Injectable Lyophilized Chitosan-Thrombin-Platelet-Rich Plasma (CS-FIIa-PRP) Implant to Promote Tissue Regeneration: In Vitro and Ex Vivo Solidification Properties

Freeze-dried chitosan formulations solubilized in platelet-rich plasma (PRP) are currently evaluated as injectable implants with the potential for augmenting the standard of care for tissue repair in different orthopedic conditions. The present study aimed to shorten the solidification time of such...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2023-06, Vol.15 (13), p.2919
Hauptverfasser: Milano, Fiona, Chevrier, Anik, De Crescenzo, Gregory, Lavertu, Marc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 13
container_start_page 2919
container_title Polymers
container_volume 15
creator Milano, Fiona
Chevrier, Anik
De Crescenzo, Gregory
Lavertu, Marc
description Freeze-dried chitosan formulations solubilized in platelet-rich plasma (PRP) are currently evaluated as injectable implants with the potential for augmenting the standard of care for tissue repair in different orthopedic conditions. The present study aimed to shorten the solidification time of such implants, leading to an easier application and a facilitated solidification in a wet environment, which were direct demands from orthopedic surgeons. The addition of thrombin to the formulation before lyophilization was explored. The challenge was to find a formulation that coagulated fast enough to be applied in a wet environment but not too fast, which would make handling/injection difficult. Four thrombin concentrations were analyzed (0.0, 0.25, 0.5, and 1.0 NIH/mL) in vitro (using thromboelastography, rheology, indentation, syringe injectability, and thrombin activity tests) as well as ex vivo (by assessing the implant's adherence to tendon tissue in a wet environment). The biomaterial containing 0.5 NIH/mL of thrombin significantly increased the coagulation speed while being easy to handle up to 6 min after solubilization. Furthermore, the adherence of the biomaterial to tendon tissues was impacted by the biomaterial-tendon contact duration and increased faster when thrombin was present. These results suggest that our biomaterial has great potential for use in regenerative medicine applications.
doi_str_mv 10.3390/polym15132919
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10347262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A758481969</galeid><sourcerecordid>A758481969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-64b22daf2ffb6f4b75e39eea45bb8601163fbbb0aaeb2eebe8e0de994257b9ba3</originalsourceid><addsrcrecordid>eNptkk1v1DAQhiMEolXpkSuyxKU9pMQfcRIuqFq1EGklVtuFq2Unk12vHDvY3orl5_BL8dJSWoR9sMd-3tea8WTZa1xcUNoU7yZn9iMuMSUNbp5lx6SoaM4oL54_2h9lpyFsizRYyTmuXmZHtGKsKjk7zn62dgtdlMoAmu_dtNFG_4AezTY6uiBtvtp4Nypt84WREQzEfKm7DUpRGCU6m93k120r88VycY7acTLSRhQdWiSVi4BWOoQdoCWswYKXUTv7HrUWfdXROyRtj66-p-DWoRtndK8H3f2GDgYT-KghvMpeDNIEOL1fT7Iv11er2ad8_vljO7uc5x2jTcw5U4T0ciDDoPjAVFUCbQAkK5WqeYExp4NSqpASFAFQUEPRQ9MwUlaqUZKeZB_ufKedGqHvwEYvjZi8HqXfCye1eHpj9Uas3a3ABWUV4SQ5nN07ePdtByGKUYcOTCoKuF0QpKY1YWWJy4S-_Qfdup23Kb8DxdO_kYr_pdbSgNB2cOnh7mAqLquyZjVueJOoi_9QafYw6s5ZGHQ6fyLI7wSddyF4GB6SxIU4NJZ40liJf_O4Mg_0nzaivwBi4MvF</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2836436276</pqid></control><display><type>article</type><title>Injectable Lyophilized Chitosan-Thrombin-Platelet-Rich Plasma (CS-FIIa-PRP) Implant to Promote Tissue Regeneration: In Vitro and Ex Vivo Solidification Properties</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Milano, Fiona ; Chevrier, Anik ; De Crescenzo, Gregory ; Lavertu, Marc</creator><creatorcontrib>Milano, Fiona ; Chevrier, Anik ; De Crescenzo, Gregory ; Lavertu, Marc</creatorcontrib><description>Freeze-dried chitosan formulations solubilized in platelet-rich plasma (PRP) are currently evaluated as injectable implants with the potential for augmenting