Comparative Study on the Stiffness of Poly(lactic acid) Reinforced with Untreated and Bleached Hemp Fibers

Composite materials containing natural reinforcement fibers, generally called biocomposites, have attracted the interest of both researchers and manufacturers, but the most environmentally advantageous combinations include a bio-based matrix, as well. With this in mind, a poly(lactic acid) (PLA) mat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2023-07, Vol.15 (13), p.2960
Hauptverfasser: Aguado, Roberto J, Bastida, Gabriela A, Espinach, Francisco X, Llorens, Joan, Tarrés, Quim, Delgado-Aguilar, Marc, Mutjé, Pere
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 13
container_start_page 2960
container_title Polymers
container_volume 15
creator Aguado, Roberto J
Bastida, Gabriela A
Espinach, Francisco X
Llorens, Joan
Tarrés, Quim
Delgado-Aguilar, Marc
Mutjé, Pere
description Composite materials containing natural reinforcement fibers, generally called biocomposites, have attracted the interest of both researchers and manufacturers, but the most environmentally advantageous combinations include a bio-based matrix, as well. With this in mind, a poly(lactic acid) (PLA) matrix was reinforced with natural fibers from hemp, both untreated strands (UHSs) and soda-bleached fibers (SBHFs). The preparation of the subsequent fully bio-sourced, discontinuously reinforced composites involved kinetic mixing, intensive single-screw extrusion, milling, and injection molding. Up to a fiber content of 30 wt%, the tensile modulus increased linearly with the volume fraction of the dispersed phase. Differences between SBHFs (up to 7.6 Gpa) and UHSs (up to 6.9 Gpa) were hardly significant ( = 0.1), but SBHF-reinforced composites displayed higher strain at failure. In any case, for the same fiber load (30 wt%), the Young's modulus of PLA/hemp biocomposites was greater than that of glass fiber (GF)-reinforced polypropylene (5.7 GPa), albeit lower than that of PLA/GF (9.8 GPa). Considering all the measurements, the contribution of each phase was analyzed by applying the Hirsch model and the Tsai-Pagano model. As a concluding remark, although the intrinsic tensile modulus of SBHFs was lower than that of GF, the efficiency of those natural fibers as reinforcement (according to the rule of mixtures) was found to be higher.
doi_str_mv 10.3390/polym15132960
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10346907</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A758481952</galeid><sourcerecordid>A758481952</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-74214efda48dfec01b03a9cdcd7f83468fe1e03cec1a5ad6d7ddc8ae4d35804c3</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhi0EotXSI1dkiUs5pPgzcU6oXdEWqRII6Nny2uOuV0kc7KRo_z2Otq1a7IM99jPvfCH0npIzzlvyeYzdvqeSctbW5BU6ZqThleA1ef3sfoROct6RsoSsa9q8RUe8EaKpiTxGu3XsR5PMFO4B_5pmt8dxwNN2MYL3A-SMo8c_SqDTztgpWGxscJ_wTwiDj8mCw3_DtMW3w5TATMU0g8MXHRi7LcY19CO-DBtI-R16402X4eThXKHby6-_19fVzferb-vzm8oKKaeqEYwK8M4I5TxYQjeEm9Y66xqvuKiVBwqEW7DUSONq1zhnlQHhuFREWL5CXw6647zpwVkomZlOjyn0Ju11NEG__BnCVt_Fe01JkW9L21bo9EEhxT8z5En3IVvoOjNAnLNmiismpKhFQT_-h-7inIZS30IVgDG2CJ4dqDvTgV4aVwLbsh30wcYBfCjv541UQtFWsuJQHRxsijkn8E_pU6KX0esXoy_8h-c1P9GPg-b_AOz2q8M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2836432227</pqid></control><display><type>article</type><title>Comparative Study on the Stiffness of Poly(lactic acid) Reinforced with Untreated and Bleached Hemp Fibers</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Aguado, Roberto J ; Bastida, Gabriela A ; Espinach, Francisco X ; Llorens, Joan ; Tarrés, Quim ; Delgado-Aguilar, Marc ; Mutjé, Pere</creator><creatorcontrib>Aguado, Roberto J ; Bastida, Gabriela A ; Espinach, Francisco X ; Llorens, Joan ; Tarrés, Quim ; Delgado-Aguilar, Marc ; Mutjé, Pere</creatorcontrib><description>Composite