Influence of Ni Contents on Microstructure and Mechanical Performance of AlSi10Mg Alloy by Selective Laser Melting

To improve the tensile strength and wear resistance of AlSi10Mg alloys, a novel in situ synthesis method of selective laser melting (SLM) was used to fabricate the Ni-reinforced AlSi10Mg samples. The eutectic Si networks formed around the -Al crystals by diffusion and transportation via Marangoni co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2023-06, Vol.16 (13), p.4679
Hauptverfasser: Wang, Hui, He, Like, Zhang, Qingyong, Yuan, Yiqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 13
container_start_page 4679
container_title Materials
container_volume 16
creator Wang, Hui
He, Like
Zhang, Qingyong
Yuan, Yiqing
description To improve the tensile strength and wear resistance of AlSi10Mg alloys, a novel in situ synthesis method of selective laser melting (SLM) was used to fabricate the Ni-reinforced AlSi10Mg samples. The eutectic Si networks formed around the -Al crystals by diffusion and transportation via Marangoni convection in the SLM process. Moreover, the XRD and TEM results verified that the Al Ni nanoparticles were created by the in situ reaction of the Ni and aluminum matrix in the Ni/AlSi10Mg samples. Therefore, the microstructure of the Ni-containing alloys was constituted by the -Al + Si network + Al Ni phases. The dislocations accumulated at the continuous Si network boundaries and cannot transmit across the dislocation walls inside the Si network. SEM results revealed that the continuity and size of eutectic Si networks can be tailored by adjusting the Ni contents. Furthermore, the Al matrix also benefited from the Al Ni nanoparticles against the dislocation movement due to their excellent interfacial bonding. The 3Ni-AlSi10Mg sample exhibited high mechanical properties due to the continuous Si networks and Al Ni nanoparticles. The tensile strength, elongation, Vickers hardness, friction coefficient, and wear volumes of the 3Ni-AlSi10Mg samples were 401.15 ± 7.97 MPa, 6.23 ± 0.252%, 144.06 ± 0.81 HV, 0.608, 0.11 mm , respectively, which outperformed the pure AlSi10Mg samples (372.05 ± 1.64 MPa, 5.84 ± 0.269%, 123.22 ± 1.18 HV, 0.66, and 0.135 mm ).
doi_str_mv 10.3390/ma16134679
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10343012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A758394981</galeid><sourcerecordid>A758394981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-112ae305415516944fa46f429e67796aad883e617c53ee294445bdc6b0f779f33</originalsourceid><addsrcrecordid>eNpdkVFrHCEUhSW0NGGbl_6AIOSlBDbV0XHGp7AsaRvYbQtpn8V1rhuDo6nOLOy_j8Nu07T64MX73aOHg9AHSq4Zk-RTr6mgjItGnqAzKqWYU8n5m1f1KTrP-ZGUxRhtK_kOnbKGcy5lc4bSXbB-hGAAR4u_ObyMYYAwZBwDXjuTYh7SaIYxAdahw2swDzo4oz3-AcnG1Ovj7MLfO0rW21L4uMebPb4HD2ZwO8ArnSGVWT-4sH2P3lrtM5wfzxn69fn25_LrfPX9y91ysZobzsUwp7TSwEjNaV1TUXxYzYXllQTRNFJo3bUtA0EbUzOAqgC83nRGbIgtfcvYDN0cdJ_GTQ-dKa6S9uopuV6nvYraqX87wT2obdwpShhnhFZF4eNRIcXfI-RB9S4b8F4HiGNWVcvaisspgBm6_A99jGMKxd9ECV63dSMLdX2gttqDcsHG8rApu4PemRjAunK_aOqWSS7bSfbqMDAFkRPYl-9Toqb81d_8C3zx2vAL-idt9gwjVqnC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2836458579</pqid></control><display><type>article</type><title>Influence of Ni Contents on Microstructure and Mechanical Performance of AlSi10Mg Alloy by Selective Laser Melting</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Wang, Hui ; He, Like ; Zhang, Qingyong ; Yuan, Yiqing</creator><creatorcontrib>Wang, Hui ; He, Like ; Zhang, Qingyong ; Yuan, Yiqing</creatorcontrib><description>To improve the tensile strength and wear resistance of AlSi10Mg alloys, a novel in situ synthesis method of selective laser melting (SLM) was used to fabricate the Ni-reinforced AlSi10Mg samples. The eutectic Si networks formed around the -Al crystals by diffusion and transportation via Marangoni convection in the SLM process. Moreover, the XRD and TEM results verified that the Al Ni nanoparticles were created by the in situ reaction of the Ni and aluminum matrix in the Ni/AlSi10Mg samples. Therefore, the microstructure of the Ni-containing alloys was constituted by the -Al + Si network + Al Ni phases. The dislocations accumulated at the continuous Si network boundaries and cannot transmit across the dislocation walls inside the Si network. SEM results revealed that the continuity and size of eutectic Si networks can be tailored by adjusting the Ni contents. Furthermore, the Al matrix also benefited from the Al Ni nanoparticles against the dislocation movement due to their excellent interfacial bonding. The 3Ni-AlSi10Mg sample exhibited high mechanical properties due to the continuous Si networks and Al Ni nanoparticles. The tensile strength, elongation, Vickers hardness, friction coefficient, and wear volumes of the 3Ni-AlSi10Mg samples were 401.15 ± 7.97 MPa, 6.23 ± 0.252%, 144.06 ± 0.81 HV, 0.608, 0.11 mm , respectively, which outperformed the pure AlSi10Mg samples (372.05 ± 1.64 MPa, 5.84 ± 0.269%, 123.22 ± 1.18 HV, 0.66, and 0.135 mm ).