Intrathymic AAV delivery results in therapeutic site-specific integration at TCR loci in mice

•Intrathymic delivery of AAV results in vector integration within TCR genes at RAG-induced DNA breaks produced during V(D)J recombination.•This “targeting” approach opens therapeutic avenues for long-term AAV gene transfer in dividing cells without any toxic conditioning. [Display omitted] Adeno-ass...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Blood 2023-05, Vol.141 (19), p.2316-2329
Hauptverfasser: Calabria, Andrea, Cipriani, Carlo, Spinozzi, Giulio, Rudilosso, Laura, Esposito, Simona, Benedicenti, Fabrizio, Albertini, Alessandra, Pouzolles, Marie, Luoni, Mirko, Giannelli, Serena, Broccoli, Vania, Guilbaud, Mickael, Adjali, Oumeya, Taylor, Naomi, Zimmermann, Valérie S., Montini, Eugenio, Cesana, Daniela
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2329
container_issue 19
container_start_page 2316
container_title Blood
container_volume 141
creator Calabria, Andrea
Cipriani, Carlo
Spinozzi, Giulio
Rudilosso, Laura
Esposito, Simona
Benedicenti, Fabrizio
Albertini, Alessandra
Pouzolles, Marie
Luoni, Mirko
Giannelli, Serena
Broccoli, Vania
Guilbaud, Mickael
Adjali, Oumeya
Taylor, Naomi
Zimmermann, Valérie S.
Montini, Eugenio
Cesana, Daniela
description •Intrathymic delivery of AAV results in vector integration within TCR genes at RAG-induced DNA breaks produced during V(D)J recombination.•This “targeting” approach opens therapeutic avenues for long-term AAV gene transfer in dividing cells without any toxic conditioning. [Display omitted] Adeno-associated virus (AAV) vectors have been successfully exploited in gene therapy applications for the treatment of several genetic disorders. AAV is considered an episomal vector, but it has been shown to integrate within the host cell genome after the generation of double-strand DNA breaks or nicks. Although AAV integration raises some safety concerns, it can also provide therapeutic benefit; the direct intrathymic injection of an AAV harboring a therapeutic transgene results in integration in T-cell progenitors and long-term T-cell immunity. To assess the mechanisms of AAV integration, we retrieved and analyzed hundreds of AAV integration sites from lymph node-derived mature T cells and compared these with liver and brain tissue from treated mice. Notably, we found that although AAV integrations in the liver and brain were distributed across the entire mouse genome, >90% of the integrations in T cells were clustered within the T-cell receptor α, β, and γ genes. More precisely, the insertion mapped to DNA breaks created by the enzymatic activity of recombination activating genes (RAGs) during variable, diversity, and joining recombination. Our data indicate that RAG activity during T-cell receptor maturation induces a site-specific integration of AAV genomes and opens new therapeutic avenues for achieving long-term AAV-mediated gene transfer in dividing cells. In a novel gene therapy approach, Calabria et al delivered adeno-associated virus vectors (AAVs) by direct injection into mouse thymus in vivo and demonstrate that over 90% of the transgene integration sites were within T-cell receptor (TCR) gene loci. Integration occurs through exploitation of TCR gene rearrangement during variable, diversity, and joining segment rearrangement through the activity of recombination activation genes. Whether this can be translated into human gene therapy remains to be established.