materials containing natural reinforcement fibers, generally called biocomposites, have attracted the interest of both researchers and manufacturers, but the most environmentally advantageous combinations include a bio-based matrix, as well. With this in mind, a poly(lactic acid) (PLA) matrix was reinforced with natural fibers from hemp, both untreated strands (UHSs) and soda-bleached fibers (SBHFs). The preparation of the subsequent fully bio-sourced, discontinuously reinforced composites involved kinetic mixing, intensive single-screw extrusion, milling, and injection molding. Up to a fiber content of 30 wt%, the tensile modulus increased linearly with the volume fraction of the dispersed phase. Differences between SBHFs (up to 7.6 Gpa) and UHSs (up to 6.9 Gpa) were hardly significant ( = 0.1), but SBHF-reinforced composites displayed higher strain at failure. In any case, for the same fiber load (30 wt%), the Young's modulus of PLA/hemp biocomposites was greater than that of glass fiber (GF)-reinforced polypropylene (5.7 GPa), albeit lower than that of PLA/GF (9.8 GPa). Considering all the measurements, the contribution of each phase was analyzed by applying the Hirsch model and the Tsai-Pagano model. As a concluding remark, although the intrinsic tensile modulus of SBHFs was lower than that of GF, the efficiency of those natural fibers as reinforcement (according to the rule of mixtures) was found to be higher.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym15132960</identifier><identifier>PMID: 37447605</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Biomedical materials ; Bioplastics ; Bleaching ; Comparative studies ; Composite materials ; Efficiency ; Energy consumption ; Extrusion molding ; Glass fiber reinforced plastics ; Hemp ; Injection molding ; Lactic acid ; Lignin ; Modulus of elasticity ; Polylactic acid ; Stiffness ; Tensile strength</subject><ispartof>Polymers, 2023-07, Vol.15 (13), p.2960</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-74214efda48dfec01b03a9cdcd7f83468fe1e03cec1a5ad6d7ddc8ae4d35804c3</citedby><cites>FETCH-LOGICAL-c455t-74214efda48dfec01b03a9cdcd7f83468fe1e03cec1a5ad6d7ddc8ae4d35804c3</cites><orcidid>0000-0003-0205-1787 ; 0000-0003-3766-898X ; 0000-0002-7021-2055 ; 0000-0002-1540-3326 ; 0000-0002-6635-0260 ; 0000-0001-9864-1794</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10346907/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10346907/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37447605$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aguado, Roberto J</creatorcontrib><creatorcontrib>Bastida, Gabriela A</creatorcontrib><creatorcontrib>Espinach, Francisco X</creatorcontrib><creatorcontrib>Llorens, Joan</creatorcontrib><creatorcontrib>Tarrés, Quim</creatorcontrib><creatorcontrib>Delgado-Aguilar, Marc</creatorcontrib><creatorcontrib>Mutjé, Pere</creatorcontrib><title>Comparative Study on the Stiffness of Poly(lactic acid) Reinforced with Untreated and Bleached Hemp Fibers</title><title>Polymers</title><addtitle>Polymers (Basel)</addtitle><description>Composite materials containing natural reinforcement fibers, generally called biocomposites, have attracted the interest of both researchers and manufacturers, but the most environmentally advantageous combinations include a bio-based matrix, as well. With this in mind, a poly(lactic acid) (PLA) matrix was reinforced with natural fibers from hemp, both untreated strands (UHSs) and soda-bleached fibers (SBHFs). The preparation of the subsequent fully bio-sourced, discontinuously reinforced composites involved kinetic mixing, intensive single-screw extrusion, milling, and injection molding. Up to a fiber content of 30 wt%, the tensile modulus increased linearly with the volume fraction of the