MDSubSampler: a posteriori sampling of important protein conformations from biomolecular simulations

Molecular dynamics (MD) simulations have become routine tools for the study of protein dynamics and function. Thanks to faster GPU-based algorithms, atomistic and coarse-grained simulations are being used to explore biological functions over the microsecond timescale, yielding terabytes of data span...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics (Oxford, England) England), 2023-07, Vol.39 (7)
Hauptverfasser: Oues, Namir, Dantu, Sarath Chandra, Patel, Riktaben Jigarkumar, Pandini, Alessandro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page
container_title Bioinformatics (Oxford, England)
container_volume 39
creator Oues, Namir
Dantu, Sarath Chandra
Patel, Riktaben Jigarkumar
Pandini, Alessandro
description Molecular dynamics (MD) simulations have become routine tools for the study of protein dynamics and function. Thanks to faster GPU-based algorithms, atomistic and coarse-grained simulations are being used to explore biological functions over the microsecond timescale, yielding terabytes of data spanning multiple trajectories, thereby extracting relevant protein conformations without losing important information is often challenging. We present MDSubSampler, a Python library and toolkit for a posteriori subsampling of data from multiple trajectories. This toolkit provides access to uniform, random, stratified, weighted sampling, and bootstrapping sampling methods. Sampling can be performed under the constraint of preserving the original distribution of relevant geometrical properties. Possible applications include simulations post-processing, noise reduction, and structures selection for ensemble docking. MDSubSampler is freely available at https://github.com/alepandini/MDSubSampler, along with guidance on installation and tutorials on how it can be used.
doi_str_mv 10.1093/bioinformatics/btad427
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10348832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2835276685</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-1f106213e2116f950983526141b11326de18db4623c8897e8925eda9827b4c8a3</originalsourceid><addsrcrecordid>eNpVUclOwzAQtRCIpfALyEcupR47cRwuCLFLRRwKZ8txnGIUx8F2kPh7UlpQOb3RzLxFegidAjkHUrJZZb3tGh-cSlbHWZVUndFiBx0C48U0EwC7W_MBOorxnRCSk5zvowNWZFCUuThE9dPNYqgWyvWtCRdY4d7HZIL1weK42tpuiX2Dret9SKpLuA8-Gdth7X_9fRdxE7zDYyjnW6OHVgUcrRvx53qM9hrVRnOywQl6vbt9uX6Yzp_vH6-v5lOdQZ6m0ADhFJihALwpc1IKllMOGVQAjPLagKirjFOmhSgLI0qam1qVghZVpoViE3S51u2Hyplamy4F1co-WKfCl_TKyv-Xzr7Jpf-UQFgmBKOjwtlGIfiPwcQknY3atK3qjB-ipKtEBeciH1_5-lUHH2MwzZ8PELnqSP7vSG46Gomn2yn_aL-lsG8eKJYf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2835276685</pqid></control><display><type>article</type><title>MDSubSampler: a posteriori sampling of important protein conformations from biomolecular simulations</title><source>NCBI_PubMed Central(免费)</source><source>DOAJ Directory of Open Access Journals</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><source>Oxford Open Access Journals</source><creator>Oues, Namir ; Dantu, Sarath Chandra ; Patel, Riktaben Jigarkumar ; Pandini, Alessandro</creator><contributor>Elofsson, Arne</contributor><creatorcontrib>Oues, Namir ; Dantu, Sarath Chandra ; Patel, Riktaben Jigarkumar ; Pandini, Alessandro ; Elofsson, Arne</creatorcontrib><description>Molecular dynamics (MD) simulations have become routine tools for the study of protein dynamics and function. Thanks to faster GPU-based algorithms, atomistic and coarse-grained simulations are being used to explore biological functions over the microsecond timescale, yielding terabytes of data spanning multiple trajectories, thereby extracting relevant protein conformations without losing important information is often challenging. We present MDSubSampler, a Python library and toolkit for a posteriori subsampling of data from multiple trajectories. This toolkit provides access to uniform, random, stratified, weighted sampling, and bootstrapping sampling methods. Sampling can be performed under the constraint of preserving the original distribution of relevant geometrical properties. Possible applications include simulations post-processing, noise reduction, and structures selection for ensemble docking. MDSubSampler is freely available at https://github.com/alepandini/MDSubSampler, along with guidance on installation and tutorials on how it can be used.</description><identifier>ISSN: 1367-4811</identifier><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btad427</identifier><identifier>PMID: 37417958</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Applications Note</subject><ispartof>Bioinformatics (Oxford, England), 2023-07, Vol.39 (7)</ispartof><rights>The Author(s) 2023. Published by Oxford University Press.</rights><rights>The Author(s) 2023. Published by Oxford University Press. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-1f106213e2116f950983526141b11326de18db4623c8897e8925eda9827b4c8a3</citedby><cites>FETCH-LOGICAL-c415t-1f106213e2116f950983526141b11326de18db4623c8897e8925eda9827b4c8a3</cites><orcidid>0009-0003-2001-1065 ; 0000-0003-2019-5311 ; 0000-0002-4158-233X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10348832/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10348832/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37417958$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Elofsson, Arne</contributor><creatorcontrib>Oues, Namir</creatorcontrib><creatorcontrib>Dantu, Sarath Chandra</creatorcontrib><creatorcontrib>Patel, Riktaben Jigarkumar</creatorcontrib><creatorcontrib>Pandini, Alessandro</creatorcontrib><title>MDSubSampler: a posteriori sampling of important protein conformations from biomolecular simulations</title><title>Bioinformatics (Oxford, England)</title><addtitle>Bioinformatics</addtitle><description>Molecular dynamics (MD) simulations have become routine tools for the study of protein dynamics and function. Thanks to faster GPU-based algorithms, atomistic and coarse-grained simulations are being used to explore biological functions over the microsecond timescale, yielding terabytes of data spanning multiple trajectories, thereby extracting relevant protein conformations without losing important information is often challenging. We present MDSubSampler, a Python library and toolkit for a posteriori subsampling of data from multiple trajectories. This toolkit provides access to uniform, random, stratified, weighted sampling, and bootstrapping sampling methods. Sampling can be performed under the constraint of preserving the original distribution of relevant geometrical properties. Possible applications include simulations post-processing, noise reduction, and structures selection for ensemble docking. MDSubSampler is freely available at https://github.com/alepandini/MDSubSampler, along with guidance on installation and tutorials on how it can be used.</description><subject>Applications Note</subject><issn>1367-4811</issn><issn>1367-4803</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpVUclOwzAQtRCIpfALyEcupR47cRwuCLFLRRwKZ8txnGIUx8F2kPh7UlpQOb3RzLxFegidAjkHUrJZZb3tGh-cSlbHWZVUndFiBx0C48U0EwC7W_MBOorxnRCSk5zvowNWZFCUuThE9dPNYqgWyvWtCRdY4d7HZIL1weK42tpuiX2Dret9SKpLuA8-Gdth7X_9fRdxE7zDYyjnW6OHVgUcrRvx53qM9hrVRnOywQl6vbt9uX6Yzp_vH6-v5lOdQZ6m0ADhFJihALwpc1IKllMOGVQAjPLagKirjFOmhSgLI0qam1qVghZVpoViE3S51u2Hyplamy4F1co-WKfCl_TKyv-Xzr7Jpf-UQFgmBKOjwtlGIfiPwcQknY3atK3qjB-ipKtEBeciH1_5-lUHH2MwzZ8PELnqSP7vSG46Gomn2yn_aL-lsG8eKJYf</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Oues, Namir</creator><creator>Dantu, Sarath Chandra</creator><creator>Patel, Riktaben Jigarkumar</creator><creator>Pandini, Alessandro</creator><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0009-0003-2001-1065</orcidid><orcidid>https://orcid.org/0000-0003-2019-5311</orcidid><orcidid>https://orcid.org/0000-0002-4158-233X</orcidid></search><sort><creationdate>20230701</creationdate><title>MDSubSampler: a posteriori sampling of important protein conformations from biomolecular simulations</title><author>Oues, Namir ; Dantu, Sarath Chandra ; Patel, Riktaben Jigarkumar ; Pandini, Alessandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-1f106213e2116f950983526141b11326de18db4623c8897e8925eda9827b4c8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applications Note</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oues, Namir</creatorcontrib><creatorcontrib>Dantu, Sarath Chandra</creatorcontrib><creatorcontrib>Patel, Riktaben Jigarkumar</creatorcontrib><creatorcontrib>Pandini, Alessandro</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics (Oxford, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oues, Namir</au><au>Dantu, Sarath Chandra</au><au>Patel, Riktaben Jigarkumar</au><au>Pandini, Alessandro</au><au>Elofsson, Arne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MDSubSampler: a posteriori sampling of important protein conformations from biomolecular simulations</atitle><jtitle>Bioinformatics (Oxford, England)</jtitle><addtitle>Bioinformatics</addtitle><date>2023-07-01</date><risdate>2023</risdate><volume>39</volume><issue>7</issue><issn>1367-4811</issn><issn>1367-4803</issn><eissn>1367-4811</eissn><abstract>Molecular dynamics (MD) simulations have become routine tools for the study of protein dynamics and function. Thanks to faster GPU-based algorithms, atomistic and coarse-grained simulations are being used to explore biological functions over the microsecond timescale, yielding terabytes of data spanning multiple trajectories, thereby extracting relevant protein conformations without losing important information is often challenging. We present MDSubSampler, a Python library and toolkit for a posteriori subsampling of data from multiple trajectories. This toolkit provides access to uniform, random, stratified, weighted sampling, and bootstrapping sampling methods. Sampling can be performed under the constraint of preserving the original distribution of relevant geometrical properties. Possible applications include simulations post-processing, noise reduction, and structures selection for ensemble docking. MDSubSampler is freely available at https://github.com/alepandini/MDSubSampler, along with guidance on installation and tutorials on how it can be used.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>37417958</pmid><doi>10.1093/bioinformatics/btad427</doi><orcidid>https://orcid.org/0009-0003-2001-1065</orcidid><orcidid>https://orcid.org/0000-0003-2019-5311</orcidid><orcidid>https://orcid.org/0000-0002-4158-233X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-4811
ispartof Bioinformatics (Oxford, England), 2023-07, Vol.39 (7)
issn 1367-4811
1367-4803
1367-4811
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10348832
source NCBI_PubMed Central(免费); DOAJ Directory of Open Access Journals; Alma/SFX Local Collection; EZB Electronic Journals Library; Oxford Open Access Journals
subjects Applications Note
title MDSubSampler: a posteriori sampling of important protein conformations from biomolecular simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T07%3A52%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MDSubSampler:%20a%20posteriori%20sampling%20of%20important%20protein%20conformations%20from%20biomolecular%20simulations&rft.jtitle=Bioinformatics%20(Oxford,%20England)&rft.au=Oues,%20Namir&rft.date=2023-07-01&rft.volume=39&rft.issue=7&rft.issn=1367-4811&rft.eissn=1367-4811&rft_id=info:doi/10.1093/bioinformatics/btad427&rft_dat=%3Cproquest_pubme%3E2835276685%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2835276685&rft_id=info:pmid/37417958&rfr_iscdi=true