doi_str_mv 10.1182/blood.2022017378
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10356579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006497123003993</els_id><sourcerecordid>2777009585</sourcerecordid><originalsourceid>FETCH-LOGICAL-e352t-8b475afdcb472fb12f032a9afef6e9442c9e057120baa28ca31dd8588fbbbe043</originalsourceid><addsrcrecordid>eNpdkc1v3CAQxVHUKtmkvedU-dgenA5gDM6lWq2aJtJKkaKktwphPM5Sec0G8Er735fNpunHaQT83pthHiHnFC4oVexzO3jfXTBgDKjkUh2RGRVMlQAM3pAZANRl1Uh6Qk5j_AlAK87EMTnhtWxAgJiRHzdjCiatdmtni_n8e9Hh4LYYdkXAOA0pFm4s0gqD2eCUMhNdwjJu0Lo-n9yY8DHrnR8Lk4r7xV0xeOv2omyI78jb3gwR37_UM_Jw9fV-cV0ub7_dLObLErlgqVRtJYXpO5sr61vKeuDMNKbHvsamqphtEISkDFpjmLKG065TQqm-bVuEip-RLwffzdSusbO4_9SgN8GtTdhpb5z-92V0K_3ot5oCF7WQTXb4dHBY_ae7ni_1_g6qvHHJ6i3N7MeXbsE_TRiTXrtocRjMiH6KmkkpARqhREY__D3Yq_PvADJweQAwr2frMOhoHY4WOxfQJt15l4fU-7T1c9r6T9r8F_5InY4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2777009585</pqid></control><display><type>article</type><title>Intrathymic AAV delivery results in therapeutic site-specific integration at TCR loci in mice</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Calabria, Andrea ; Cipriani, Carlo ; Spinozzi, Giulio ; Rudilosso, Laura ; Esposito, Simona ; Benedicenti, Fabrizio ; Albertini, Alessandra ; Pouzolles, Marie ; Luoni, Mirko ; Giannelli, Serena ; Broccoli, Vania ; Guilbaud, Mickael ; Adjali, Oumeya ; Taylor, Naomi ; Zimmermann, Valérie S. ; Montini, Eugenio ; Cesana, Daniela</creator><creatorcontrib>Calabria, Andrea ; Cipriani, Carlo ; Spinozzi, Giulio ; Rudilosso, Laura ; Esposito, Simona ; Benedicenti, Fabrizio ; Albertini, Alessandra ; Pouzolles, Marie ; Luoni, Mirko ; Giannelli, Serena ; Broccoli, Vania ; Guilbaud, Mickael ; Adjali, Oumeya ; Taylor, Naomi ; Zimmermann, Valérie S. ; Montini, Eugenio ; Cesana, Daniela</creatorcontrib><description>•Intrathymic delivery of AAV results in vector integration within TCR genes at RAG-induced DNA breaks produced during V(D)J recombination.•This “targeting” approach opens therapeutic avenues for long-term AAV gene transfer in dividing cells without any toxic conditioning. [Display omitted] Adeno-associated virus (AAV) vectors have been successfully exploited in gene therapy applications for the treatment of several genetic disorders. AAV is considered an episomal vector, but it has been shown to integrate within the host cell genome after the generation of double-strand DNA breaks or nicks. Although AAV integration raises some safety concerns, it can also provide therapeutic benefit; the direct intrathymic injection of an AAV harboring a therapeutic transgene results in integration in T-cell progenitors and long-term T-cell immunity. To assess the mechanisms of AAV integration, we retrieved and analyzed hundreds of AAV integration sites from lymph node-derived mature T cells and compared these with liver and brain tissue from treated mice. Notably, we found that although AAV integrations in the liver and brain were distributed across the entire mouse genome, &gt;90% of the integrations in T cells were clustered within the T-cell receptor α, β, and γ genes. More precisely, the insertion mapped to DNA breaks created by the enzymatic activity of recombination activating genes (RAGs) during variable, diversity, and joining recombination. Our data indicate that RAG activity during T-cell receptor maturation induces a site-specific integration of AAV genomes and opens new therapeutic avenues for achieving long-term AAV-mediated gene transfer in dividing cells. In a novel gene therapy approach, Calabria et al delivered adeno-associated virus vectors (AAVs) by direct injection into mouse thymus in vivo and demonstrate that over 90% of the transgene integration sites were within T-cell receptor (TCR) gene loci. Integration occurs through exploitation of TCR gene rearrangement during variable, diversity, and joining segment rearrangement through the activity of recombination activation genes. Whether this can be translated into human gene therapy remains to be established.