Porous Material (Titanium Gas Diffusion Layer) in Proton Exchange Membrane Fuel Cell/Electrolyzer: Fabrication Methods & GeoDict: A Critical Review
Proton exchange membrane fuel cell (PEMFC) is a renewable energy source rapidly approaching commercial viability. The performance is significantly affected by the transfer of fluid, charges, and heat; gas diffusion layer (GDL) is primarily concerned with the consistent transfer of these components,...
Gespeichert in:
Veröffentlicht in: | Materials 2023-06, Vol.16 (13), p.4515 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 13 |
container_start_page | 4515 |
container_title | Materials |
container_volume | 16 |
creator | Hussain, Javid Kim, Dae-Kyeom Park, Sangmin Khalid, Muhammad-Waqas Hussain, Sayed-Sajid Lee, Bin Song, Myungsuk Kim, Taek-Soo |
description | Proton exchange membrane fuel cell (PEMFC) is a renewable energy source rapidly approaching commercial viability. The performance is significantly affected by the transfer of fluid, charges, and heat; gas diffusion layer (GDL) is primarily concerned with the consistent transfer of these components, which are heavily influenced by the material and design. High-efficiency GDL must have excellent thermal conductivity, electrical conductivity, permeability, corrosion resistance, and high mechanical characteristics. The first step in creating a high-performance GDL is selecting the appropriate material. Therefore, titanium is a suitable substitute for steel or carbon due to its high strength-to-weight and superior corrosion resistance. The second crucial parameter is the fabrication method that governs all the properties. This review seeks to comprehend numerous fabrication methods such as tape casting, 3D printing, freeze casting, phase separation technique, and lithography, along with the porosity controller in each process such as partial sintering, input design, ice structure, pore agent, etching time, and mask width. Moreover, other GDL properties are being studied, including microstructure and morphology. In the future, GeoDict simulation is highly recommended for optimizing various GDL properties, as it is frequently used for other porous materials. The approach can save time and energy compared to intensive experimental work. |
doi_str_mv | 10.3390/ma16134515 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10343005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A758394817</galeid><sourcerecordid>A758394817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-f0cc91c8cabf250afc4dfbac3ae56bed31d9db60c83f20afef2037edc06d1363</originalsourceid><addsrcrecordid>eNpdklFr2zAQx83YWEvXl32AIRiMdpBWsmRH7ssIaZINElZG3oUsnxIVWeokuVv6NfaFp5Cu6yaBTtz97i_dcUXxluALSht82UtSE8oqUr0ojknT1CPSMPby2f2oOI3xFudFKeFl87o4omPGGC_5cfHrxgc_RLSSCYKRFp2tTZLODD1ayIiujdZDNN6hpdxBOEfGoZvgU3bMfqqtdBtAK-jbIB2g-QAWTcHay5kFlYK3uwcIV2gu22CUTHuZFaSt7yL6gBbgr41KV2iCpsGkDFj0De4N_HhTvNLSRjh9tCfFej5bTz-Pll8XX6aT5UgxVqeRxko1RHElW11WWGrFOt1KRSVUdQsdJV3TtTVWnOoyhyGfdAydwnVHaE1Pik8H2buh7bMbXArSirtgehl2wksj_o04sxUbfy8IpoxiXGWFs0eF4L8PEJPoTVS5Abkbuami5JSXjHNOMvr-P_TWD8Hl8vZUzaqmLMeZujhQG2lBGKd9fljl3UFvlHegTfZPxhWnDeNkn_DxkKCCjzGAfvo-wWI_H-LvfGT43fOCn9A_00B_A0gXt2Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2836459227</pqid></control><display><type>article</type><title>Porous Material (Titanium Gas Diffusion Layer) in Proton Exchange Membrane Fuel Cell/Electrolyzer: Fabrication Methods & GeoDict: A Critical Review</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Hussain, Javid ; Kim, Dae-Kyeom ; Park, Sangmin ; Khalid, Muhammad-Waqas ; Hussain, Sayed-Sajid ; Lee, Bin ; Song, Myungsuk ; Kim, Taek-Soo</creator><creatorcontrib>Hussain, Javid ; Kim, Dae-Kyeom ; Park, Sangmin ; Khalid, Muhammad-Waqas ; Hussain, Sayed-Sajid ; Lee, Bin ; Song, Myungsuk ; Kim, Taek-Soo</creatorcontrib><description>Proton exchange membrane fuel cell (PEMFC) is a renewable energy source rapidly approaching commercial viability. The performance is significantly affected by the transfer of fluid, charges, and heat; gas diffusion layer (GDL) is primarily concerned with the consistent transfer of these