Deep Hybrid Multimodal Biometric Recognition System Based on Features-Level Deep Fusion of Five Biometric Traits

The need for information security and the adoption of the relevant regulations is becoming an overwhelming demand worldwide. As an efficient solution, hybrid multimodal biometric systems utilize fusion to combine multiple biometric traits and sources with improving recognition accuracy, higher secur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational intelligence and neuroscience 2023, Vol.2023 (1), p.6443786-6443786
Hauptverfasser: Safavipour, Mohammad Hassan, Doostari, Mohammad Ali, Sadjedi, Hamed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6443786
container_issue 1
container_start_page 6443786
container_title Computational intelligence and neuroscience
container_volume 2023
creator Safavipour, Mohammad Hassan
Doostari, Mohammad Ali
Sadjedi, Hamed
description The need for information security and the adoption of the relevant regulations is becoming an overwhelming demand worldwide. As an efficient solution, hybrid multimodal biometric systems utilize fusion to combine multiple biometric traits and sources with improving recognition accuracy, higher security assurance, and to cope with the limitations of the uni-biometric system. In this paper, three strategies for dealing with a feature-level deep fusion of five biometric traits (face, both irises, and two fingerprints) derived from three sources of evidence are proposed and compared. In the first two proposed methodologies, each feature vector is mapped from the feature space into the reproducing kernel Hilbert space (RKHS) separately by selecting the appropriate reproducing kernel. In this higher space, where the result is the conversion of nonlinear relations to linear ones, dimensionality reduction algorithms (KPCA, KLDA) and quaternion-based algorithms (KQPCA, KQPCA) are used for the fusion of the feature vectors. In the third methodology, the fusion of feature spaces based on deep learning is administered by combining feature vectors in in-depth and fully connected layers. The experimental results on 6 databases in the proposed hybrid multibiometric system clearly show the multimodal template obtained from the deep fusion of feature spaces; while being secure against spoof attacks and making the system robust, they can use the low dimensionality of the fused vector to increase the accuracy of a hybrid multimodal biometric system to 100%, showing a significant improvement compared with uni-biometric and other multimodal systems.
doi_str_mv 10.1155/2023/6443786
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10353898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2840245471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2946-626b7634d3df3700b551c196cd03559616435ec43dd4b1820cc1ce7b70c2826c3</originalsourceid><addsrcrecordid>eNp9kc1LHDEYh4NY_Kq3nkvAi1Cn5jszp6K2WwsrhVbPIZO8q5GZyTaZ2bL_vbPuutgePL15ycOT_Pgh9IGSz5RKec4I4-dKCK5LtYMOqCp1IZnmu9uzkvvoMOdHQqSWhO2hfa6FqhTTB2j-FWCOr5d1Ch7fDE0f2uhtgy9DbKFPweFf4OJ9F_oQO_x7mXto8aXN4PG4T8D2Q4JcTGEBDX52TYa8QuMMT8ICXolukw19fo_ezWyT4Xgzj9Dd5Nvt1XUx_fn9x9XFtHCsEqpQTNVaceG5n3FNSC0ldbRSzhMuZaWoElyCE9x7UdOSEeeoA11r4ljJlONH6MvaOx_qFryDrk-2MfMUWpuWJtpg_r3pwoO5jwtDxwd4WZWj4XRjSPHPALk3bcgOmsZ2EIdsWCkIE1JoOqIn_6GPcUjdmO-ZKiWVnI3U2ZpyKeacYLb9DSVm1aVZdWk2XY74x9cJtvBLeSPwaQ08hM7bv-Ft3RM9p6Xy</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2840851532</pqid></control><display><type>article</type><title>Deep Hybrid Multimodal Biometric Recognition System Based on Features-Level Deep Fusion of Five Biometric Traits</title><source>MEDLINE</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Safavipour, Mohammad Hassan ; Doostari, Mohammad Ali ; Sadjedi, Hamed</creator><contributor>Zhang, Dalin ; Dalin Zhang</contributor><creatorcontrib>Safavipour, Mohammad Hassan ; Doostari, Mohammad Ali ; Sadjedi, Hamed ; Zhang, Dalin ; Dalin Zhang</creatorcontrib><description>The need for information security and the adoption of the relevant regulations is becoming an overwhelming demand worldwide. As an efficient solution, hybrid multimodal biometric systems utilize fusion to combine multiple biometric traits and sources with improving recognition accuracy, higher security assurance, and to cope with the limitations of the uni-biometric system. In this paper, three strategies for dealing with a feature-level deep fusion of five biometric traits (face, both irises, and two fingerprints) derived from three sources of evidence are proposed and compared. In the first two proposed methodologies, each feature vector is mapped from the feature space into the reproducing kernel Hilbert space (RKHS) separately by selecting the appropriate reproducing kernel. In this higher space, where the result is the conversion of nonlinear relations to linear ones, dimensionality reduction algorithms (KPCA, KLDA) and quaternion-based algorithms (KQPCA, KQPCA) are used for the fusion of the feature vectors. In the third methodology, the fusion of feature spaces based on deep learning is administered by combining feature vectors in in-depth and fully connected layers. The experimental results on 6 databases in the proposed hybrid multibiometric system clearly show the multimodal template obtained from the deep fusion of feature spaces; while being secure against spoof attacks and making the system robust, they can use the low dimensionality of the fused vector to increase the accuracy of a hybrid multimodal biometric system to 100%, showing a significant improvement compared with uni-biometric and other multimodal systems.