic studies revealed the presence of an invadopodia-related protein sEV cargo and that sEVs from highly invadopodia active GBM cells (LN229) increase invadopodia activity in sEV recipient GBM cells. We also found that GBM cells displayed increases in invadopodia activity and sEV secretion post radiation/temozolomide treatment. Together, these data reveal a relationship between invadopodia and sEV composition/secretion/uptake in promoting the invasiveness of GBM cells. Conclusions Our data indicate that sEVs secreted by GBM cells can facilitate tumour invasion by promoting invadopodia activity in recipient cells, which may be enhanced by treatment with radio-chemotherapy. The transfer of pro-invasive cargos may yield important insights into the functional capacity of sEVs in invadopodia.</description><identifier>ISSN: 2211-3428</identifier><identifier>ISSN: 2211-3436</identifier><identifier>EISSN: 2211-3436</identifier><identifier>DOI: 10.1007/s13402-023-00786-w</identifier><identifier>PMID: 37014551</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Biomedical and Life Sciences ; Biomedicine ; Cancer Research ; Cell interactions ; Chemotherapy ; Extracellular Vesicles ; Gelatinase A ; Glioblastoma ; Glioblastoma - pathology ; Glioblastoma cells ; Humans ; Invasiveness ; Matrix metalloproteinase ; Metalloproteinase ; Oncology ; Pathology ; Podosomes - metabolism ; Podosomes - pathology ; Proteomics ; Radiation therapy ; Secretion ; Temozolomide ; Temozolomide - pharmacology ; Tumors ; Ultracentrifugation</subject><ispartof>Cellular oncology (Dordrecht), 2023-08, Vol.46 (4), p.909-931</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-3471ecf503384fdbe29711f1f68825a1ceec9e3573666e4761687ad5420e68063</citedby><cites>FETCH-LOGICAL-c475t-3471ecf503384fdbe29711f1f68825a1ceec9e3573666e4761687ad5420e68063</cites><orcidid>0000-0001-6582-1975 ; 0000-0002-5159-3438 ; 0000-0001-5049-8861 ; 0000-0002-4064-1844 ; 0000-0001-7516-485X ; 0000-0003-3971-5380 ; 0000-0003-1584-8138 ; 0000-0002-8662-9840 ; 0000-0002-1869-6291 ; 0000-0002-8152-2120 ; 0000-0002-3505-7387</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13402-023-00786-w$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13402-023-00786-w$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37014551$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Whitehead, Clarissa A.</creatorcontrib><creatorcontrib>Fang, Haoyun</creatorcontrib><creatorcontrib>Su, Huaqi</creatorcontrib><creatorcontrib>Morokoff, Andrew P.</creatorcontrib><creatorcontrib>Kaye, Andrew H.</creatorcontrib><creatorcontrib>Hanssen, Eric</creatorcontrib><creatorcontrib>Nowell, Cameron J.</creatorcontrib><creatorcontrib>Drummond, Katharine J.</creatorcontrib><creatorcontrib>Greening, David W.</creatorcontrib><creatorcontrib>Vella, Laura J.</creatorcontrib><creatorcontrib>Mantamadiotis, Theo</creatorcontrib><creatorcontrib>Stylli, Stanley S.</creatorcontrib><title>Small extracellular vesicles promote invadopodia activity in glioblastoma cells in a therapy-dependent manner</title><title>Cellular oncology (Dordrecht)</title><addtitle>Cell Oncol</addtitle><addtitle>Cell Oncol (Dordr)</addtitle><description>Purpose The therapeutic efficacy of radiotherapy/temozolomide treatment for glioblastoma (GBM) is limited by the augmented invasiveness mediated by invadopodia activity of surviving GBM cells. As yet, however the underlying mechanisms remain poorly understood. Due to their ability to transport oncogenic material between cells, small extracellular vesicles (sEVs) have emerged as key mediators of tumour progression. We hypothesize that the sustained growth