Detecting SARS-CoV-2 BA.2, BA.4, and BA.5 Variants Utilizing a Robust RT-RPA-CRISPR/Cas12a-Based Method - China, 2023
Since 2019, numerous variants of concern for severe acute respiratory syndrome virus 2 (SARS-CoV-2) have emerged, leading to significant outbreaks. The development of novel, highly accurate, and rapid detection techniques for these new SARS-CoV-2 variants remains a primary focus in the ongoing effor...
Gespeichert in:
Veröffentlicht in: | China CDC weekly 2023-06, Vol.5 (26), p.584-591 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Since 2019, numerous variants of concern for severe acute respiratory syndrome virus 2 (SARS-CoV-2) have emerged, leading to significant outbreaks. The development of novel, highly accurate, and rapid detection techniques for these new SARS-CoV-2 variants remains a primary focus in the ongoing efforts to control and prevent the coronavirus disease 2019 (COVID-19) pandemic.
Reverse transcription-recombinase polymerase amplification combined with the clustered regularly interspaced short palindromic repeats-associated protein 12a (CRISPR/Cas12a) system was used to validate the detection of the Omicron BA.2, BA.4, and BA.5 variants of SARS-CoV-2.
Our results demonstrate that the CRISPR/Cas12a assay is capable of effectively detecting the SARS-CoV-2 BA.2, BA.4, and BA.5 variants with a limit of detection of 10, 1, and 10 copies/μL, respectively. Importantly, our assay successfully differentiated the three SARS-CoV-2 Omicron strains from one another. Additionally, we evaluated 46 SARS-CoV-2 positive clinical samples consisting of BA.2 (
=20), BA.4 (
=6), and BA.5 (
=20) variants, and the sensitivity of our assay ranged from 90% to 100%, while the specificity was 100%.
This research presents a swift and reliable CRISPR-based method that may be employed to track the emergence of novel SARS-CoV-2 variants. |
---|---|
ISSN: | 2096-7071 2096-7071 |
DOI: | 10.46234/ccdcw2023.113 |