components, which are heavily influenced by the material and design. High-efficiency GDL must have excellent thermal conductivity, electrical conductivity, permeability, corrosion resistance, and high mechanical characteristics. The first step in creating a high-performance GDL is selecting the appropriate material. Therefore, titanium is a suitable substitute for steel or carbon due to its high strength-to-weight and superior corrosion resistance. The second crucial parameter is the fabrication method that governs all the properties. This review seeks to comprehend numerous fabrication methods such as tape casting, 3D printing, freeze casting, phase separation technique, and lithography, along with the porosity controller in each process such as partial sintering, input design, ice structure, pore agent, etching time, and mask width. Moreover, other GDL properties are being studied, including microstructure and morphology. In the future, GeoDict simulation is highly recommended for optimizing various GDL properties, as it is frequently used for other porous materials. The approach can save time and energy compared to intensive experimental work.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma16134515</identifier><identifier>PMID: 37444828</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Carbon ; Corrosion and anti-corrosives ; Corrosion resistance ; Diffusion layers ; Efficiency ; Electrical conductivity ; Electrical resistivity ; Electrolytes ; Energy ; Fuel cell industry ; Fuel cells ; Gaseous diffusion ; Gases ; Heat conductivity ; Hydrogen ; Mechanical properties ; Optimization ; Permeability ; Phase separation ; Porosity ; Porous materials ; Proton exchange membrane fuel cells ; Protons ; Renewable energy sources ; Renewable resources ; Review ; Sintering (powder metallurgy) ; Software ; Strength to weight ratio ; Tape casting ; Thermal conductivity ; Three dimensional printing ; Titanium</subject><ispartof>Materials, 2023-06, Vol.16 (13), p.4515</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-f0cc91c8cabf250afc4dfbac3ae56bed31d9db60c83f20afef2037edc06d1363</citedby><cites>FETCH-LOGICAL-c446t-f0cc91c8cabf250afc4dfbac3ae56bed31d9db60c83f20afef2037edc06d1363</cites><orcidid>0000-0003-3937-3245</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10343005/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10343005/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37444828$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hussain, Javid</creatorcontrib><creatorcontrib>Kim, Dae-Kyeom</creatorcontrib><creatorcontrib>Park, Sangmin</creatorcontrib><creatorcontrib>Khalid, Muhammad-Waqas</creatorcontrib><creatorcontrib>Hussain, Sayed-Sajid</creatorcontrib><creatorcontrib>Lee, Bin</creatorcontrib><creatorcontrib>Song, Myungsuk</creatorcontrib><creatorcontrib>Kim, Taek-Soo</creatorcontrib><title>Porous Material (Titanium Gas Diffusion Layer) in Proton Exchange Membrane Fuel Cell/Electrolyzer: Fabrication Methods & GeoDict: A Critical Review</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Proton exchange membrane fuel cell (PEMFC) is a renewable energy source rapidly approaching commercial viability. The performance is significantly affected by the transfer of fluid, charges, and heat; gas diffusion layer (GDL) is primarily concerned with the consistent transfer of these components, which are heavily influenced by the material and design. High-efficiency GDL must have excellent thermal conductivity, electrical conductivity, permeability, corrosion resistance, and high mechanical characteristics. The first step in creating a high-performance GDL is selecting the appropriate material. Therefore, titanium is a suitable substitute for steel or carbon due to its high strength-to-weight and superior corrosion resistance. The second crucial parameter is the fabrication method that governs all the properties. This review seeks to comprehend numerous fabrication methods such as tape casting, 3D printing, freeze casting, phase separation technique, and lithography, along with the porosity controller in each process such as partial sintering, input design, ice structure, pore agent, etching time, and mask width. Moreover, other GDL properties are being studied, including microstructure and morphology. In the future, GeoDict simulation is highly recommended for optimizing various GDL properties, as it is frequently used for other porous materials. The approach can save time and energy compared to intensive experimental work.