the standard of care for tissue repair in different orthopedic conditions. The present study aimed to shorten the solidification time of such implants, leading to an easier application and a facilitated solidification in a wet environment, which were direct demands from orthopedic surgeons. The addition of thrombin to the formulation before lyophilization was explored. The challenge was to find a formulation that coagulated fast enough to be applied in a wet environment but not too fast, which would make handling/injection difficult. Four thrombin concentrations were analyzed (0.0, 0.25, 0.5, and 1.0 NIH/mL) in vitro (using thromboelastography, rheology, indentation, syringe injectability, and thrombin activity tests) as well as ex vivo (by assessing the implant's adherence to tendon tissue in a wet environment). The biomaterial containing 0.5 NIH/mL of thrombin significantly increased the coagulation speed while being easy to handle up to 6 min after solubilization. Furthermore, the adherence of the biomaterial to tendon tissues was impacted by the biomaterial-tendon contact duration and increased faster when thrombin was present. These results suggest that our biomaterial has great potential for use in regenerative medicine applications.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym15132919</identifier><identifier>PMID: 37447564</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Absorbable implants ; Biological activity ; Biomedical materials ; Blood platelets ; Chemical properties ; Chitin ; Chitosan ; Coagulation ; Growth factors ; Health aspects ; Injectability ; Laboratories ; Materials research ; Orthopedics ; Plasma ; Platelet-rich plasma ; Platelets ; Regeneration (physiology) ; Regenerative medicine ; Rheological properties ; Rheology ; Rotator cuff ; Solidification ; Solubilization ; Surgical implants ; Tendons ; Thrombin ; Tissue engineering ; Transplants &amp; implants ; Wound healing</subject><ispartof>Polymers, 2023-06, Vol.15 (13), p.2919</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c439t-64b22daf2ffb6f4b75e39eea45bb8601163fbbb0aaeb2eebe8e0de994257b9ba3</cites><orcidid>0000-0002-6280-1570 ; 0000-0003-2587-7522 ; 0000-0002-2750-3607</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10347262/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10347262/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37447564$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Milano, Fiona</creatorcontrib><creatorcontrib>Chevrier, Anik</creatorcontrib><creatorcontrib>De Crescenzo, Gregory</creatorcontrib><creatorcontrib>Lavertu, Marc</creatorcontrib><title>Injectable Lyophilized Chitosan-Thrombin-Platelet-Rich Plasma (CS-FIIa-PRP) Implant to Promote Tissue Regeneration: In Vitro and Ex Vivo Solidification Properties</title><title>Polymers</title><addtitle>Polymers (Basel)</addtitle><description>Freeze-dried chitosan formulations solubilized in platelet-rich plasma (PRP) are currently evaluated as injectable implants with the potential for augmenting the standard of care for tissue repair in different orthopedic conditions. The present study aimed to shorten the solidification time of such implants, leading to an easier application and a facilitated solidification in a wet environment, which were direct demands from orthopedic surgeons. The addition of thrombin to the formulation before lyophilization was explored. The challenge was to find a formulation that coagulated fast enough to be applied in a wet environment but not too fast, which would make handling/injection difficult. Four thrombin concentrations were analyzed (0.0, 0.25, 0.5, and 1.0 NIH/mL) in vitro (using thromboelastography, rheology, indentation, syringe injectability, and thrombin activity tests) as well as ex vivo (by assessing the implant's adherence to tendon tissue in a wet environment). The biomaterial containing 0.5 NIH/mL of thrombin significantly increased the coagulation speed while being easy to handle up to 6 min after solubilization. Furthermore, the adherence of the biomaterial to tendon tissues was impacted by the biomaterial-tendon contact duration and increased faster when thrombin was present. These results suggest that our biomaterial has great potential for use in regenerative medicine applications.