Porous Material (Titanium Gas Diffusion Layer) in Proton Exchange Membrane Fuel Cell/Electrolyzer: Fabrication Methods & GeoDict: A Critical Review

Proton exchange membrane fuel cell (PEMFC) is a renewable energy source rapidly approaching commercial viability. The performance is significantly affected by the transfer of fluid, charges, and heat; gas diffusion layer (GDL) is primarily concerned with the consistent transfer of these components,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2023-06, Vol.16 (13), p.4515
Hauptverfasser: Hussain, Javid, Kim, Dae-Kyeom, Park, Sangmin, Khalid, Muhammad-Waqas, Hussain, Sayed-Sajid, Lee, Bin, Song, Myungsuk, Kim, Taek-Soo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 13
container_start_page 4515
container_title Materials
container_volume 16
creator Hussain, Javid
Kim, Dae-Kyeom
Park, Sangmin
Khalid, Muhammad-Waqas
Hussain, Sayed-Sajid
Lee, Bin
Song, Myungsuk
Kim, Taek-Soo
description Proton exchange membrane fuel cell (PEMFC) is a renewable energy source rapidly approaching commercial viability. The performance is significantly affected by the transfer of fluid, charges, and heat; gas diffusion layer (GDL) is primarily concerned with the consistent transfer of these components, which are heavily influenced by the material and design. High-efficiency GDL must have excellent thermal conductivity, electrical conductivity, permeability, corrosion resistance, and high mechanical characteristics. The first step in creating a high-performance GDL is selecting the appropriate material. Therefore, titanium is a suitable substitute for steel or carbon due to its high strength-to-weight and superior corrosion resistance. The second crucial parameter is the fabrication method that governs all the properties. This review seeks to comprehend numerous fabrication methods such as tape casting, 3D printing, freeze casting, phase separation technique, and lithography, along with the porosity controller in each process such as partial sintering, input design, ice structure, pore agent, etching time, and mask width. Moreover, other GDL properties are being studied, including microstructure and morphology. In the future, GeoDict simulation is highly recommended for optimizing various GDL properties, as it is frequently used for other porous materials. The approach can save time and energy compared to intensive experimental work.
doi_str_mv 10.3390/ma16134515
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10343005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A758394817</galeid><sourcerecordid>A758394817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-f0cc91c8cabf250afc4dfbac3ae56bed31d9db60c83f20afef2037edc06d1363</originalsourceid><addsrcrecordid>eNpdklFr2zAQx83YWEvXl32AIRiMdpBWsmRH7ssIaZINElZG3oUsnxIVWeokuVv6NfaFp5Cu6yaBTtz97i_dcUXxluALSht82UtSE8oqUr0ojknT1CPSMPby2f2oOI3xFudFKeFl87o4omPGGC_5cfHrxgc_RLSSCYKRFp2tTZLODD1ayIiujdZDNN6hpdxBOEfGoZvgU3bMfqqtdBtAK-jbIB2g-QAWTcHay5kFlYK3uwcIV2gu22CUTHuZFaSt7yL6gBbgr41KV2iCpsGkDFj0De4N_HhTvNLSRjh9tCfFej5bTz-Pll8XX6aT5UgxVqeRxko1RHElW11WWGrFOt1KRSVUdQsdJV3TtTVWnOoyhyGfdAydwnVHaE1Pik8H2buh7bMbXArSirtgehl2wksj_o04sxUbfy8IpoxiXGWFs0eF4L8PEJPoTVS5Abkbuami5JSXjHNOMvr-P_TWD8Hl8vZUzaqmLMeZujhQG2lBGKd9fljl3UFvlHegTfZPxhWnDeNkn_DxkKCCjzGAfvo-wWI_H-LvfGT43fOCn9A_00B_A0gXt2Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2836459227</pqid></control><display><type>article</type><title>Porous Material (Titanium Gas Diffusion Layer) in Proton Exchange Membrane Fuel Cell/Electrolyzer: Fabrication Methods &amp; GeoDict: A Critical Review</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Hussain, Javid ; Kim, Dae-Kyeom ; Park, Sangmin ; Khalid, Muhammad-Waqas ; Hussain, Sayed-Sajid ; Lee, Bin ; Song, Myungsuk ; Kim, Taek-Soo</creator><creatorcontrib>Hussain, Javid ; Kim, Dae-Kyeom ; Park, Sangmin ; Khalid, Muhammad-Waqas ; Hussain, Sayed-Sajid ; Lee, Bin ; Song, Myungsuk ; Kim, Taek-Soo</creatorcontrib><description>Proton exchange membrane fuel cell (PEMFC) is a renewable energy source rapidly approaching commercial viability. The performance is significantly affected by the transfer of fluid, charges, and