Influence of Ni Contents on Microstructure and Mechanical Performance of AlSi10Mg Alloy by Selective Laser Melting
To improve the tensile strength and wear resistance of AlSi10Mg alloys, a novel in situ synthesis method of selective laser melting (SLM) was used to fabricate the Ni-reinforced AlSi10Mg samples. The eutectic Si networks formed around the -Al crystals by diffusion and transportation via Marangoni co...
Gespeichert in:
Veröffentlicht in: | Materials 2023-06, Vol.16 (13), p.4679 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 13 |
container_start_page | 4679 |
container_title | Materials |
container_volume | 16 |
creator | Wang, Hui He, Like Zhang, Qingyong Yuan, Yiqing |
description | To improve the tensile strength and wear resistance of AlSi10Mg alloys, a novel in situ synthesis method of selective laser melting (SLM) was used to fabricate the Ni-reinforced AlSi10Mg samples. The eutectic Si networks formed around the
-Al crystals by diffusion and transportation via Marangoni convection in the SLM process. Moreover, the XRD and TEM results verified that the Al
Ni nanoparticles were created by the in situ reaction of the Ni and aluminum matrix in the Ni/AlSi10Mg samples. Therefore, the microstructure of the Ni-containing alloys was constituted by the
-Al + Si network + Al
Ni phases. The dislocations accumulated at the continuous Si network boundaries and cannot transmit across the dislocation walls inside the Si network. SEM results revealed that the continuity and size of eutectic Si networks can be tailored by adjusting the Ni contents. Furthermore, the Al matrix also benefited from the Al
Ni nanoparticles against the dislocation movement due to their excellent interfacial bonding. The 3Ni-AlSi10Mg sample exhibited high mechanical properties due to the continuous Si networks and Al
Ni nanoparticles. The tensile strength, elongation, Vickers hardness, friction coefficient, and wear volumes of the 3Ni-AlSi10Mg samples were 401.15 ± 7.97 MPa, 6.23 ± 0.252%, 144.06 ± 0.81 HV, 0.608, 0.11 mm
, respectively, which outperformed the pure AlSi10Mg samples (372.05 ± 1.64 MPa, 5.84 ± 0.269%, 123.22 ± 1.18 HV, 0.66, and 0.135 mm
). |
doi_str_mv | 10.3390/ma16134679 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10343012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A758394981</galeid><sourcerecordid>A758394981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-112ae305415516944fa46f429e67796aad883e617c53ee294445bdc6b0f779f33</originalsourceid><addsrcrecordid>eNpdkVFrHCEUhSW0NGGbl_6AIOSlBDbV0XHGp7AsaRvYbQtpn8V1rhuDo6nOLOy_j8Nu07T64MX73aOHg9AHSq4Zk-RTr6mgjItGnqAzKqWYU8n5m1f1KTrP-ZGUxRhtK_kOnbKGcy5lc4bSXbB-hGAAR4u_ObyMYYAwZBwDXjuTYh7SaIYxAdahw2swDzo4oz3-AcnG1Ovj7MLfO0rW21L4uMebPb4HD2ZwO8ArnSGVWT-4sH2P3lrtM5wfzxn69fn25_LrfPX9y91ysZobzsUwp7TSwEjNaV1TUXxYzYXllQTRNFJo3bUtA0EbUzOAqgC83nRGbIgtfcvYDN0cdJ_GTQ-dKa6S9uopuV6nvYraqX87wT2obdwpShhnhFZF4eNRIcXfI-RB9S4b8F4HiGNWVcvaisspgBm6_A99jGMKxd9ECV63dSMLdX2gttqDcsHG8rApu4PemRjAunK_aOqWSS7bSfbqMDAFkRPYl-9Toqb81d_8C3zx2vAL-idt9gwjVqnC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2836458579</pqid></control><display><type>article</type><title>Influence of Ni Contents on Microstructure and Mechanical Performance of AlSi10Mg Alloy by Selective Laser Melting</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Wang, Hui ; He, Like ; Zhang, Qingyong ; Yuan, Yiqing</creator><creatorcontrib>Wang, Hui ; He, Like ; Zhang, Qingyong ; Yuan, Yiqing</creatorcontrib><description>To improve the tensile strength and wear resistance of AlSi10Mg alloys, a novel in situ synthesis method of selective laser melting (SLM) was used to fabricate the Ni-reinforced AlSi10Mg samples. The eutectic Si networks formed around the
-Al crystals by diffusion and transportation via Marangoni convection in the SLM process. Moreover, the XRD and TEM results verified that the Al
Ni nanoparticles were created by the in situ reaction of the Ni and aluminum matrix in the Ni/AlSi10Mg samples. Therefore, the microstructure of the Ni-containing alloys was constituted by the
-Al + Si network + Al
Ni phases. The dislocations accumulated at the continuous Si network boundaries and cannot transmit across the dislocation walls inside the Si network. SEM results revealed that the continuity and size of eutectic Si networks can be tailored by adjusting the Ni contents. Furthermore, the Al matrix also benefited from the Al
Ni nanoparticles against the dislocation movement due to their excellent interfacial bonding. The 3Ni-AlSi10Mg sample exhibited high mechanical properties due to the continuous Si networks and Al
Ni nanoparticles. The tensile strength, elongation, Vickers hardness, friction coefficient, and wear volumes of the 3Ni-AlSi10Mg samples were 401.15 ± 7.97 MPa, 6.23 ± 0.252%, 144.06 ± 0.81 HV, 0.608, 0.11 mm