</description><subject>Carbon</subject><subject>Corrosion and anti-corrosives</subject><subject>Corrosion resistance</subject><subject>Diffusion layers</subject><subject>Efficiency</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Electrolytes</subject><subject>Energy</subject><subject>Fuel cell industry</subject><subject>Fuel cells</subject><subject>Gaseous diffusion</subject><subject>Gases</subject><subject>Heat conductivity</subject><subject>Hydrogen</subject><subject>Mechanical properties</subject><subject>Optimization</subject><subject>Permeability</subject><subject>Phase separation</subject><subject>Porosity</subject><subject>Porous materials</subject><subject>Proton exchange membrane fuel cells</subject><subject>Protons</subject><subject>Renewable energy sources</subject><subject>Renewable resources</subject><subject>Review</subject><subject>Sintering (powder metallurgy)</subject><subject>Software</subject><subject>Strength to weight ratio</subject><subject>Tape casting</subject><subject>Thermal conductivity</subject><subject>Three dimensional printing</subject><subject>Titanium</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdklFr2zAQx83YWEvXl32AIRiMdpBWsmRH7ssIaZINElZG3oUsnxIVWeokuVv6NfaFp5Cu6yaBTtz97i_dcUXxluALSht82UtSE8oqUr0ojknT1CPSMPby2f2oOI3xFudFKeFl87o4omPGGC_5cfHrxgc_RLSSCYKRFp2tTZLODD1ayIiujdZDNN6hpdxBOEfGoZvgU3bMfqqtdBtAK-jbIB2g-QAWTcHay5kFlYK3uwcIV2gu22CUTHuZFaSt7yL6gBbgr41KV2iCpsGkDFj0De4N_HhTvNLSRjh9tCfFej5bTz-Pll8XX6aT5UgxVqeRxko1RHElW11WWGrFOt1KRSVUdQsdJV3TtTVWnOoyhyGfdAydwnVHaE1Pik8H2buh7bMbXArSirtgehl2wksj_o04sxUbfy8IpoxiXGWFs0eF4L8PEJPoTVS5Abkbuami5JSXjHNOMvr-P_TWD8Hl8vZUzaqmLMeZujhQG2lBGKd9fljl3UFvlHegTfZPxhWnDeNkn_DxkKCCjzGAfvo-wWI_H-LvfGT43fOCn9A_00B_A0gXt2Y</recordid><startdate>20230621</startdate><enddate>20230621</enddate><creator>Hussain, Javid</creator><creator>Kim, Dae-Kyeom</creator><creator>Park, Sangmin</creator><creator>Khalid, Muhammad-Waqas</creator><creator>Hussain, Sayed-Sajid</creator><creator>Lee, Bin</creator><creator>Song, Myungsuk</creator><creator>Kim, Taek-Soo</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3937-3245</orcidid></search><sort><creationdate>20230621</creationdate><title>Porous Material (Titanium Gas Diffusion Layer) in Proton Exchange Membrane Fuel Cell/Electrolyzer: Fabrication Methods & GeoDict: A Critical Review</title><author>Hussain, Javid ; Kim, Dae-Kyeom ; Park, Sangmin ; Khalid, Muhammad-Waqas ; Hussain, Sayed-Sajid ; Lee, Bin ; Song, Myungsuk ; Kim, Taek-Soo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-f0cc91c8cabf250afc4dfbac3ae56bed31d9db60c83f20afef2037edc06d1363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Carbon</topic><topic>Corrosion and anti-corrosives</topic><topic>Corrosion resistance</topic><topic>Diffusion layers</topic><topic>Efficiency</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Electrolytes</topic><topic>Energy</topic><topic>Fuel cell industry</topic><topic>Fuel cells</topic><topic>Gaseous diffusion</topic><topic>Gases</topic><topic>Heat conductivity</topic><topic>Hydrogen</topic><topic>Mechanical properties</topic><topic>Optimization</topic><topic>Permeability</topic><topic>Phase separation</topic><topic>Porosity</topic><topic>Porous materials</topic><topic>Proton exchange membrane fuel cells</topic><topic>Protons</topic><topic>Renewable energy sources</topic><topic>Renewable resources</topic><topic>Review</topic><topic>Sintering (powder metallurgy)</topic><topic>Software</topic><topic>Strength to weight ratio</topic><topic>Tape casting</topic><topic>Thermal conductivity</topic><topic>Three dimensional