dispersed phase. Differences between SBHFs (up to 7.6 Gpa) and UHSs (up to 6.9 Gpa) were hardly significant ( = 0.1), but SBHF-reinforced composites displayed higher strain at failure. In any case, for the same fiber load (30 wt%), the Young's modulus of PLA/hemp biocomposites was greater than that of glass fiber (GF)-reinforced polypropylene (5.7 GPa), albeit lower than that of PLA/GF (9.8 GPa). Considering all the measurements, the contribution of each phase was analyzed by applying the Hirsch model and the Tsai-Pagano model. As a concluding remark, although the intrinsic tensile modulus of SBHFs was lower than that of GF, the efficiency of those natural fibers as reinforcement (according to the rule of mixtures) was found to be higher.</description><subject>Biomedical materials</subject><subject>Bioplastics</subject><subject>Bleaching</subject><subject>Comparative studies</subject><subject>Composite materials</subject><subject>Efficiency</subject><subject>Energy consumption</subject><subject>Extrusion molding</subject><subject>Glass fiber reinforced plastics</subject><subject>Hemp</subject><subject>Injection molding</subject><subject>Lactic acid</subject><subject>Lignin</subject><subject>Modulus of elasticity</subject><subject>Polylactic acid</subject><subject>Stiffness</subject><subject>Tensile strength</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkU1v1DAQhi0EotXSI1dkiUs5pPgzcU6oXdEWqRII6Nny2uOuV0kc7KRo_z2Otq1a7IM99jPvfCH0npIzzlvyeYzdvqeSctbW5BU6ZqThleA1ef3sfoROct6RsoSsa9q8RUe8EaKpiTxGu3XsR5PMFO4B_5pmt8dxwNN2MYL3A-SMo8c_SqDTztgpWGxscJ_wTwiDj8mCw3_DtMW3w5TATMU0g8MXHRi7LcY19CO-DBtI-R16402X4eThXKHby6-_19fVzferb-vzm8oKKaeqEYwK8M4I5TxYQjeEm9Y66xqvuKiVBwqEW7DUSONq1zhnlQHhuFREWL5CXw6647zpwVkomZlOjyn0Ju11NEG__BnCVt_Fe01JkW9L21bo9EEhxT8z5En3IVvoOjNAnLNmiismpKhFQT_-h-7inIZS30IVgDG2CJ4dqDvTgV4aVwLbsh30wcYBfCjv541UQtFWsuJQHRxsijkn8E_pU6KX0esXoy_8h-c1P9GPg-b_AOz2q8M</recordid><startdate>20230706</startdate><enddate>20230706</enddate><creator>Aguado, Roberto J</creator><creator>Bastida, Gabriela A</creator><creator>Espinach, Francisco X</creator><creator>Llorens, Joan</creator><creator>Tarrés, Quim</creator><creator>Delgado-Aguilar, Marc</creator><creator>Mutjé, Pere</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0205-1787</orcidid><orcidid>https://orcid.org/0000-0003-3766-898X</orcidid><orcidid>https://orcid.org/0000-0002-7021-2055</orcidid><orcidid>https://orcid.org/0000-0002-1540-3326</orcidid><orcidid>https://orcid.org/0000-0002-6635-0260</orcidid><orcidid>https://orcid.org/0000-0001-9864-1794</orcidid></search><sort><creationdate>20230706</creationdate><title>Comparative Study on the Stiffness of Poly(lactic acid) Reinforced with Untreated and Bleached Hemp Fibers</title><author>Aguado, Roberto J ; Bastida, Gabriela A ; Espinach, Francisco X ; Llorens, Joan ; Tarrés, Quim ; Delgado-Aguilar, Marc ; Mutjé, Pere</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-74214efda48dfec01b03a9cdcd7f83468fe1e03cec1a5ad6d7ddc8ae4d35804c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biomedical materials</topic><topic>Bioplastics</topic><topic>Bleaching</topic><topic>Comparative studies</topic><topic>Composite materials</topic><topic>Efficiency</topic><topic>Energy consumption</topic><topic>Extrusion molding</topic><topic>Glass fiber reinforced plastics</topic><topic>Hemp</topic><topic>Injection molding</topic><topic>Lactic acid</topic><topic>Lignin</topic><topic>Modulus of elasticity</topic><topic>Polylactic acid</topic><topic>Stiffness</topic><topic>Tensile strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aguado, Roberto J</creatorcontrib><creatorcontrib>Bastida, Gabriela A</creatorcontrib><creatorcontrib>Espinach, Francisco