</description><identifier>ISSN: 1687-5265</identifier><identifier>EISSN: 1687-5273</identifier><identifier>DOI: 10.1155/2023/6443786</identifier><identifier>PMID: 37469627</identifier><language>eng</language><publisher>United States: Hindawi</publisher><subject>Algorithms ; Biometric Identification - methods ; Biometric recognition systems ; Biometrics ; Biometry ; Databases, Factual ; Deep learning ; Euclidean space ; Hilbert space ; Hybrid systems ; Kernels ; Quaternions ; Recognition, Psychology ; Security</subject><ispartof>Computational intelligence and neuroscience, 2023, Vol.2023 (1), p.6443786-6443786</ispartof><rights>Copyright © 2023 Mohammad Hassan Safavipour et al.</rights><rights>Copyright © 2023 Mohammad Hassan Safavipour et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><rights>Copyright © 2023 Mohammad Hassan Safavipour et al. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2946-626b7634d3df3700b551c196cd03559616435ec43dd4b1820cc1ce7b70c2826c3</citedby><cites>FETCH-LOGICAL-c2946-626b7634d3df3700b551c196cd03559616435ec43dd4b1820cc1ce7b70c2826c3</cites><orcidid>0000-0001-9124-4083</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10353898/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10353898/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,4024,27923,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37469627$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Zhang, Dalin</contributor><contributor>Dalin Zhang</contributor><creatorcontrib>Safavipour, Mohammad Hassan</creatorcontrib><creatorcontrib>Doostari, Mohammad Ali</creatorcontrib><creatorcontrib>Sadjedi, Hamed</creatorcontrib><title>Deep Hybrid Multimodal Biometric Recognition System Based on Features-Level Deep Fusion of Five Biometric Traits</title><title>Computational intelligence and neuroscience</title><addtitle>Comput Intell Neurosci</addtitle><description>The need for information security and the adoption of the relevant regulations is becoming an overwhelming demand worldwide. As an efficient solution, hybrid multimodal biometric systems utilize fusion to combine multiple biometric traits and sources with improving recognition accuracy, higher security assurance, and to cope with the limitations of the uni-biometric system. In this paper, three strategies for dealing with a feature-level deep fusion of five biometric traits (face, both irises, and two fingerprints) derived from three sources of evidence are proposed and compared. In the first two proposed methodologies, each feature vector is mapped from the feature space into the reproducing kernel Hilbert space (RKHS) separately by selecting the appropriate reproducing kernel. In this higher space, where the result is the conversion of nonlinear relations to linear ones, dimensionality reduction algorithms (KPCA, KLDA) and quaternion-based algorithms (KQPCA, KQPCA) are used for the fusion of the feature vectors. In the third methodology, the fusion of feature spaces based on deep learning is administered by combining feature vectors in in-depth and fully connected layers. The experimental results on 6 databases in the proposed hybrid multibiometric system clearly show the multimodal template obtained from the deep fusion of feature spaces; while being secure against spoof attacks and making the system robust, they can use the low dimensionality of the fused vector to increase the accuracy of a hybrid multimodal biometric system to 100%, showing a significant improvement compared with uni-biometric and other multimodal systems.</description><subject>Algorithms</subject><subject>Biometric Identification - methods</subject><subject>Biometric recognition systems</subject><subject>Biometrics</subject><subject>Biometry</subject><subject>Databases, Factual</subject><subject>Deep learning</subject><subject>Euclidean space</subject><subject>Hilbert space</subject><subject>Hybrid systems</subject><subject>Kernels</subject><subject>Quaternions</subject><subject>Recognition, Psychology</subject><subject>Security</subject><issn>1687-5265</issn><issn>1687-5273</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc1LHDEYh4NY_Kq3nkvAi1Cn5jszp6K2WwsrhVbPIZO8q5GZyTaZ2bL_vbPuutgePL15ycOT_Pgh9IGSz5RKec4I4-dKCK5LtYMOqCp1IZnmu9uzkvvoMOdHQqSWhO2hfa6FqhTTB2j-FWCOr5d1Ch7fDE0f2uhtgy9DbKFPweFf4OJ9F_oQO_x7mXto8aXN4PG4T8D2Q4JcTGEBDX52TYa8QuMMT8ICXolukw19fo_ezWyT4Xgzj9Dd5Nvt1XUx_fn9x9XFtHCsEqpQTNVaceG5n3FNSC0ldbRSzhMuZaWoElyCE9x7UdOSEeeoA11r4ljJlONH6MvaOx_qFryDrk-2MfMUWpuWJtpg_r3pwoO5jwtDxwd4WZWj4XRjSPHPALk3bcgOmsZ2EIdsWCkIE1JoOqIn_6GPcUjdmO-ZKiWVnI3U2ZpyKeacYLb9DSVm1aVZdWk2XY74x9cJtvBLeSPwaQ08hM7bv-Ft3RM9p6Xy</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Safavipour, Mohammad