</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma16134679</identifier><identifier>PMID: 37444997</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>3D printing ; Additive manufacturing ; Alloys ; Aluminum alloys ; Aluminum base alloys ; Coefficient of friction ; Cost control ; Density ; Diamond pyramid hardness ; Dislocations ; Elongation ; Interfacial bonding ; Laser beam melting ; Lasers ; Marangoni convection ; Mechanical properties ; Microstructure ; Nanoparticles ; Networks ; Nickel ; Powders ; Silicon ; Specialty metals industry ; Tensile strength ; Thermal properties ; Transportation equipment industry ; Wear resistance</subject><ispartof>Materials, 2023-06, Vol.16 (13), p.4679</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-112ae305415516944fa46f429e67796aad883e617c53ee294445bdc6b0f779f33</citedby><cites>FETCH-LOGICAL-c446t-112ae305415516944fa46f429e67796aad883e617c53ee294445bdc6b0f779f33</cites><orcidid>0000-0002-7825-0320</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10343012/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10343012/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37444997$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>He, Like</creatorcontrib><creatorcontrib>Zhang, Qingyong</creatorcontrib><creatorcontrib>Yuan, Yiqing</creatorcontrib><title>Influence of Ni Contents on Microstructure and Mechanical Performance of AlSi10Mg Alloy by Selective Laser Melting</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>To improve the tensile strength and wear resistance of AlSi10Mg alloys, a novel in situ synthesis method of selective laser melting (SLM) was used to fabricate the Ni-reinforced AlSi10Mg samples. The eutectic Si networks formed around the -Al crystals by diffusion and transportation via Marangoni convection in the SLM process. Moreover, the XRD and TEM results verified that the Al Ni nanoparticles were created by the in situ reaction of the Ni and aluminum matrix in the Ni/AlSi10Mg samples. Therefore, the microstructure of the Ni-containing alloys was constituted by the -Al + Si network + Al Ni phases. The dislocations accumulated at the continuous Si network boundaries and cannot transmit across the dislocation walls inside the Si network. SEM results revealed that the continuity and size of eutectic Si networks can be tailored by adjusting the Ni contents. Furthermore, the Al matrix also benefited from the Al Ni nanoparticles against the dislocation movement due to their excellent interfacial bonding. The 3Ni-AlSi10Mg sample exhibited high mechanical properties due to the continuous Si networks and Al Ni nanoparticles. The tensile strength, elongation, Vickers hardness, friction coefficient, and wear volumes of the 3Ni-AlSi10Mg samples were 401.15 ± 7.97 MPa, 6.23 ± 0.252%, 144.06 ± 0.81 HV, 0.608, 0.11 mm , respectively, which outperformed the pure AlSi10Mg samples (372.05 ± 1.64 MPa, 5.84 ± 0.269%, 123.22 ± 1.18 HV, 0.66, and 0.135 mm ).</description><subject>3D printing</subject><subject>Additive manufacturing</subject><subject>Alloys</subject><subject>Aluminum alloys</subject><subject>Aluminum base alloys</subject><subject>Coefficient of friction</subject><subject>Cost control</subject><subject>Density</subject><subject>Diamond pyramid hardness</subject><subject>Dislocations</subject><subject>Elongation</subject><subject>Interfacial bonding</subject><subject>Laser beam melting</subject><subject>Lasers</subject><subject>Marangoni convection</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Nanoparticles</subject><subject>Networks</subject><subject>Nickel</subject><subject>Powders</subject><subject>Silicon</subject><subject>Specialty metals industry</subject><subject>Tensile strength</subject><subject>Thermal properties</subject><subject>Transportation equipment industry</subject><subject>Wear resistance</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkVFrHCEUhSW0NGGbl_6AIOSlBDbV0XHGp7AsaRvYbQtpn8V1rhuDo6nOLOy_j8Nu07T64MX73aOHg9AHSq4Zk-RTr6mgjItGnqAzKqWYU8n5m1f1KTrP-ZGUxRhtK_kOnbKGcy5lc4bSXbB-hGAAR4u_ObyMYYAwZBwDXjuTYh7SaIYxAdahw2swDzo4oz3-AcnG1Ovj7MLfO0rW21L4uMebPb4HD2ZwO8ArnSGVWT-4sH2P3lrtM5wfzxn69fn25_LrfPX9y91ysZobzsUwp7TSwEjNaV1TUXxYzYXllQTRNFJo3bUtA0EbUzOAqgC83nRGbIgtfcvYDN0cdJ_GTQ-dKa6S9uopuV6nvYraqX87wT2obdwpShhnhFZF4eNRIcXfI-RB9S4b8F4HiGNWVcvaisspgBm6_A99jGMKxd9ECV63dSMLdX2gttqDcsHG8rApu4PemRjAunK_aOqWSS7bSfbqMDAFkRPYl-9Toqb81d_8C3zx2vAL-idt9gwjVqnC</recordid><startdate>20230628</startdate><enddate>20230628</enddate><creator>Wang, Hui</creator><creator>He, Like</creator><creator>Zhang, Qingyong</creator><creator>Yuan, Yiqing</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7825-0320</orcidid></search><sort><creationdate>20230628</creationdate><title>Influence