and invasion of cancer cells depends on bidirectional sEV-mediated cell–cell communication. Methods Invadopodia assays and zymography gels were used to examine the invadopodia activity capacity of GBM cells. Differential ultracentrifugation was utilized to isolate sEVs from conditioned medium and proteomic analyses were conducted on both GBM cell lines and their sEVs to determine the cargo present within the sEVs. In addition, the impact of radiotherapy and temozolomide treatment of GBM cells was studied. Results We found that GBM cells form active invadopodia and secrete sEVs containing the matrix metalloproteinase MMP-2. Subsequent proteomic studies revealed the presence of an invadopodia-related protein sEV cargo and that sEVs from highly invadopodia active GBM cells (LN229) increase invadopodia activity in sEV recipient GBM cells. We also found that GBM cells displayed increases in invadopodia activity and sEV secretion post radiation/temozolomide treatment. Together, these data reveal a relationship between invadopodia and sEV composition/secretion/uptake in promoting the invasiveness of GBM cells. Conclusions Our data indicate that sEVs secreted by GBM cells can facilitate tumour invasion by promoting invadopodia activity in recipient cells, which may be enhanced by treatment with radio-chemotherapy. The transfer of pro-invasive cargos may yield important insights into the functional capacity of sEVs in invadopodia.</description><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cancer Research</subject><subject>Cell interactions</subject><subject>Chemotherapy</subject><subject>Extracellular Vesicles</subject><subject>Gelatinase A</subject><subject>Glioblastoma</subject><subject>Glioblastoma - pathology</subject><subject>Glioblastoma cells</subject><subject>Humans</subject><subject>Invasiveness</subject><subject>Matrix metalloproteinase</subject><subject>Metalloproteinase</subject><subject>Oncology</subject><subject>Pathology</subject><subject>Podosomes - metabolism</subject><subject>Podosomes - pathology</subject><subject>Proteomics</subject><subject>Radiation therapy</subject><subject>Secretion</subject><subject>Temozolomide</subject><subject>Temozolomide - pharmacology</subject><subject>Tumors</subject><subject>Ultracentrifugation</subject><issn>2211-3428</issn><issn>2211-3436</issn><issn>2211-3436</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNp9UctuFDEQtBCIRCE_wAFZ4sJlwI_xY04IRbykSByAs-X19GwceezB9mzYv8fLhuVxwBe7u6vLVSqEnlLykhKiXhXKe8I6wnjXSi27uwfonDFKO95z-fD0ZvoMXZZyS9rpJZVCPkZnXBHaC0HP0fx5tiFg-F6zdRDCGmzGOyjeBSh4yWlOFbCPOzumJY3eYuuq3_m6b028DT5tgi01zRYf1suha3G9gWyXfTfCAnGEWPFsY4T8BD2abChweX9foK_v3n65-tBdf3r_8erNded6JWpTrSi4SRDOdT-NG2CDonSik9SaCUsdgBuAC8WllNCrZksrO4qeEZCaSH6BXh95l3Uzw-iagmyDWbKfbd6bZL35exL9jdmmnaGEC6mHoTG8uGfI6dsKpZrZl4NDGyGtxTA1iCZAKdGgz_-B3qY1x-bPMM0HTSVhtKHYEeVyKiXDdFJDiTkkao6Jmpao-ZmouWtLz_70cVr5lV8D8COgtFHcQv79939ofwDeb64V</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Whitehead, Clarissa A.</creator><creator>Fang, Haoyun</creator><creator>Su, Huaqi</creator><creator>Morokoff, Andrew P.</creator><creator>Kaye, Andrew H.</creator><creator>Hanssen, Eric</creator><creator>Nowell, Cameron J.</creator><creator>Drummond, Katharine J.</creator><creator>Greening, David W.</creator><creator>Vella, Laura J.</creator><creator>Mantamadiotis, Theo</creator><creator>Stylli, Stanley S.