</description><identifier>ISSN: 0006-4971</identifier><identifier>EISSN: 1528-0020</identifier><identifier>DOI: 10.1182/blood.2022017378</identifier><identifier>PMID: 36790505</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Biochemistry, Molecular Biology ; Biotechnology ; Dependovirus ; Dependovirus - genetics ; Gene Therapy ; Genetic Therapy ; Genetic Therapy - methods ; Genetic Vectors ; Genetic Vectors - genetics ; Genomics ; Life Sciences ; Mice ; Plasmids ; Receptors, Antigen, T-Cell ; Receptors, Antigen, T-Cell - genetics ; Transgenes ; Virus Integration</subject><ispartof>Blood, 2023-05, Vol.141 (19), p.2316-2329</ispartof><rights>2023 The American Society of Hematology</rights><rights>2023 by The American Society of Hematology. Licensed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0), permitting only noncommercial, nonderivative use with attribution. All other rights reserved.</rights><rights>Attribution - NonCommercial - NoDerivatives</rights><rights>2023 by The American Society of Hematology. Licensed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0), permitting only noncommercial, nonderivative use with attribution. All other rights reserved. 2023 The American Society of Hematology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6787-7793 ; 0000-0002-5006-1827 ; 0000-0001-9693-127X ; 0000-0001-5386-0184 ; 0000-0001-6366-4224 ; 0000-0003-3515-3384 ; 0000-0002-4525-3015 ; 0000-0001-6853-7013 ; 0000-0003-1594-5835 ; 0000-0003-1771-6067 ; 0000-0002-2459-4558 ; 0000-0001-8919-0071</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36790505$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04118726$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Calabria, Andrea</creatorcontrib><creatorcontrib>Cipriani, Carlo</creatorcontrib><creatorcontrib>Spinozzi, Giulio</creatorcontrib><creatorcontrib>Rudilosso, Laura</creatorcontrib><creatorcontrib>Esposito, Simona</creatorcontrib><creatorcontrib>Benedicenti, Fabrizio</creatorcontrib><creatorcontrib>Albertini, Alessandra</creatorcontrib><creatorcontrib>Pouzolles, Marie</creatorcontrib><creatorcontrib>Luoni, Mirko</creatorcontrib><creatorcontrib>Giannelli, Serena</creatorcontrib><creatorcontrib>Broccoli, Vania</creatorcontrib><creatorcontrib>Guilbaud, Mickael</creatorcontrib><creatorcontrib>Adjali, Oumeya</creatorcontrib><creatorcontrib>Taylor, Naomi</creatorcontrib><creatorcontrib>Zimmermann, Valérie S.</creatorcontrib><creatorcontrib>Montini, Eugenio</creatorcontrib><creatorcontrib>Cesana, Daniela</creatorcontrib><title>Intrathymic AAV delivery results in therapeutic site-specific integration at TCR loci in mice</title><title>Blood</title><addtitle>Blood</addtitle><description>•Intrathymic delivery of AAV results in vector integration within TCR genes at RAG-induced DNA breaks produced during V(D)J recombination.•This “targeting” approach opens therapeutic avenues for long-term AAV gene transfer in dividing cells without any toxic conditioning. [Display omitted] Adeno-associated virus (AAV) vectors have been successfully exploited in gene therapy applications for the treatment of several genetic disorders. AAV is considered an episomal vector, but it has been shown to integrate within the host cell genome after the generation of double-strand DNA breaks or nicks. Although AAV integration raises some safety concerns, it can also provide therapeutic benefit; the direct intrathymic injection of an AAV harboring a therapeutic transgene results in integration in T-cell progenitors and