of Ni Contents on Microstructure and Mechanical Performance of AlSi10Mg Alloy by Selective Laser Melting</title><author>Wang, Hui ; He, Like ; Zhang, Qingyong ; Yuan, Yiqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-112ae305415516944fa46f429e67796aad883e617c53ee294445bdc6b0f779f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3D printing</topic><topic>Additive manufacturing</topic><topic>Alloys</topic><topic>Aluminum alloys</topic><topic>Aluminum base alloys</topic><topic>Coefficient of friction</topic><topic>Cost control</topic><topic>Density</topic><topic>Diamond pyramid hardness</topic><topic>Dislocations</topic><topic>Elongation</topic><topic>Interfacial bonding</topic><topic>Laser beam melting</topic><topic>Lasers</topic><topic>Marangoni convection</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Nanoparticles</topic><topic>Networks</topic><topic>Nickel</topic><topic>Powders</topic><topic>Silicon</topic><topic>Specialty metals industry</topic><topic>Tensile strength</topic><topic>Thermal properties</topic><topic>Transportation equipment industry</topic><topic>Wear resistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>He, Like</creatorcontrib><creatorcontrib>Zhang, Qingyong</creatorcontrib><creatorcontrib>Yuan, Yiqing</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Hui</au><au>He, Like</au><au>Zhang, Qingyong</au><au>Yuan, Yiqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of Ni Contents on Microstructure and Mechanical Performance of AlSi10Mg Alloy by Selective Laser Melting</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2023-06-28</date><risdate>2023</risdate><volume>16</volume><issue>13</issue><spage>4679</spage><pages>4679-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>To improve the tensile strength and wear resistance of AlSi10Mg alloys, a novel in situ synthesis method of selective laser melting (SLM) was used to fabricate the Ni-reinforced AlSi10Mg samples. The eutectic Si networks formed around the -Al crystals by diffusion and transportation via Marangoni convection in the SLM process. Moreover, the XRD and TEM results verified that the Al Ni nanoparticles were created by the in situ reaction of the Ni and aluminum matrix in the Ni/AlSi10Mg samples. Therefore, the microstructure of the Ni-containing alloys was constituted by the -Al + Si network + Al Ni phases. The dislocations accumulated at the continuous Si network boundaries and cannot transmit across the dislocation walls inside the Si network. SEM results revealed that the continuity and size of eutectic Si networks can be tailored by adjusting the Ni contents. Furthermore, the Al matrix also benefited from the Al Ni nanoparticles against the dislocation movement due to their excellent interfacial bonding. The 3Ni-AlSi10Mg sample exhibited high mechanical properties due to the continuous Si networks and Al Ni nanoparticles. The tensile strength, elongation, Vickers hardness, friction coefficient, and wear volumes of the 3Ni-AlSi10Mg samples were 401.15 ± 7.97 MPa, 6.23 ± 0.252%, 144.06 ± 0.81 HV, 0.608, 0.11 mm , respectively, which outperformed the pure AlSi10Mg samples (372.05 ± 1.64 MPa, 5.84 ± 0.269%, 123.22 ± 1.18 HV, 0.66, and 0.135 mm ).</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>37444997</pmid><doi>10.3390/ma16134679</doi><orcidid>https://orcid.org/0000-0002-7825-0320</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2023-06, Vol.16 (13), p.4679
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10343012
source PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects 3D printing
Additive manufacturing
Alloys
Aluminum alloys
Aluminum base alloys
Coefficient of friction
Cost control
Density
Diamond pyramid hardness
Dislocations
Elongation
Interfacial bonding
Laser beam melting
Lasers
Marangoni convection
Mechanical properties
Microstructure
Nanoparticles
Networks
Nickel
Powders
Silicon
Specialty metals industry
Tensile strength
Thermal properties
Transportation equipment industry
Wear resistance
title Influence of Ni Contents on Microstructure and Mechanical Performance of AlSi10Mg Alloy by Selective Laser Melting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T17%3A09%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20Ni%20Contents%20on%20Microstructure%20and%20Mechanical%20Performance%20of%20AlSi10Mg%20Alloy%20by%20Selective%20Laser%20Melting&rft.jtitle=Materials&rft.au=Wang,%20Hui&rft.date=2023-06-28&rft.volume=16&rft.issue=13&rft.spage=4679&rft.pages=4679-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma16134679&rft_dat=%3Cgale_pubme%3EA758394981%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2836458579&rft_id=info:pmid/37444997&rft_galeid=A758394981&rfr_iscdi=true