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6582-1975</orcidid><orcidid>https://orcid.org/0000-0002-5159-3438</orcidid><orcidid>https://orcid.org/0000-0001-5049-8861</orcidid><orcidid>https://orcid.org/0000-0002-4064-1844</orcidid><orcidid>https://orcid.org/0000-0001-7516-485X</orcidid><orcidid>https://orcid.org/0000-0003-3971-5380</orcidid><orcidid>https://orcid.org/0000-0003-1584-8138</orcidid><orcidid>https://orcid.org/0000-0002-8662-9840</orcidid><orcidid>https://orcid.org/0000-0002-1869-6291</orcidid><orcidid>https://orcid.org/0000-0002-8152-2120</orcidid><orcidid>https://orcid.org/0000-0002-3505-7387</orcidid></search><sort><creationdate>20230801</creationdate><title>Small extracellular vesicles promote invadopodia activity in glioblastoma cells in a therapy-dependent manner</title><author>Whitehead, Clarissa A. ; Fang, Haoyun ; Su, Huaqi ; Morokoff, Andrew P. ; Kaye, Andrew H. ; Hanssen, Eric ; Nowell, Cameron J. ; Drummond, Katharine J. ; Greening, David W. ; Vella, Laura J. ; Mantamadiotis, Theo ; Stylli, Stanley S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-3471ecf503384fdbe29711f1f68825a1ceec9e3573666e4761687ad5420e68063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cancer Research</topic><topic>Cell interactions</topic><topic>Chemotherapy</topic><topic>Extracellular Vesicles</topic><topic>Gelatinase A</topic><topic>Glioblastoma</topic><topic>Glioblastoma - pathology</topic><topic>Glioblastoma cells</topic><topic>Humans</topic><topic>Invasiveness</topic><topic>Matrix metalloproteinase</topic><topic>Metalloproteinase</topic><topic>Oncology</topic><topic>Pathology</topic><topic>Podosomes - metabolism</topic><topic>Podosomes - pathology</topic><topic>Proteomics</topic><topic>Radiation therapy</topic><topic>Secretion</topic><topic>Temozolomide</topic><topic>Temozolomide - pharmacology</topic><topic>Tumors</topic><topic>Ultracentrifugation</topic><toplevel>online_resources</toplevel><creatorcontrib>Whitehead, Clarissa A.</creatorcontrib><creatorcontrib>Fang, Haoyun</creatorcontrib><creatorcontrib>Su, Huaqi</creatorcontrib><creatorcontrib>Morokoff, Andrew P.</creatorcontrib><creatorcontrib>Kaye, Andrew H.</creatorcontrib><creatorcontrib>Hanssen, Eric</creatorcontrib><creatorcontrib>Nowell, Cameron J.</creatorcontrib><creatorcontrib>Drummond, Katharine J.</creatorcontrib><creatorcontrib>Greening, David W.</creatorcontrib><creatorcontrib>Vella, Laura J.</creatorcontrib><creatorcontrib>Mantamadiotis, Theo</creatorcontrib><creatorcontrib>Stylli, Stanley S.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cellular oncology (Dordrecht)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Whitehead, Clarissa A.</au><au>Fang, Haoyun</au><au>Su, Huaqi</au><au>Morokoff, Andrew P.</au><au>Kaye, Andrew H.</au><au>Hanssen, Eric</au><au>Nowell, Cameron J.</au><au>Drummond, Katharine J.</au><au>Greening, David W.</au><au>Vella, Laura J.</au><au>Mantamadiotis, Theo</au><au>Stylli, Stanley S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Small extracellular vesicles promote invadopodia activity in glioblastoma cells in a therapy-dependent manner</atitle><jtitle>Cellular oncology (Dordrecht)</jtitle><stitle>Cell Oncol</stitle><addtitle>Cell Oncol (Dordr)</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>46</volume><issue>4</issue><spage>909</spage><epage>931</epage><pages>909-931</pages><issn>2211-3428</issn><issn>2211-3436</issn><eissn>2211-3436</eissn><abstract>Purpose The therapeutic efficacy of radiotherapy/temozolomide treatment for glioblastoma (GBM) is limited by the augmented invasiveness mediated by invadopodia activity of surviving GBM cells. As yet, however the underlying mechanisms remain poorly understood. Due to their ability to transport oncogenic material between cells, small extracellular vesicles (sEVs) have emerged as key mediators of tumour progression. We hypothesize that the sustained