, respectively, which outperformed the pure AlSi10Mg samples (372.05 ± 1.64 MPa, 5.84 ± 0.269%, 123.22 ± 1.18 HV, 0.66, and 0.135 mm
).</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma16134679</identifier><identifier>PMID: 37444997</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>3D printing ; Additive manufacturing ; Alloys ; Aluminum alloys ; Aluminum base alloys ; Coefficient of friction ; Cost control ; Density ; Diamond pyramid hardness ; Dislocations ; Elongation ; Interfacial bonding ; Laser beam melting ; Lasers ; Marangoni convection ; Mechanical properties ; Microstructure ; Nanoparticles ; Networks ; Nickel ; Powders ; Silicon ; Specialty metals industry ; Tensile strength ; Thermal properties ; Transportation equipment industry ; Wear resistance</subject><ispartof>Materials, 2023-06, Vol.16 (13), p.4679</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-112ae305415516944fa46f429e67796aad883e617c53ee294445bdc6b0f779f33</citedby><cites>FETCH-LOGICAL-c446t-112ae305415516944fa46f429e67796aad883e617c53ee294445bdc6b0f779f33</cites><orcidid>0000-0002-7825-0320</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10343012/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10343012/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37444997$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>He, Like</creatorcontrib><creatorcontrib>Zhang, Qingyong</creatorcontrib><creatorcontrib>Yuan, Yiqing</creatorcontrib><title>Influence of Ni Contents on Microstructure and Mechanical Performance of AlSi10Mg Alloy by Selective Laser Melting</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>To improve the tensile strength and wear resistance of AlSi10Mg alloys, a novel in situ synthesis method of selective laser melting (SLM) was used to fabricate the Ni-reinforced AlSi10Mg samples. The eutectic Si networks formed around the
-Al crystals by diffusion and transportation via Marangoni convection in the SLM process. Moreover, the XRD and TEM results verified that the Al
Ni nanoparticles were created by the in situ reaction of the Ni and aluminum matrix in the Ni/AlSi10Mg samples. Therefore, the microstructure of the Ni-containing alloys was constituted by the
-Al + Si network + Al
Ni phases. The dislocations accumulated at the continuous Si network boundaries and cannot transmit across the dislocation walls inside the Si network. SEM results revealed that the continuity and size of eutectic Si networks can be tailored by adjusting the Ni contents. Furthermore, the Al matrix also benefited from the Al
Ni nanoparticles against the dislocation movement due to their excellent interfacial bonding. The 3Ni-AlSi10Mg sample exhibited high mechanical properties due to the continuous Si networks and Al
Ni nanoparticles. The tensile strength, elongation, Vickers hardness, friction coefficient, and wear volumes of the 3Ni-AlSi10Mg samples were 401.15 ± 7.97 MPa, 6.23 ± 0.252%, 144.06 ± 0.81 HV, 0.608, 0.11 mm
, respectively, which outperformed the pure AlSi10Mg samples (372.05 ± 1.64 MPa, 5.84 ± 0.269%, 123.22 ± 1.18 HV, 0.66, and 0.135 mm
).</description><subject>3D printing</subject><subject>Additive manufacturing</subject><subject>Alloys</subject><subject>Aluminum alloys</subject><subject>Aluminum base alloys</subject><subject>Coefficient of friction</subject><subject>Cost control</subject><subject>Density</subject><subject>Diamond pyramid hardness</subject><subject>Dislocations</subject><subject>Elongation</subject><subject>Interfacial bonding</subject><subject>Laser beam melting</subject><subject>Lasers</subject><subject>Marangoni convection</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Nanoparticles</subject><subject>Networks</subject><subject>Nickel</subject><subject>Powders</subject><subject>Silicon</subject><subject>Specialty metals industry</subject><subject>Tensile strength</subject><subject>Thermal properties</subject><subject>Transportation equipment industry</subject><subject>Wear resistance</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkVFrHCEUhSW0NGGbl_6AIOSlBDbV0XHGp7AsaRvYbQtpn8V1rhuDo6nOLOy_j8Nu07T64MX73aOHg9AHSq4Zk-RTr6mgjItGnqAzKqWYU8n5m1f1KTrP-ZGUxRhtK_kOnbKGcy5lc4bSXbB-hGAAR4u_ObyMYYAwZBwDXjuTYh7SaIYxAdahw2swDzo4oz3-AcnG1Ovj7MLfO0rW21L4uMebPb4HD2ZwO8ArnSGVWT-4sH2P3lrtM5wfzxn69fn25_LrfPX9y91ysZobzsUwp7TSwEjNaV1TUXxYzYXllQTRNFJo3bUtA0EbUzOAqgC83nRGbIgtfcvYDN0cdJ_GTQ-dKa6S9uopuV6nvYraqX87wT2obdwpShhnhFZF4eNRIcXfI-RB9S4b8F4HiGNWVcvaisspgBm6_A99jGMKxd9ECV63dSMLdX2gttqDcsHG8rApu4PemRjAunK_aOqWSS7bSfbqMDAFkRPYl-9Toqb81d_8C3zx2vAL-idt9gwjVqnC</recordid><startdate>20230628</startdate><enddate>20230628</enddate><creator>Wang, Hui</creator><creator>He, Like</creator><creator>Zhang, Qingyong</creator><creator>Yuan, Yiqing</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7825-0320</orcidid></search><sort><creationdate>20230628</creationdate><title>Influence