Defining NAD(P)(H) Catabolism
Dietary vitamin B3 components, such as nicotinamide and nicotinic acid, are precursors to the ubiquitous redox cofactor nicotinamide adenine dinucleotide (NAD ). NAD levels are thought to decline with age and disease. While the drivers of this decline remain under intense investigation, strategies h...
Gespeichert in:
Veröffentlicht in: | Nutrients 2023-07, Vol.15 (13), p.3064 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 13 |
container_start_page | 3064 |
container_title | Nutrients |
container_volume | 15 |
creator | Dhuguru, Jyothi Dellinger, Ryan W Migaud, Marie E |
description | Dietary vitamin B3 components, such as nicotinamide and nicotinic acid, are precursors to the ubiquitous redox cofactor nicotinamide adenine dinucleotide (NAD
). NAD
levels are thought to decline with age and disease. While the drivers of this decline remain under intense investigation, strategies have emerged seeking to functionally maintain NAD
levels through supplementation with NAD
biosynthetic intermediates. These include marketed products, such as nicotinamide riboside (NR) and its phosphorylated form (NMN). More recent developments have shown that NRH (the reduced form of NR) and its phosphorylated form NMNH also increases NAD
levels upon administration, although they initially generate NADH (the reduced form of NAD
). Other means to increase the combined levels of NAD
and NADH, NAD(H), include the inhibition of NAD
-consuming enzymes or activation of biosynthetic pathways. Multiple studies have shown that supplementation with an NAD(H) precursor changes the profile of NAD(H) catabolism. Yet, the pharmacological significance of NAD(H) catabolites is rarely considered although the distribution and abundance of these catabolites differ depending on the NAD(H) precursor used, the species in which the study is conducted, and the tissues used for the quantification. Significantly, some of these metabolites have emerged as biomarkers in physiological disorders and might not be innocuous. Herein, we review the known and emerging catabolites of the NAD(H) metabolome and highlight their biochemical and physiological function as well as key chemical and biochemical reactions leading to their formation. Furthermore, we emphasize the need for analytical methods that inform on the full NAD(H) metabolome since the relative abundance of NAD(H) catabolites informs how NAD(H) precursors are used, recycled, and eliminated. |
doi_str_mv | 10.3390/nu15133064 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10346783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A758421008</galeid><sourcerecordid>A758421008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-60b43f802efeff76d40ec639dca85a822379a166c1d0274bf60e164e0f9c0bd33</originalsourceid><addsrcrecordid>eNpdkUFPGzEQhS3UClDKhTsVUi9JpcDY47W9JxQFCkgIOMDZ8nrt1GjXputspf57NiQEin3wyPPNs2ceIYcUThBLOI09LSgiCL5D9hlINhWC45cP8R45yPkJVkuCFLhL9lByLlGV--To3PkQQ1wc387Ox_eT8dXkeG6WpkpNyO038tWbJruDzTkij78uHuZX05u7y-v57GZqORfLqYCKo1fAnHfeS1FzcFZgWVujCqMYQ1kaKoSlNTDJKy_AUcEd-NJCVSOOyNla97mvWldbF5edafRzF1rT_dPJBP1_JobfepH-agrIhVQrhfFGoUt_epeXug3ZuqYx0aU-a6ZQMV5gwQf0xyf0KfVdHPpbUYIDQ1ADdbKmFqZxOkSfhoftsGvXBpviMLbhfiYLxRmF14Kf6wLbpZw757ffp6BXVul3qwb4-8eGt-ibMfgCiDeKeg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2836402308</pqid></control><display><type>article</type><title>Defining NAD(P)(H) Catabolism</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><creator>Dhuguru, Jyothi ; Dellinger, Ryan W ; Migaud, Marie E</creator><creatorcontrib>Dhuguru, Jyothi ; Dellinger, Ryan W ; Migaud, Marie E</creatorcontrib><description>Dietary vitamin B3 components, such as nicotinamide and nicotinic acid, are precursors to the ubiquitous redox cofactor nicotinamide adenine dinucleotide (NAD
). NAD
levels are thought to decline with age and disease. While the drivers of this decline remain under intense investigation, strategies have emerged seeking to functionally maintain NAD