growth and invasion of cancer cells depends on bidirectional sEV-mediated cell–cell communication. Methods Invadopodia assays and zymography gels were used to examine the invadopodia activity capacity of GBM cells. Differential ultracentrifugation was utilized to isolate sEVs from conditioned medium and proteomic analyses were conducted on both GBM cell lines and their sEVs to determine the cargo present within the sEVs. In addition, the impact of radiotherapy and temozolomide treatment of GBM cells was studied. Results We found that GBM cells form active invadopodia and secrete sEVs containing the matrix metalloproteinase MMP-2. Subsequent proteomic studies revealed the presence of an invadopodia-related protein sEV cargo and that sEVs from highly invadopodia active GBM cells (LN229) increase invadopodia activity in sEV recipient GBM cells. We also found that GBM cells displayed increases in invadopodia activity and sEV secretion post radiation/temozolomide treatment. Together, these data reveal a relationship between invadopodia and sEV composition/secretion/uptake in promoting the invasiveness of GBM cells. Conclusions Our data indicate that sEVs secreted by GBM cells can facilitate tumour invasion by promoting invadopodia activity in recipient cells, which may be enhanced by treatment with radio-chemotherapy. The transfer of pro-invasive cargos may yield important insights into the functional capacity of sEVs in invadopodia.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>37014551</pmid><doi>10.1007/s13402-023-00786-w</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0001-6582-1975</orcidid><orcidid>https://orcid.org/0000-0002-5159-3438</orcidid><orcidid>https://orcid.org/0000-0001-5049-8861</orcidid><orcidid>https://orcid.org/0000-0002-4064-1844</orcidid><orcidid>https://orcid.org/0000-0001-7516-485X</orcidid><orcidid>https://orcid.org/0000-0003-3971-5380</orcidid><orcidid>https://orcid.org/0000-0003-1584-8138</orcidid><orcidid>https://orcid.org/0000-0002-8662-9840</orcidid><orcidid>https://orcid.org/0000-0002-1869-6291</orcidid><orcidid>https://orcid.org/0000-0002-8152-2120</orcidid><orcidid>https://orcid.org/0000-0002-3505-7387</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2211-3428
ispartof Cellular oncology (Dordrecht), 2023-08, Vol.46 (4), p.909-931
issn 2211-3428
2211-3436
2211-3436
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10356899
source MEDLINE; SpringerNature Journals
subjects Biomedical and Life Sciences
Biomedicine
Cancer Research
Cell interactions
Chemotherapy
Extracellular Vesicles
Gelatinase A
Glioblastoma
Glioblastoma - pathology
Glioblastoma cells
Humans
Invasiveness
Matrix metalloproteinase
Metalloproteinase
Oncology
Pathology
Podosomes - metabolism
Podosomes - pathology
Proteomics
Radiation therapy
Secretion
Temozolomide
Temozolomide - pharmacology
Tumors
Ultracentrifugation
title Small extracellular vesicles promote invadopodia activity in glioblastoma cells in a therapy-dependent manner
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T21%3A16%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Small%20extracellular%20vesicles%20promote%20invadopodia%20activity%20in%20glioblastoma%20cells%20in%20a%20therapy-dependent%20manner&rft.jtitle=Cellular%20oncology%20(Dordrecht)&rft.au=Whitehead,%20Clarissa%20A.&rft.date=2023-08-01&rft.volume=46&rft.issue=4&rft.spage=909&rft.epage=931&rft.pages=909-931&rft.issn=2211-3428&rft.eissn=2211-3436&rft_id=info:doi/10.1007/s13402-023-00786-w&rft_dat=%3Cproquest_pubme%3E2839816021%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2839816021&rft_id=info:pmid/37014551&rfr_iscdi=true