heat; gas diffusion layer (GDL) is primarily concerned with the consistent transfer of these components, which are heavily influenced by the material and design. High-efficiency GDL must have excellent thermal conductivity, electrical conductivity, permeability, corrosion resistance, and high mechanical characteristics. The first step in creating a high-performance GDL is selecting the appropriate material. Therefore, titanium is a suitable substitute for steel or carbon due to its high strength-to-weight and superior corrosion resistance. The second crucial parameter is the fabrication method that governs all the properties. This review seeks to comprehend numerous fabrication methods such as tape casting, 3D printing, freeze casting, phase separation technique, and lithography, along with the porosity controller in each process such as partial sintering, input design, ice structure, pore agent, etching time, and mask width. Moreover, other GDL properties are being studied, including microstructure and morphology. In the future, GeoDict simulation is highly recommended for optimizing various GDL properties, as it is frequently used for other porous materials. The approach can save time and energy compared to intensive experimental work.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma16134515</identifier><identifier>PMID: 37444828</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Carbon ; Corrosion and anti-corrosives ; Corrosion resistance ; Diffusion layers ; Efficiency ; Electrical conductivity ; Electrical resistivity ; Electrolytes ; Energy ; Fuel cell industry ; Fuel cells ; Gaseous diffusion ; Gases ; Heat conductivity ; Hydrogen ; Mechanical properties ; Optimization ; Permeability ; Phase separation ; Porosity ; Porous materials ; Proton exchange membrane fuel cells ; Protons ; Renewable energy sources ; Renewable resources ; Review ; Sintering (powder metallurgy) ; Software ; Strength to weight ratio ; Tape casting ; Thermal conductivity ; Three dimensional printing ; Titanium</subject><ispartof>Materials, 2023-06, Vol.16 (13), p.4515</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-f0cc91c8cabf250afc4dfbac3ae56bed31d9db60c83f20afef2037edc06d1363</citedby><cites>FETCH-LOGICAL-c446t-f0cc91c8cabf250afc4dfbac3ae56bed31d9db60c83f20afef2037edc06d1363</cites><orcidid>0000-0003-3937-3245</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10343005/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10343005/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37444828$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hussain, Javid</creatorcontrib><creatorcontrib>Kim, Dae-Kyeom</creatorcontrib><creatorcontrib>Park, Sangmin</creatorcontrib><creatorcontrib>Khalid, Muhammad-Waqas</creatorcontrib><creatorcontrib>Hussain, Sayed-Sajid</creatorcontrib><creatorcontrib>Lee, Bin</creatorcontrib><creatorcontrib>Song, Myungsuk</creatorcontrib><creatorcontrib>Kim, Taek-Soo</creatorcontrib><title>Porous Material (Titanium Gas Diffusion Layer) in Proton Exchange Membrane Fuel Cell/Electrolyzer: Fabrication Methods &amp; GeoDict: A Critical Review</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Proton exchange membrane fuel cell (PEMFC) is a renewable energy source rapidly approaching commercial viability. The performance is significantly affected by the transfer of fluid, charges, and heat; gas diffusion layer (GDL) is primarily concerned with the consistent transfer of these components, which are heavily influenced by the material and design. High-efficiency GDL must have excellent thermal conductivity, electrical conductivity, permeability, corrosion resistance, and high mechanical characteristics. The first step in creating a high-performance GDL is selecting the appropriate material. Therefore, titanium is a suitable substitute for steel or carbon due to its high strength-to-weight and superior corrosion resistance. The second crucial parameter is the fabrication method that governs all the properties. This review seeks to comprehend numerous fabrication methods such as tape casting, 3D printing, freeze casting, phase separation technique, and lithography, along with the porosity controller in each process such as partial sintering, input design, ice structure, pore agent, etching time, and mask width. Moreover, other GDL properties are being studied, including microstructure and morphology. In the future, GeoDict simulation is highly recommended for optimizing various GDL properties, as it is frequently used for other porous materials. The approach can save time and energy compared to intensive experimental work.