levels through supplementation with NAD
biosynthetic intermediates. These include marketed products, such as nicotinamide riboside (NR) and its phosphorylated form (NMN). More recent developments have shown that NRH (the reduced form of NR) and its phosphorylated form NMNH also increases NAD
levels upon administration, although they initially generate NADH (the reduced form of NAD
). Other means to increase the combined levels of NAD
and NADH, NAD(H), include the inhibition of NAD
-consuming enzymes or activation of biosynthetic pathways. Multiple studies have shown that supplementation with an NAD(H) precursor changes the profile of NAD(H) catabolism. Yet, the pharmacological significance of NAD(H) catabolites is rarely considered although the distribution and abundance of these catabolites differ depending on the NAD(H) precursor used, the species in which the study is conducted, and the tissues used for the quantification. Significantly, some of these metabolites have emerged as biomarkers in physiological disorders and might not be innocuous. Herein, we review the known and emerging catabolites of the NAD(H) metabolome and highlight their biochemical and physiological function as well as key chemical and biochemical reactions leading to their formation. Furthermore, we emphasize the need for analytical methods that inform on the full NAD(H) metabolome since the relative abundance of NAD(H) catabolites informs how NAD(H) precursors are used, recycled, and eliminated.</description><identifier>ISSN: 2072-6643</identifier><identifier>EISSN: 2072-6643</identifier><identifier>DOI: 10.3390/nu15133064</identifier><identifier>PMID: 37447389</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Abundance ; Adenine ; Alzheimer's disease ; Analytical methods ; Biomarkers - metabolism ; Catabolism ; Catabolites ; Chemical reactions ; Diabetes ; Enzymes ; Homocysteine ; Intermediates ; Kinases ; Metabolic syndrome ; Metabolites ; Metabolome ; NAD - metabolism ; Niacin ; Niacinamide - metabolism ; Nicotinamide ; Nicotinic acid ; Oxidation ; Oxidation-Reduction ; Phosphorylation ; Physiological aspects ; Physiology ; Precursors ; Relative abundance ; Review ; Vitamin B</subject><ispartof>Nutrients, 2023-07, Vol.15 (13), p.3064</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-60b43f802efeff76d40ec639dca85a822379a166c1d0274bf60e164e0f9c0bd33</citedby><cites>FETCH-LOGICAL-c446t-60b43f802efeff76d40ec639dca85a822379a166c1d0274bf60e164e0f9c0bd33</cites><orcidid>0000-0002-9626-2405</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10346783/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10346783/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37447389$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dhuguru, Jyothi</creatorcontrib><creatorcontrib>Dellinger, Ryan W</creatorcontrib><creatorcontrib>Migaud, Marie E</creatorcontrib><title>Defining NAD(P)(H) Catabolism</title><title>Nutrients</title><addtitle>Nutrients</addtitle><description>Dietary vitamin B3 components, such as nicotinamide and nicotinic acid, are precursors to the ubiquitous redox cofactor nicotinamide adenine dinucleotide (NAD
). NAD
levels are thought to decline with age and disease. While the drivers of this decline remain under intense investigation, strategies have emerged seeking to functionally maintain NAD
levels through supplementation with NAD
biosynthetic intermediates. These include marketed products, such as nicotinamide riboside (NR) and its phosphorylated form (NMN). More recent developments have shown that NRH (the reduced form of NR) and its phosphorylated form NMNH also increases NAD
levels upon administration, although they initially generate NADH (the reduced form of NAD
). Other means to increase the combined levels of NAD
and NADH, NAD(H), include the inhibition of NAD
