Neural Networks Applied for Predictive Parameters Analysis of the Refill Friction Stir Spot Welding Process of 6061-T6 Aluminum Alloy Plates
Refill friction stir spot welding (RFSSW) technology is a solid-state joint that can replace conventional welding or riveting processes in aerospace applications. The quality of the new welding process is directly influenced by the welding parameters selected. A finite element analysis was performed...
Gespeichert in:
Veröffentlicht in: | Materials 2023-06, Vol.16 (13), p.4519 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 13 |
container_start_page | 4519 |
container_title | Materials |
container_volume | 16 |
creator | Bîrsan, Dan Cătălin Păunoiu, Viorel Teodor, Virgil Gabriel |
description | Refill friction stir spot welding (RFSSW) technology is a solid-state joint that can replace conventional welding or riveting processes in aerospace applications. The quality of the new welding process is directly influenced by the welding parameters selected. A finite element analysis was performed to understand the complexity of the thermomechanical phenomena during this welding process, validated by controlled experiments. An optimization model using neural networks was developed based on 98 parameter sets resulting from changing 3 welding parameters, namely pin penetration depth, pin rotation speed, and retention time. Ten parameter sets were used to verify the learning results of the optimization model. The 10 results were drawn to correspond to a uniform distribution over the training domain, with the aim of avoiding areas that might have contained distortions. The maximum temperature and normal stress reached at the end of the welding process were considered output data. |
doi_str_mv | 10.3390/ma16134519 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10342835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A758394821</galeid><sourcerecordid>A758394821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-ea4da2718d1b248d89677141df68ca192638694ceb4f01bc3b25ee2181f72263</originalsourceid><addsrcrecordid>eNpdklFrFDEQxxdRbKl98QNIwBcRtu5sctnkSY5iq1DqYQ98DNns7DU1u1mTbOW-gx-6uV6t1eQhA_Ob_0z-TFG8huqEUll9GDRwoGwB8llxCFLyEiRjz5_EB8VxjDdVPpSCqOXL4oA2jDFB6WHx-xLnoB25xPTLhx-RLKfJWexI7wNZBeysSfYWyUoHPWDCkIlRu220kfiepGsk37C3zpGzsEP9SK6SDeRq8ol8R9fZcZN1vMF4X8ArDuWak6WbBzvOQw6c35KV0wnjq-JFr13E44f3qFiffVqffi4vvp5_OV1elIYxnkrUrNN1A6KDtmaiE5I3DTDoei6MBllzKrhkBlvWV9Aa2tYLxBoE9E2dk0fFx73sNLcDdgbHlC1QU7CDDlvltVX_ZkZ7rTb-VkFFWS3oIiu8e1AI_ueMManBRoPO6RH9HFWGRJ5sj779D73xc8gW3lOcNbtZM3WypzbaobJj73Njk2-HgzV-3FmMatksBJVM1JAL3u8LTPAxBuwfx4dK7RZD_V2MDL95-uFH9M8a0DuT7LLb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2836473869</pqid></control><display><type>article</type><title>Neural Networks Applied for Predictive Parameters Analysis of the Refill Friction Stir Spot Welding Process of 6061-T6 Aluminum Alloy Plates</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Bîrsan, Dan Cătălin ; Păunoiu, Viorel ; Teodor, Virgil Gabriel</creator><creatorcontrib>Bîrsan, Dan Cătălin ; Păunoiu, Viorel ; Teodor, Virgil Gabriel</creatorcontrib><description>Refill friction stir spot welding (RFSSW) technology is a solid-state joint that can replace conventional welding or riveting processes in aerospace applications. The quality of the new welding process is directly influenced by the welding parameters selected. A finite element analysis was performed to understand the complexity of the thermomechanical phenomena during this welding process, validated by controlled experiments. An optimization model using neural networks was developed based on 98 parameter sets resulting from changing 3 welding parameters, namely pin penetration depth, pin rotation speed, and retention time. Ten parameter sets were used to verify the learning results of the optimization model. The 10 results were drawn to correspond to a uniform distribution over the training domain, with the aim of avoiding areas that might have contained distortions. The maximum temperature and normal stress reached at the end of the welding process were considered output data.