long-term T-cell immunity. To assess the mechanisms of AAV integration, we retrieved and analyzed hundreds of AAV integration sites from lymph node-derived mature T cells and compared these with liver and brain tissue from treated mice. Notably, we found that although AAV integrations in the liver and brain were distributed across the entire mouse genome, &gt;90% of the integrations in T cells were clustered within the T-cell receptor α, β, and γ genes. More precisely, the insertion mapped to DNA breaks created by the enzymatic activity of recombination activating genes (RAGs) during variable, diversity, and joining recombination. Our data indicate that RAG activity during T-cell receptor maturation induces a site-specific integration of AAV genomes and opens new therapeutic avenues for achieving long-term AAV-mediated gene transfer in dividing cells. In a novel gene therapy approach, Calabria et al delivered adeno-associated virus vectors (AAVs) by direct injection into mouse thymus in vivo and demonstrate that over 90% of the transgene integration sites were within T-cell receptor (TCR) gene loci. Integration occurs through exploitation of TCR gene rearrangement during variable, diversity, and joining segment rearrangement through the activity of recombination activation genes. Whether this can be translated into human gene therapy remains to be established.</description><subject>Animals</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biotechnology</subject><subject>Dependovirus</subject><subject>Dependovirus - genetics</subject><subject>Gene Therapy</subject><subject>Genetic Therapy</subject><subject>Genetic Therapy - methods</subject><subject>Genetic Vectors</subject><subject>Genetic Vectors - genetics</subject><subject>Genomics</subject><subject>Life Sciences</subject><subject>Mice</subject><subject>Plasmids</subject><subject>Receptors, Antigen, T-Cell</subject><subject>Receptors, Antigen, T-Cell - genetics</subject><subject>Transgenes</subject><subject>Virus Integration</subject><issn>0006-4971</issn><issn>1528-0020</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1v3CAQxVHUKtmkvedU-dgenA5gDM6lWq2aJtJKkaKktwphPM5Sec0G8Er735fNpunHaQT83pthHiHnFC4oVexzO3jfXTBgDKjkUh2RGRVMlQAM3pAZANRl1Uh6Qk5j_AlAK87EMTnhtWxAgJiRHzdjCiatdmtni_n8e9Hh4LYYdkXAOA0pFm4s0gqD2eCUMhNdwjJu0Lo-n9yY8DHrnR8Lk4r7xV0xeOv2omyI78jb3gwR37_UM_Jw9fV-cV0ub7_dLObLErlgqVRtJYXpO5sr61vKeuDMNKbHvsamqphtEISkDFpjmLKG065TQqm-bVuEip-RLwffzdSusbO4_9SgN8GtTdhpb5z-92V0K_3ot5oCF7WQTXb4dHBY_ae7ni_1_g6qvHHJ6i3N7MeXbsE_TRiTXrtocRjMiH6KmkkpARqhREY__D3Yq_PvADJweQAwr2frMOhoHY4WOxfQJt15l4fU-7T1c9r6T9r8F_5InY4</recordid><startdate>20230511</startdate><enddate>20230511</enddate><creator>Calabria, Andrea</creator><creator>Cipriani, Carlo</creator><creator>Spinozzi, Giulio</creator><creator>Rudilosso, Laura</creator><creator>Esposito, Simona</creator><creator>Benedicenti, Fabrizio</creator><creator>Albertini, Alessandra</creator><creator>Pouzolles, Marie</creator><creator>Luoni, Mirko</creator><creator>Giannelli, Serena</creator><creator>Broccoli, Vania</creator><creator>Guilbaud, Mickael</creator><creator>Adjali, Oumeya</creator><creator>Taylor, Naomi</creator><creator>Zimmermann, Valérie S.</creator><creator>Montini, Eugenio</creator><creator>Cesana, Daniela</creator><general>Elsevier Inc</general><general>American Society of Hematology</general><general>The American Society of