</description><subject>Absorbable implants</subject><subject>Biological activity</subject><subject>Biomedical materials</subject><subject>Blood platelets</subject><subject>Chemical properties</subject><subject>Chitin</subject><subject>Chitosan</subject><subject>Coagulation</subject><subject>Growth factors</subject><subject>Health aspects</subject><subject>Injectability</subject><subject>Laboratories</subject><subject>Materials research</subject><subject>Orthopedics</subject><subject>Plasma</subject><subject>Platelet-rich plasma</subject><subject>Platelets</subject><subject>Regeneration (physiology)</subject><subject>Regenerative medicine</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Rotator cuff</subject><subject>Solidification</subject><subject>Solubilization</subject><subject>Surgical implants</subject><subject>Tendons</subject><subject>Thrombin</subject><subject>Tissue engineering</subject><subject>Transplants &amp; implants</subject><subject>Wound healing</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNptkk1v1DAQhiMEolXpkSuyxKU9pMQfcRIuqFq1EGklVtuFq2Unk12vHDvY3orl5_BL8dJSWoR9sMd-3tea8WTZa1xcUNoU7yZn9iMuMSUNbp5lx6SoaM4oL54_2h9lpyFsizRYyTmuXmZHtGKsKjk7zn62dgtdlMoAmu_dtNFG_4AezTY6uiBtvtp4Nypt84WREQzEfKm7DUpRGCU6m93k120r88VycY7acTLSRhQdWiSVi4BWOoQdoCWswYKXUTv7HrUWfdXROyRtj66-p-DWoRtndK8H3f2GDgYT-KghvMpeDNIEOL1fT7Iv11er2ad8_vljO7uc5x2jTcw5U4T0ciDDoPjAVFUCbQAkK5WqeYExp4NSqpASFAFQUEPRQ9MwUlaqUZKeZB_ufKedGqHvwEYvjZi8HqXfCye1eHpj9Uas3a3ABWUV4SQ5nN07ePdtByGKUYcOTCoKuF0QpKY1YWWJy4S-_Qfdup23Kb8DxdO_kYr_pdbSgNB2cOnh7mAqLquyZjVueJOoi_9QafYw6s5ZGHQ6fyLI7wSddyF4GB6SxIU4NJZ40liJf_O4Mg_0nzaivwBi4MvF</recordid><startdate>20230630</startdate><enddate>20230630</enddate><creator>Milano, Fiona</creator><creator>Chevrier, Anik</creator><creator>De Crescenzo, Gregory</creator><creator>Lavertu, Marc</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6280-1570</orcidid><orcidid>https://orcid.org/0000-0003-2587-7522</orcidid><orcidid>https://orcid.org/0000-0002-2750-3607</orcidid></search><sort><creationdate>20230630</creationdate><title>Injectable Lyophilized Chitosan-Thrombin-Platelet-Rich Plasma (CS-FIIa-PRP) Implant to Promote Tissue Regeneration: In Vitro and Ex Vivo Solidification Properties</title><author>Milano, Fiona ; Chevrier, Anik ; De Crescenzo, Gregory ; Lavertu, Marc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-64b22daf2ffb6f4b75e39eea45bb8601163fbbb0aaeb2eebe8e0de994257b9ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Absorbable implants</topic><topic>Biological activity</topic><topic>Biomedical materials</topic><topic>Blood platelets</topic><topic>Chemical properties</topic><topic>Chitin</topic><topic>Chitosan</topic><topic>Coagulation</topic><topic>Growth factors</topic><topic>Health aspects</topic><topic>Injectability</topic><topic>Laboratories</topic><topic>Materials research</topic><topic>Orthopedics</topic><topic>Plasma</topic><topic>Platelet-rich plasma</topic><topic>Platelets</topic><topic>Regeneration (physiology)</topic><topic>Regenerative medicine</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Rotator cuff</topic><topic>Solidification</topic><topic>Solubilization</topic><topic>Surgical implants</topic><topic>Tendons</topic><topic>Thrombin</topic><topic>Tissue engineering</topic><topic>Transplants &amp; implants</topic><topic>Wound healing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Milano, Fiona</creatorcontrib><creatorcontrib>Chevrier, Anik</creatorcontrib><creatorcontrib>De