Hassan</creator><creator>Doostari, Mohammad Ali</creator><creator>Sadjedi, Hamed</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AL</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9124-4083</orcidid></search><sort><creationdate>2023</creationdate><title>Deep Hybrid Multimodal Biometric Recognition System Based on Features-Level Deep Fusion of Five Biometric Traits</title><author>Safavipour, Mohammad Hassan ; Doostari, Mohammad Ali ; Sadjedi, Hamed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2946-626b7634d3df3700b551c196cd03559616435ec43dd4b1820cc1ce7b70c2826c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Biometric Identification - methods</topic><topic>Biometric recognition systems</topic><topic>Biometrics</topic><topic>Biometry</topic><topic>Databases, Factual</topic><topic>Deep learning</topic><topic>Euclidean space</topic><topic>Hilbert space</topic><topic>Hybrid systems</topic><topic>Kernels</topic><topic>Quaternions</topic><topic>Recognition, Psychology</topic><topic>Security</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Safavipour, Mohammad Hassan</creatorcontrib><creatorcontrib>Doostari, Mohammad Ali</creatorcontrib><creatorcontrib>Sadjedi, Hamed</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational intelligence and neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Safavipour, Mohammad Hassan</au><au>Doostari, Mohammad Ali</au><au>Sadjedi, Hamed</au><au>Zhang, Dalin</au><au>Dalin Zhang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Hybrid Multimodal Biometric Recognition System Based on Features-Level Deep Fusion of Five Biometric Traits</atitle><jtitle>Computational intelligence and neuroscience</jtitle><addtitle>Comput Intell Neurosci</addtitle><date>2023</date><risdate>2023</risdate><volume>2023</volume><issue>1</issue><spage>6443786</spage><epage>6443786</epage><pages>6443786-6443786</pages><issn>1687-5265</issn><eissn>1687-5273</eissn><abstract>The need for information security and the adoption of the relevant regulations is becoming an overwhelming demand worldwide. As an efficient solution, hybrid multimodal biometric systems utilize fusion to combine multiple biometric traits and sources with improving recognition accuracy, higher security assurance, and to cope with the limitations of the uni-biometric system. In this paper, three strategies for dealing with a feature-level deep fusion of five biometric traits (face, both irises, and two fingerprints) derived from three sources of evidence are proposed and compared. In the first two proposed methodologies, each feature vector is mapped from the feature space into the reproducing kernel Hilbert space (RKHS) separately by selecting the appropriate reproducing kernel. In this higher space, where the result is the conversion of nonlinear relations to linear ones, dimensionality reduction algorithms (KPCA, KLDA) and quaternion-based algorithms (KQPCA, KQPCA) are used for the fusion of the feature vectors. In the third methodology, the fusion of feature spaces based on deep learning is administered by combining feature vectors in in-depth and fully connected layers. The experimental results on 6 databases in the proposed hybrid multibiometric system clearly show the multimodal template obtained from the deep fusion of feature spaces; while being secure against spoof attacks and making the system robust, they can use the low dimensionality of the fused vector to increase the accuracy of a hybrid multimodal biometric system to 100%, showing a significant improvement compared with uni-biometric and other multimodal systems.</abstract><cop>United States</cop><pub>Hindawi</pub><pmid>37469627</pmid><doi>10.1155/2023/6443786</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9124-4083</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-5265
ispartof Computational intelligence and neuroscience, 2023, Vol.2023 (1), p.6443786-6443786
issn 1687-5265
1687-5273
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10353898
source MEDLINE; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); PubMed Central; Alma/SFX Local Collection
subjects Algorithms
Biometric Identification - methods
Biometric recognition systems
Biometrics
Biometry
Databases, Factual
Deep learning
Euclidean space
Hilbert space
Hybrid systems
Kernels
Quaternions
Recognition, Psychology
Security
title Deep Hybrid Multimodal Biometric Recognition System Based on Features-Level Deep Fusion of Five Biometric Traits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A58%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Hybrid%20Multimodal%20Biometric%20Recognition%20System%20Based%20on%20Features-Level%20Deep%20Fusion%20of%20Five%20Biometric%20Traits&rft.jtitle=Computational%20intelligence%20and%20neuroscience&rft.au=Safavipour,%20Mohammad%20Hassan&rft.date=2023&rft.volume=2023&rft.issue=1&rft.spage=6443786&rft.epage=6443786&rft.pages=6443786-6443786&rft.issn=1687-5265&rft.eissn=1687-5273&rft_id=info:doi/10.1155/2023/6443786&rft_dat=%3Cproquest_pubme%3E2840245471%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2840851532&rft_id=info:pmid/37469627&rfr_iscdi=true