Hematology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6787-7793</orcidid><orcidid>https://orcid.org/0000-0002-5006-1827</orcidid><orcidid>https://orcid.org/0000-0001-9693-127X</orcidid><orcidid>https://orcid.org/0000-0001-5386-0184</orcidid><orcidid>https://orcid.org/0000-0001-6366-4224</orcidid><orcidid>https://orcid.org/0000-0003-3515-3384</orcidid><orcidid>https://orcid.org/0000-0002-4525-3015</orcidid><orcidid>https://orcid.org/0000-0001-6853-7013</orcidid><orcidid>https://orcid.org/0000-0003-1594-5835</orcidid><orcidid>https://orcid.org/0000-0003-1771-6067</orcidid><orcidid>https://orcid.org/0000-0002-2459-4558</orcidid><orcidid>https://orcid.org/0000-0001-8919-0071</orcidid></search><sort><creationdate>20230511</creationdate><title>Intrathymic AAV delivery results in therapeutic site-specific integration at TCR loci in mice</title><author>Calabria, Andrea ; Cipriani, Carlo ; Spinozzi, Giulio ; Rudilosso, Laura ; Esposito, Simona ; Benedicenti, Fabrizio ; Albertini, Alessandra ; Pouzolles, Marie ; Luoni, Mirko ; Giannelli, Serena ; Broccoli, Vania ; Guilbaud, Mickael ; Adjali, Oumeya ; Taylor, Naomi ; Zimmermann, Valérie S. ; Montini, Eugenio ; Cesana, Daniela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e352t-8b475afdcb472fb12f032a9afef6e9442c9e057120baa28ca31dd8588fbbbe043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biotechnology</topic><topic>Dependovirus</topic><topic>Dependovirus - genetics</topic><topic>Gene Therapy</topic><topic>Genetic Therapy</topic><topic>Genetic Therapy - methods</topic><topic>Genetic Vectors</topic><topic>Genetic Vectors - genetics</topic><topic>Genomics</topic><topic>Life Sciences</topic><topic>Mice</topic><topic>Plasmids</topic><topic>Receptors, Antigen, T-Cell</topic><topic>Receptors, Antigen, T-Cell - genetics</topic><topic>Transgenes</topic><topic>Virus Integration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Calabria, Andrea</creatorcontrib><creatorcontrib>Cipriani, Carlo</creatorcontrib><creatorcontrib>Spinozzi, Giulio</creatorcontrib><creatorcontrib>Rudilosso, Laura</creatorcontrib><creatorcontrib>Esposito, Simona</creatorcontrib><creatorcontrib>Benedicenti, Fabrizio</creatorcontrib><creatorcontrib>Albertini, Alessandra</creatorcontrib><creatorcontrib>Pouzolles, Marie</creatorcontrib><creatorcontrib>Luoni, Mirko</creatorcontrib><creatorcontrib>Giannelli, Serena</creatorcontrib><creatorcontrib>Broccoli, Vania</creatorcontrib><creatorcontrib>Guilbaud, Mickael</creatorcontrib><creatorcontrib>Adjali, Oumeya</creatorcontrib><creatorcontrib>Taylor, Naomi</creatorcontrib><creatorcontrib>Zimmermann, Valérie S.</creatorcontrib><creatorcontrib>Montini, Eugenio</creatorcontrib><creatorcontrib>Cesana, Daniela</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Blood</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Calabria, Andrea</au><au>Cipriani, Carlo</au><au>Spinozzi, Giulio</au><au>Rudilosso, Laura</au><au>Esposito, Simona</au><au>Benedicenti, Fabrizio</au><au>Albertini, Alessandra</au><au>Pouzolles, Marie</au><au>Luoni, Mirko</au><au>Giannelli, Serena</au><au>Broccoli, Vania</au><au>Guilbaud, Mickael</au><au>Adjali, Oumeya</au><au>Taylor, Naomi</au><au>Zimmermann, Valérie S.</au><au>Montini, Eugenio</au><au>Cesana, Daniela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intrathymic AAV delivery results in therapeutic site-specific integration at TCR loci in mice</atitle><jtitle>Blood</jtitle><addtitle>Blood</addtitle><date>2023-05-11</date><risdate>2023</risdate><volume>141</volume><issue>19</issue><spage>2316</spage><epage>2329</epage><pages>2316-2329</pages><issn>0006-4971</issn><eissn>1528-0020</eissn><abstract>•Intrathymic delivery of AAV results in vector integration within TCR genes at RAG-induced DNA breaks produced during V(D)J recombination.