printing</topic><topic>Titanium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hussain, Javid</creatorcontrib><creatorcontrib>Kim, Dae-Kyeom</creatorcontrib><creatorcontrib>Park, Sangmin</creatorcontrib><creatorcontrib>Khalid, Muhammad-Waqas</creatorcontrib><creatorcontrib>Hussain, Sayed-Sajid</creatorcontrib><creatorcontrib>Lee, Bin</creatorcontrib><creatorcontrib>Song, Myungsuk</creatorcontrib><creatorcontrib>Kim, Taek-Soo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hussain, Javid</au><au>Kim, Dae-Kyeom</au><au>Park, Sangmin</au><au>Khalid, Muhammad-Waqas</au><au>Hussain, Sayed-Sajid</au><au>Lee, Bin</au><au>Song, Myungsuk</au><au>Kim, Taek-Soo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Porous Material (Titanium Gas Diffusion Layer) in Proton Exchange Membrane Fuel Cell/Electrolyzer: Fabrication Methods & GeoDict: A Critical Review</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2023-06-21</date><risdate>2023</risdate><volume>16</volume><issue>13</issue><spage>4515</spage><pages>4515-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Proton exchange membrane fuel cell (PEMFC) is a renewable energy source rapidly approaching commercial viability. The performance is significantly affected by the transfer of fluid, charges, and heat; gas diffusion layer (GDL) is primarily concerned with the consistent transfer of these components, which are heavily influenced by the material and design. High-efficiency GDL must have excellent thermal conductivity, electrical conductivity, permeability, corrosion resistance, and high mechanical characteristics. The first step in creating a high-performance GDL is selecting the appropriate material. Therefore, titanium is a suitable substitute for steel or carbon due to its high strength-to-weight and superior corrosion resistance. The second crucial parameter is the fabrication method that governs all the properties. This review seeks to comprehend numerous fabrication methods such as tape casting, 3D printing, freeze casting, phase separation technique, and lithography, along with the porosity controller in each process such as partial sintering, input design, ice structure, pore agent, etching time, and mask width. Moreover, other GDL properties are being studied, including microstructure and morphology. In the future, GeoDict simulation is highly recommended for optimizing various GDL properties, as it is frequently used for other porous materials. The approach can save time and energy compared to intensive experimental work.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>37444828</pmid><doi>10.3390/ma16134515</doi><orcidid>https://orcid.org/0000-0003-3937-3245</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2023-06, Vol.16 (13), p.4515 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10343005 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access |
subjects | Carbon Corrosion and anti-corrosives Corrosion resistance Diffusion layers Efficiency Electrical conductivity Electrical resistivity Electrolytes Energy Fuel cell industry Fuel cells Gaseous diffusion Gases Heat conductivity Hydrogen Mechanical properties Optimization Permeability Phase separation Porosity Porous materials Proton exchange membrane fuel cells Protons Renewable energy sources Renewable resources Review Sintering (powder metallurgy) Software Strength to weight ratio Tape casting Thermal conductivity Three dimensional printing Titanium |
title | Porous Material (Titanium Gas Diffusion Layer) in Proton Exchange Membrane Fuel Cell/Electrolyzer: Fabrication Methods & GeoDict: A Critical Review |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T00%3A14%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Porous%20Material%20(Titanium%20Gas%20Diffusion%20Layer)%20in%20Proton%20Exchange%20Membrane%20Fuel%20Cell/Electrolyzer:%20Fabrication%20Methods%20&%20GeoDict:%20A%20Critical%20Review&rft.jtitle=Materials&rft.au=Hussain,%20Javid&rft.date=2023-06-21&rft.volume=16&rft.issue=13&rft.spage=4515&rft.pages=4515-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma16134515&rft_dat=%3Cgale_pubme%3EA758394817%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2836459227&rft_id=info:pmid/37444828&rft_galeid=A758394817&rfr_iscdi=true |