</description><subject>Carbon</subject><subject>Corrosion and anti-corrosives</subject><subject>Corrosion resistance</subject><subject>Diffusion layers</subject><subject>Efficiency</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Electrolytes</subject><subject>Energy</subject><subject>Fuel cell industry</subject><subject>Fuel cells</subject><subject>Gaseous diffusion</subject><subject>Gases</subject><subject>Heat conductivity</subject><subject>Hydrogen</subject><subject>Mechanical properties</subject><subject>Optimization</subject><subject>Permeability</subject><subject>Phase separation</subject><subject>Porosity</subject><subject>Porous materials</subject><subject>Proton exchange membrane fuel cells</subject><subject>Protons</subject><subject>Renewable energy sources</subject><subject>Renewable resources</subject><subject>Review</subject><subject>Sintering (powder metallurgy)</subject><subject>Software</subject><subject>Strength to weight ratio</subject><subject>Tape casting</subject><subject>Thermal conductivity</subject><subject>Three dimensional printing</subject><subject>Titanium</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdklFr2zAQx83YWEvXl32AIRiMdpBWsmRH7ssIaZINElZG3oUsnxIVWeokuVv6NfaFp5Cu6yaBTtz97i_dcUXxluALSht82UtSE8oqUr0ojknT1CPSMPby2f2oOI3xFudFKeFl87o4omPGGC_5cfHrxgc_RLSSCYKRFp2tTZLODD1ayIiujdZDNN6hpdxBOEfGoZvgU3bMfqqtdBtAK-jbIB2g-QAWTcHay5kFlYK3uwcIV2gu22CUTHuZFaSt7yL6gBbgr41KV2iCpsGkDFj0De4N_HhTvNLSRjh9tCfFej5bTz-Pll8XX6aT5UgxVqeRxko1RHElW11WWGrFOt1KRSVUdQsdJV3TtTVWnOoyhyGfdAydwnVHaE1Pik8H2buh7bMbXArSirtgehl2wksj_o04sxUbfy8IpoxiXGWFs0eF4L8PEJPoTVS5Abkbuami5JSXjHNOMvr-P_TWD8Hl8vZUzaqmLMeZujhQG2lBGKd9fljl3UFvlHegTfZPxhWnDeNkn_DxkKCCjzGAfvo-wWI_H-LvfGT43fOCn9A_00B_A0gXt2Y</recordid><startdate>20230621</startdate><enddate>20230621</enddate><creator>Hussain, Javid</creator><creator>Kim, Dae-Kyeom</creator><creator>Park, Sangmin</creator><creator>Khalid, Muhammad-Waqas</creator><creator>Hussain, Sayed-Sajid</creator><creator>Lee, Bin</creator><creator>Song, Myungsuk</creator><creator>Kim, Taek-Soo</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3937-3245</orcidid></search><sort><creationdate>20230621</creationdate><title>Porous Material (Titanium Gas Diffusion Layer) in Proton Exchange Membrane Fuel Cell/Electrolyzer: Fabrication Methods &amp; GeoDict: A Critical Review</title><author>Hussain, Javid ; Kim, Dae-Kyeom ; Park, Sangmin ; Khalid, Muhammad-Waqas ; Hussain, Sayed-Sajid ; Lee, Bin ; Song, Myungsuk ; Kim, Taek-Soo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-f0cc91c8cabf250afc4dfbac3ae56bed31d9db60c83f20afef2037edc06d1363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Carbon</topic><topic>Corrosion and anti-corrosives</topic><topic>Corrosion resistance</topic><topic>Diffusion layers</topic><topic>Efficiency</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Electrolytes</topic><topic>Energy</topic><topic>Fuel cell industry</topic><topic>Fuel cells</topic><topic>Gaseous diffusion</topic><topic>Gases</topic><topic>Heat conductivity</topic><topic>Hydrogen</topic><topic>Mechanical properties</topic><topic>Optimization</topic><topic>Permeability</topic><topic>Phase separation</topic><topic>Porosity</topic><topic>Porous materials</topic><topic>Proton exchange membrane fuel cells</topic><topic>Protons</topic><topic>Renewable energy sources</topic><topic>Renewable resources</topic><topic>Review</topic><topic>Sintering (powder metallurgy)</topic><topic>Software</topic><topic>Strength to weight ratio</topic><topic>Tape casting</topic><topic>Thermal conductivity</topic><topic>Three dimensional