Crescenzo, Gregory</creatorcontrib><creatorcontrib>Lavertu, Marc</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Milano, Fiona</au><au>Chevrier, Anik</au><au>De Crescenzo, Gregory</au><au>Lavertu, Marc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Injectable Lyophilized Chitosan-Thrombin-Platelet-Rich Plasma (CS-FIIa-PRP) Implant to Promote Tissue Regeneration: In Vitro and Ex Vivo Solidification Properties</atitle><jtitle>Polymers</jtitle><addtitle>Polymers (Basel)</addtitle><date>2023-06-30</date><risdate>2023</risdate><volume>15</volume><issue>13</issue><spage>2919</spage><pages>2919-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>Freeze-dried chitosan formulations solubilized in platelet-rich plasma (PRP) are currently evaluated as injectable implants with the potential for augmenting the standard of care for tissue repair in different orthopedic conditions. The present study aimed to shorten the solidification time of such implants, leading to an easier application and a facilitated solidification in a wet environment, which were direct demands from orthopedic surgeons. The addition of thrombin to the formulation before lyophilization was explored. The challenge was to find a formulation that coagulated fast enough to be applied in a wet environment but not too fast, which would make handling/injection difficult. Four thrombin concentrations were analyzed (0.0, 0.25, 0.5, and 1.0 NIH/mL) in vitro (using thromboelastography, rheology, indentation, syringe injectability, and thrombin activity tests) as well as ex vivo (by assessing the implant's adherence to tendon tissue in a wet environment). The biomaterial containing 0.5 NIH/mL of thrombin significantly increased the coagulation speed while being easy to handle up to 6 min after solubilization. Furthermore, the adherence of the biomaterial to tendon tissues was impacted by the biomaterial-tendon contact duration and increased faster when thrombin was present. These results suggest that our biomaterial has great potential for use in regenerative medicine applications.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>37447564</pmid><doi>10.3390/polym15132919</doi><orcidid>https://orcid.org/0000-0002-6280-1570</orcidid><orcidid>https://orcid.org/0000-0003-2587-7522</orcidid><orcidid>https://orcid.org/0000-0002-2750-3607</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4360
ispartof Polymers, 2023-06, Vol.15 (13), p.2919
issn 2073-4360
2073-4360
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10347262
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access
subjects Absorbable implants
Biological activity
Biomedical materials
Blood platelets
Chemical properties
Chitin
Chitosan
Coagulation
Growth factors
Health aspects
Injectability
Laboratories
Materials research
Orthopedics
Plasma
Platelet-rich plasma
Platelets
Regeneration (physiology)
Regenerative medicine
Rheological properties
Rheology
Rotator cuff
Solidification
Solubilization
Surgical implants
Tendons
Thrombin
Tissue engineering
Transplants & implants
Wound healing
title Injectable Lyophilized Chitosan-Thrombin-Platelet-Rich Plasma (CS-FIIa-PRP) Implant to Promote Tissue Regeneration: In Vitro and Ex Vivo Solidification Properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T00%3A39%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Injectable%20Lyophilized%20Chitosan-Thrombin-Platelet-Rich%20Plasma%20(CS-FIIa-PRP)%20Implant%20to%20Promote%20Tissue%20Regeneration:%20In%20Vitro%20and%20Ex%20Vivo%20Solidification%20Properties&rft.jtitle=Polymers&rft.au=Milano,%20Fiona&rft.date=2023-06-30&rft.volume=15&rft.issue=13&rft.spage=2919&rft.pages=2919-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym15132919&rft_dat=%3Cgale_pubme%3EA758481969%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2836436276&rft_id=info:pmid/37447564&rft_galeid=A758481969&rfr_iscdi=true