-consuming enzymes or activation of biosynthetic pathways. Multiple studies have shown that supplementation with an NAD(H) precursor changes the profile of NAD(H) catabolism. Yet, the pharmacological significance of NAD(H) catabolites is rarely considered although the distribution and abundance of these catabolites differ depending on the NAD(H) precursor used, the species in which the study is conducted, and the tissues used for the quantification. Significantly, some of these metabolites have emerged as biomarkers in physiological disorders and might not be innocuous. Herein, we review the known and emerging catabolites of the NAD(H) metabolome and highlight their biochemical and physiological function as well as key chemical and biochemical reactions leading to their formation. Furthermore, we emphasize the need for analytical methods that inform on the full NAD(H) metabolome since the relative abundance of NAD(H) catabolites informs how NAD(H) precursors are used, recycled, and eliminated.</description><subject>Abundance</subject><subject>Adenine</subject><subject>Alzheimer's disease</subject><subject>Analytical methods</subject><subject>Biomarkers - metabolism</subject><subject>Catabolism</subject><subject>Catabolites</subject><subject>Chemical reactions</subject><subject>Diabetes</subject><subject>Enzymes</subject><subject>Homocysteine</subject><subject>Intermediates</subject><subject>Kinases</subject><subject>Metabolic syndrome</subject><subject>Metabolites</subject><subject>Metabolome</subject><subject>NAD - metabolism</subject><subject>Niacin</subject><subject>Niacinamide - metabolism</subject><subject>Nicotinamide</subject><subject>Nicotinic acid</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Phosphorylation</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Precursors</subject><subject>Relative abundance</subject><subject>Review</subject><subject>Vitamin B</subject><issn>2072-6643</issn><issn>2072-6643</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkUFPGzEQhS3UClDKhTsVUi9JpcDY47W9JxQFCkgIOMDZ8nrt1GjXputspf57NiQEin3wyPPNs2ceIYcUThBLOI09LSgiCL5D9hlINhWC45cP8R45yPkJVkuCFLhL9lByLlGV--To3PkQQ1wc387Ox_eT8dXkeG6WpkpNyO038tWbJruDzTkij78uHuZX05u7y-v57GZqORfLqYCKo1fAnHfeS1FzcFZgWVujCqMYQ1kaKoSlNTDJKy_AUcEd-NJCVSOOyNla97mvWldbF5edafRzF1rT_dPJBP1_JobfepH-agrIhVQrhfFGoUt_epeXug3ZuqYx0aU-a6ZQMV5gwQf0xyf0KfVdHPpbUYIDQ1ADdbKmFqZxOkSfhoftsGvXBpviMLbhfiYLxRmF14Kf6wLbpZw757ffp6BXVul3qwb4-8eGt-ibMfgCiDeKeg</recordid><startdate>20230707</startdate><enddate>20230707</enddate><creator>Dhuguru, Jyothi</creator><creator>Dellinger, Ryan W</creator><creator>Migaud, Marie E</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9626-2405</orcidid></search><sort><creationdate>20230707</creationdate><title>Defining NAD(P)(H) Catabolism</title><author>Dhuguru, Jyothi ; Dellinger, Ryan W ; Migaud, Marie E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-60b43f802efeff76d40ec639dca85a822379a166c1d0274bf60e164e0f9c0bd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Abundance</topic><topic>Adenine</topic><topic>Alzheimer's disease</topic><topic>Analytical methods</topic><topic>Biomarkers - metabolism</topic><topic>Catabolism</topic><topic>Catabolites</topic><topic>Chemical reactions</topic><topic>Diabetes</topic><topic>Enzymes</topic><topic>Homocysteine</topic><topic>Intermediates</topic><topic>Kinases</topic><topic>Metabolic syndrome</topic><topic>Metabolites</topic><topic>Metabolome</topic><topic>NAD - metabolism</topic><topic>Niacin</topic><topic>Niacinamide - metabolism</topic><topic>Nicotinamide</topic><topic>Nicotinic acid</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Phosphorylation</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Precursors</topic><topic>Relative abundance</topic><topic>Review</topic><topic>Vitamin B</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dhuguru, Jyothi</creatorcontrib><creatorcontrib>Dellinger, Ryan