printing</topic><topic>Titanium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hussain, Javid</creatorcontrib><creatorcontrib>Kim, Dae-Kyeom</creatorcontrib><creatorcontrib>Park, Sangmin</creatorcontrib><creatorcontrib>Khalid, Muhammad-Waqas</creatorcontrib><creatorcontrib>Hussain, Sayed-Sajid</creatorcontrib><creatorcontrib>Lee, Bin</creatorcontrib><creatorcontrib>Song, Myungsuk</creatorcontrib><creatorcontrib>Kim, Taek-Soo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hussain, Javid</au><au>Kim, Dae-Kyeom</au><au>Park, Sangmin</au><au>Khalid, Muhammad-Waqas</au><au>Hussain, Sayed-Sajid</au><au>Lee, Bin</au><au>Song, Myungsuk</au><au>Kim, Taek-Soo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Porous Material (Titanium Gas Diffusion Layer) in Proton Exchange Membrane Fuel Cell/Electrolyzer: Fabrication Methods &amp; GeoDict: A Critical Review</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2023-06-21</date><risdate>2023</risdate><volume>16</volume><issue>13</issue><spage>4515</spage><pages>4515-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Proton exchange membrane fuel cell (PEMFC) is a renewable energy source rapidly approaching commercial viability. The performance is significantly affected by the transfer of fluid, charges, and heat; gas diffusion layer (GDL) is primarily concerned with the consistent transfer of these components, which are heavily influenced by the material and design. High-efficiency GDL must have excellent thermal conductivity, electrical conductivity, permeability, corrosion resistance, and high mechanical characteristics. The first step in creating a high-performance GDL is selecting the appropriate material. Therefore, titanium is a suitable substitute for steel or carbon due to its high strength-to-weight and superior corrosion resistance. The second crucial parameter is the fabrication method that governs all the properties. This review seeks to comprehend numerous fabrication methods such as tape casting, 3D printing, freeze casting, phase separation technique, and lithography, along with the porosity controller in each process such as partial sintering, input design, ice structure, pore agent, etching time, and mask width. Moreover, other GDL properties are being studied, including microstructure and morphology. In the future, GeoDict simulation is highly recommended for optimizing various GDL properties, as it is frequently used for other porous materials. The approach can save time and energy compared to intensive experimental work.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>37444828</pmid><doi>10.3390/ma16134515</doi><orcidid>https://orcid.org/0000-0003-3937-3245</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2023-06, Vol.16 (13), p.4515
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10343005
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access
subjects Carbon
Corrosion and anti-corrosives
Corrosion resistance
Diffusion layers
Efficiency
Electrical conductivity
Electrical resistivity
Electrolytes
Energy
Fuel cell industry
Fuel cells
Gaseous diffusion
Gases
Heat conductivity
Hydrogen
Mechanical properties
Optimization
Permeability
Phase separation
Porosity
Porous materials
Proton exchange membrane fuel cells
Protons
Renewable energy sources
Renewable resources
Review
Sintering (powder metallurgy)
Software
Strength to weight ratio
Tape casting
Thermal conductivity
Three dimensional printing
Titanium
title Porous Material (Titanium Gas Diffusion Layer) in Proton Exchange Membrane Fuel Cell/Electrolyzer: Fabrication Methods & GeoDict: A Critical Review
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T00%3A14%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Porous%20Material%20(Titanium%20Gas%20Diffusion%20Layer)%20in%20Proton%20Exchange%20Membrane%20Fuel%20Cell/Electrolyzer:%20Fabrication%20Methods%20&%20GeoDict:%20A%20Critical%20Review&rft.jtitle=Materials&rft.au=Hussain,%20Javid&rft.date=2023-06-21&rft.volume=16&rft.issue=13&rft.spage=4515&rft.pages=4515-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma16134515&rft_dat=%3Cgale_pubme%3EA758394817%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2836459227&rft_id=info:pmid/37444828&rft_galeid=A758394817&rfr_iscdi=true