•This “targeting” approach opens therapeutic avenues for long-term AAV gene transfer in dividing cells without any toxic conditioning. [Display omitted] Adeno-associated virus (AAV) vectors have been successfully exploited in gene therapy applications for the treatment of several genetic disorders. AAV is considered an episomal vector, but it has been shown to integrate within the host cell genome after the generation of double-strand DNA breaks or nicks. Although AAV integration raises some safety concerns, it can also provide therapeutic benefit; the direct intrathymic injection of an AAV harboring a therapeutic transgene results in integration in T-cell progenitors and long-term T-cell immunity. To assess the mechanisms of AAV integration, we retrieved and analyzed hundreds of AAV integration sites from lymph node-derived mature T cells and compared these with liver and brain tissue from treated mice. Notably, we found that although AAV integrations in the liver and brain were distributed across the entire mouse genome, &gt;90% of the integrations in T cells were clustered within the T-cell receptor α, β, and γ genes. More precisely, the insertion mapped to DNA breaks created by the enzymatic activity of recombination activating genes (RAGs) during variable, diversity, and joining recombination. Our data indicate that RAG activity during T-cell receptor maturation induces a site-specific integration of AAV genomes and opens new therapeutic avenues for achieving long-term AAV-mediated gene transfer in dividing cells. In a novel gene therapy approach, Calabria et al delivered adeno-associated virus vectors (AAVs) by direct injection into mouse thymus in vivo and demonstrate that over 90% of the transgene integration sites were within T-cell receptor (TCR) gene loci. Integration occurs through exploitation of TCR gene rearrangement during variable, diversity, and joining segment rearrangement through the activity of recombination activation genes. Whether this can be translated into human gene therapy remains to be established.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>36790505</pmid><doi>10.1182/blood.2022017378</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6787-7793</orcidid><orcidid>https://orcid.org/0000-0002-5006-1827</orcidid><orcidid>https://orcid.org/0000-0001-9693-127X</orcidid><orcidid>https://orcid.org/0000-0001-5386-0184</orcidid><orcidid>https://orcid.org/0000-0001-6366-4224</orcidid><orcidid>https://orcid.org/0000-0003-3515-3384</orcidid><orcidid>https://orcid.org/0000-0002-4525-3015</orcidid><orcidid>https://orcid.org/0000-0001-6853-7013</orcidid><orcidid>https://orcid.org/0000-0003-1594-5835</orcidid><orcidid>https://orcid.org/0000-0003-1771-6067</orcidid><orcidid>https://orcid.org/0000-0002-2459-4558</orcidid><orcidid>https://orcid.org/0000-0001-8919-0071</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-4971
ispartof Blood, 2023-05, Vol.141 (19), p.2316-2329
issn 0006-4971
1528-0020
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10356579
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Animals
Biochemistry, Molecular Biology
Biotechnology
Dependovirus
Dependovirus - genetics
Gene Therapy
Genetic Therapy
Genetic Therapy - methods
Genetic Vectors
Genetic Vectors - genetics
Genomics
Life Sciences
Mice
Plasmids
Receptors, Antigen, T-Cell
Receptors, Antigen, T-Cell - genetics
Transgenes
Virus Integration
title Intrathymic AAV delivery results in therapeutic site-specific integration at TCR loci in mice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T06%3A51%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intrathymic%20AAV%20delivery%20results%20in%20therapeutic%20site-specific%20integration%20at%20TCR%20loci%20in%20mice&rft.jtitle=Blood&rft.au=Calabria,%20Andrea&rft.date=2023-05-11&rft.volume=141&rft.issue=19&rft.spage=2316&rft.epage=2329&rft.pages=2316-2329&rft.issn=0006-4971&rft.eissn=1528-0020&rft_id=info:doi/10.1182/blood.2022017378&rft_dat=%3Cproquest_pubme%3E2777009585%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2777009585&rft_id=info:pmid/36790505&rft_els_id=S0006497123003993&rfr_iscdi=true