W</creatorcontrib><creatorcontrib>Migaud, Marie E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Physical Education Index</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nutrients</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dhuguru, Jyothi</au><au>Dellinger, Ryan W</au><au>Migaud, Marie E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defining NAD(P)(H) Catabolism</atitle><jtitle>Nutrients</jtitle><addtitle>Nutrients</addtitle><date>2023-07-07</date><risdate>2023</risdate><volume>15</volume><issue>13</issue><spage>3064</spage><pages>3064-</pages><issn>2072-6643</issn><eissn>2072-6643</eissn><abstract>Dietary vitamin B3 components, such as nicotinamide and nicotinic acid, are precursors to the ubiquitous redox cofactor nicotinamide adenine dinucleotide (NAD
). NAD
levels are thought to decline with age and disease. While the drivers of this decline remain under intense investigation, strategies have emerged seeking to functionally maintain NAD
levels through supplementation with NAD
biosynthetic intermediates. These include marketed products, such as nicotinamide riboside (NR) and its phosphorylated form (NMN). More recent developments have shown that NRH (the reduced form of NR) and its phosphorylated form NMNH also increases NAD
levels upon administration, although they initially generate NADH (the reduced form of NAD
). Other means to increase the combined levels of NAD
and NADH, NAD(H), include the inhibition of NAD
-consuming enzymes or activation of biosynthetic pathways. Multiple studies have shown that supplementation with an NAD(H) precursor changes the profile of NAD(H) catabolism. Yet, the pharmacological significance of NAD(H) catabolites is rarely considered although the distribution and abundance of these catabolites differ depending on the NAD(H) precursor used, the species in which the study is conducted, and the tissues used for the quantification. Significantly, some of these metabolites have emerged as biomarkers in physiological disorders and might not be innocuous. Herein, we review the known and emerging catabolites of the NAD(H) metabolome and highlight their biochemical and physiological function as well as key chemical and biochemical reactions leading to their formation. Furthermore, we emphasize the need for analytical methods that inform on the full NAD(H) metabolome since the relative abundance of NAD(H) catabolites informs how NAD(H) precursors are used, recycled, and eliminated.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>37447389</pmid><doi>10.3390/nu15133064</doi><orcidid>https://orcid.org/0000-0002-9626-2405</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-6643 |
ispartof | Nutrients, 2023-07, Vol.15 (13), p.3064 |
issn | 2072-6643 2072-6643 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10346783 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central |
subjects | Abundance Adenine Alzheimer's disease Analytical methods Biomarkers - metabolism Catabolism Catabolites Chemical reactions Diabetes Enzymes Homocysteine Intermediates Kinases Metabolic syndrome Metabolites Metabolome NAD - metabolism Niacin Niacinamide - metabolism Nicotinamide Nicotinic acid Oxidation Oxidation-Reduction Phosphorylation Physiological aspects Physiology Precursors Relative abundance Review Vitamin B |
title | Defining NAD(P)(H) Catabolism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T04%3A45%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defining%20NAD(P)(H)%20Catabolism&rft.jtitle=Nutrients&rft.au=Dhuguru,%20Jyothi&rft.date=2023-07-07&rft.volume=15&rft.issue=13&rft.spage=3064&rft.pages=3064-&rft.issn=2072-6643&rft.eissn=2072-6643&rft_id=info:doi/10.3390/nu15133064&rft_dat=%3Cgale_pubme%3EA758421008%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2836402308&rft_id=info:pmid/37447389&rft_galeid=A758421008&rfr_iscdi=true |