X</creatorcontrib><creatorcontrib>Llorens, Joan</creatorcontrib><creatorcontrib>Tarrés, Quim</creatorcontrib><creatorcontrib>Delgado-Aguilar, Marc</creatorcontrib><creatorcontrib>Mutjé, Pere</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aguado, Roberto J</au><au>Bastida, Gabriela A</au><au>Espinach, Francisco X</au><au>Llorens, Joan</au><au>Tarrés, Quim</au><au>Delgado-Aguilar, Marc</au><au>Mutjé, Pere</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative Study on the Stiffness of Poly(lactic acid) Reinforced with Untreated and Bleached Hemp Fibers</atitle><jtitle>Polymers</jtitle><addtitle>Polymers (Basel)</addtitle><date>2023-07-06</date><risdate>2023</risdate><volume>15</volume><issue>13</issue><spage>2960</spage><pages>2960-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>Composite materials containing natural reinforcement fibers, generally called biocomposites, have attracted the interest of both researchers and manufacturers, but the most environmentally advantageous combinations include a bio-based matrix, as well. With this in mind, a poly(lactic acid) (PLA) matrix was reinforced with natural fibers from hemp, both untreated strands (UHSs) and soda-bleached fibers (SBHFs). The preparation of the subsequent fully bio-sourced, discontinuously reinforced composites involved kinetic mixing, intensive single-screw extrusion, milling, and injection molding. Up to a fiber content of 30 wt%, the tensile modulus increased linearly with the volume fraction of the dispersed phase. Differences between SBHFs (up to 7.6 Gpa) and UHSs (up to 6.9 Gpa) were hardly significant ( = 0.1), but SBHF-reinforced composites displayed higher strain at failure. In any case, for the same fiber load (30 wt%), the Young's modulus of PLA/hemp biocomposites was greater than that of glass fiber (GF)-reinforced polypropylene (5.7 GPa), albeit lower than that of PLA/GF (9.8 GPa). Considering all the measurements, the contribution of each phase was analyzed by applying the Hirsch model and the Tsai-Pagano model. As a concluding remark, although the intrinsic tensile modulus of SBHFs was lower than that of GF, the efficiency of those natural fibers as reinforcement (according to the rule of mixtures) was found to be higher.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>37447605</pmid><doi>10.3390/polym15132960</doi><orcidid>https://orcid.org/0000-0003-0205-1787</orcidid><orcidid>https://orcid.org/0000-0003-3766-898X</orcidid><orcidid>https://orcid.org/0000-0002-7021-2055</orcidid><orcidid>https://orcid.org/0000-0002-1540-3326</orcidid><orcidid>https://orcid.org/0000-0002-6635-0260</orcidid><orcidid>https://orcid.org/0000-0001-9864-1794</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4360
ispartof Polymers, 2023-07, Vol.15 (13), p.2960
issn 2073-4360
2073-4360
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10346907
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access
subjects Biomedical materials
Bioplastics
Bleaching
Comparative studies
Composite materials
Efficiency
Energy consumption
Extrusion molding
Glass fiber reinforced plastics
Hemp
Injection molding
Lactic acid
Lignin
Modulus of elasticity
Polylactic acid
Stiffness
Tensile strength
title Comparative Study on the Stiffness of Poly(lactic acid) Reinforced with Untreated and Bleached Hemp Fibers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T21%3A44%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20Study%20on%20the%20Stiffness%20of%20Poly(lactic%20acid)%20Reinforced%20with%20Untreated%20and%20Bleached%20Hemp%20Fibers&rft.jtitle=Polymers&rft.au=Aguado,%20Roberto%20J&rft.date=2023-07-06&rft.volume=15&rft.issue=13&rft.spage=2960&rft.pages=2960-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym15132960&rft_dat=%3Cgale_pubme%3EA758481952%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2836432227&rft_id=info:pmid/37447605&rft_galeid=A758481952&rfr_iscdi=true