of Ni Contents on Microstructure and Mechanical Performance of AlSi10Mg Alloy by Selective Laser Melting</title><author>Wang, Hui ; He, Like ; Zhang, Qingyong ; Yuan, Yiqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-112ae305415516944fa46f429e67796aad883e617c53ee294445bdc6b0f779f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3D printing</topic><topic>Additive manufacturing</topic><topic>Alloys</topic><topic>Aluminum alloys</topic><topic>Aluminum base alloys</topic><topic>Coefficient of friction</topic><topic>Cost control</topic><topic>Density</topic><topic>Diamond pyramid hardness</topic><topic>Dislocations</topic><topic>Elongation</topic><topic>Interfacial bonding</topic><topic>Laser beam melting</topic><topic>Lasers</topic><topic>Marangoni convection</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Nanoparticles</topic><topic>Networks</topic><topic>Nickel</topic><topic>Powders</topic><topic>Silicon</topic><topic>Specialty metals industry</topic><topic>Tensile strength</topic><topic>Thermal properties</topic><topic>Transportation equipment industry</topic><topic>Wear resistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>He, Like</creatorcontrib><creatorcontrib>Zhang, Qingyong</creatorcontrib><creatorcontrib>Yuan, Yiqing</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Hui</au><au>He, Like</au><au>Zhang, Qingyong</au><au>Yuan, Yiqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of Ni Contents on Microstructure and Mechanical Performance of AlSi10Mg Alloy by Selective Laser Melting</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2023-06-28</date><risdate>2023</risdate><volume>16</volume><issue>13</issue><spage>4679</spage><pages>4679-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>To improve the tensile strength and wear resistance of AlSi10Mg alloys, a novel in situ synthesis method of selective laser melting (SLM) was used to fabricate the Ni-reinforced AlSi10Mg samples. The eutectic Si networks formed around the
-Al crystals by diffusion and transportation via Marangoni convection in the SLM process. Moreover, the XRD and TEM results verified that the Al
Ni nanoparticles were created by the in situ reaction of the Ni and aluminum matrix in the Ni/AlSi10Mg samples. Therefore, the microstructure of the Ni-containing alloys was constituted by the
-Al + Si network + Al
Ni phases. The dislocations accumulated at the continuous Si network boundaries and cannot transmit across the dislocation walls inside the Si network. SEM results revealed that the continuity and size of eutectic Si networks can be tailored by adjusting the Ni contents. Furthermore, the Al matrix also benefited from the Al
Ni nanoparticles against the dislocation movement due to their excellent interfacial bonding. The 3Ni-AlSi10Mg sample exhibited high mechanical properties due to the continuous Si networks and Al
Ni nanoparticles. The tensile strength, elongation, Vickers hardness, friction coefficient, and wear volumes of the 3Ni-AlSi10Mg samples were 401.15 ± 7.97 MPa, 6.23 ± 0.252%, 144.06 ± 0.81 HV, 0.608, 0.11 mm
, respectively, which outperformed the pure AlSi10Mg samples (372.05 ± 1.64 MPa, 5.84 ± 0.269%, 123.22 ± 1.18 HV, 0.66, and 0.135 mm
).</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>37444997</pmid><doi>10.3390/ma16134679</doi><orcidid>https://orcid.org/0000-0002-7825-0320</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2023-06, Vol.16 (13), p.4679 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10343012 |
source | PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | 3D printing Additive manufacturing Alloys Aluminum alloys Aluminum base alloys Coefficient of friction Cost control Density Diamond pyramid hardness Dislocations Elongation Interfacial bonding Laser beam melting Lasers Marangoni convection Mechanical properties Microstructure Nanoparticles Networks Nickel Powders Silicon Specialty metals industry Tensile strength Thermal properties Transportation equipment industry Wear resistance |
title | Influence of Ni Contents on Microstructure and Mechanical Performance of AlSi10Mg Alloy by Selective Laser Melting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T17%3A09%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20Ni%20Contents%20on%20Microstructure%20and%20Mechanical%20Performance%20of%20AlSi10Mg%20Alloy%20by%20Selective%20Laser%20Melting&rft.jtitle=Materials&rft.au=Wang,%20Hui&rft.date=2023-06-28&rft.volume=16&rft.issue=13&rft.spage=4679&rft.pages=4679-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma16134679&rft_dat=%3Cgale_pubme%3EA758394981%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2836458579&rft_id=info:pmid/37444997&rft_galeid=A758394981&rfr_iscdi=true |