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma16134519</identifier><identifier>PMID: 37444833</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Alloys ; Aluminum ; Aluminum alloys ; Aluminum base alloys ; Defects ; Deformation ; Finite element analysis ; Finite element method ; Friction stir welding ; Friction welding ; Innovations ; Manufacturing ; Mechanical properties ; Metal plates ; Metals ; Neural networks ; Normal stress ; Optimization models ; Penetration depth ; Product reliability ; Residual stress ; Riveting ; Shear strength ; Simulation ; Spot welding ; Sustainable development ; Temperature ; Welding ; Welding parameters</subject><ispartof>Materials, 2023-06, Vol.16 (13), p.4519</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-ea4da2718d1b248d89677141df68ca192638694ceb4f01bc3b25ee2181f72263</citedby><cites>FETCH-LOGICAL-c446t-ea4da2718d1b248d89677141df68ca192638694ceb4f01bc3b25ee2181f72263</cites><orcidid>0009-0005-3522-9328 ; 0000-0002-3764-4243</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10342835/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10342835/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37444833$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bîrsan, Dan Cătălin</creatorcontrib><creatorcontrib>Păunoiu, Viorel</creatorcontrib><creatorcontrib>Teodor, Virgil Gabriel</creatorcontrib><title>Neural Networks Applied for Predictive Parameters Analysis of the Refill Friction Stir Spot Welding Process of 6061-T6 Aluminum Alloy Plates</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Refill friction stir spot welding (RFSSW) technology is a solid-state joint that can replace conventional welding or riveting processes in aerospace applications. The quality of the new welding process is directly influenced by the welding parameters selected. A finite element analysis was performed to understand the complexity of the thermomechanical phenomena during this welding process, validated by controlled experiments. An optimization model using neural networks was developed based on 98 parameter sets resulting from changing 3 welding parameters, namely pin penetration depth, pin rotation speed, and retention time. Ten parameter sets were used to verify the learning results of the optimization model. The 10 results were drawn to correspond to a uniform distribution over the training domain, with the aim of avoiding areas that might have contained distortions. The maximum temperature and normal stress reached at the end of the welding process were considered output data.</description><subject>Alloys</subject><subject>Aluminum</subject><subject>Aluminum alloys</subject><subject>Aluminum base alloys</subject><subject>Defects</subject><subject>Deformation</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Friction stir welding</subject><subject>Friction welding</subject><subject>Innovations</subject><subject>Manufacturing</subject><subject>Mechanical properties</subject><subject>Metal plates</subject><subject>Metals</subject><subject>Neural networks</subject><subject>Normal stress</subject><subject>Optimization models</subject><subject>Penetration depth</subject><subject>Product reliability</subject><subject>Residual stress</subject><subject>Riveting</subject><subject>Shear strength</subject><subject>Simulation</subject><subject>Spot welding</subject><subject>Sustainable development</subject><subject>Temperature</subject><subject>Welding</subject><subject>Welding parameters</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdklFrFDEQxxdRbKl98QNIwBcRtu5sctnkSY5iq1DqYQ98DNns7DU1u1mTbOW-gx-6uV6t1eQhA_Ob_0z-TFG8huqEUll9GDRwoGwB8llxCFLyEiRjz5_EB8VxjDdVPpSCqOXL4oA2jDFB6WHx-xLnoB25xPTLhx-RLKfJWexI7wNZBeysSfYWyUoHPWDCkIlRu220kfiepGsk37C3zpGzsEP9SK6SDeRq8ol8R9fZcZN1vMF4X8ArDuWak6WbBzvOQw6c35KV0wnjq-JFr13E44f3qFiffVqffi4vvp5_OV1elIYxnkrUrNN1A6KDtmaiE5I3DTDoei6MBllzKrhkBlvWV9Aa2tYLxBoE9E2dk0fFx73sNLcDdgbHlC1QU7CDDlvltVX_ZkZ7rTb-VkFFWS3oIiu8e1AI_ueMManBRoPO6RH9HFWGRJ5sj779D73xc8gW3lOcNbtZM3WypzbaobJj73Njk2-HgzV-3FmMatksBJVM1JAL3u8LTPAxBuwfx4dK7RZD_V2MDL95-uFH9M8a0DuT7LLb</recordid><startdate>20230621</startdate><enddate>20230621</enddate><creator>Bîrsan, Dan Cătălin</creator><creator>Păunoiu, Viorel</creator><creator>Teodor, Virgil Gabriel</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0009-0005-3522-9328</orcidid><orcidid>https://orcid.org/0000-0002-3764-4243</orcidid></search><sort><creationdate>20230621</creationdate><title>Neural Networks Applied for Predictive Parameters Analysis of the Refill Friction Stir Spot Welding Process of 6061-T6 Aluminum Alloy Plates</title><author>Bîrsan, Dan Cătălin ; Păunoiu, Viorel ; Teodor, Virgil Gabriel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-ea4da2718d1b248d89677141df68ca192638694ceb4f01bc3b25ee2181f72263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alloys</topic><topic>Aluminum</topic><topic>Aluminum alloys</topic><topic>Aluminum base alloys</topic><topic>Defects</topic><topic>Deformation</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Friction stir welding</topic><topic>Friction welding</topic><topic>Innovations</topic><topic>Manufacturing</topic><topic>Mechanical properties</topic><topic>Metal plates</topic><topic>Metals</topic><topic>Neural networks</topic><topic>Normal stress</topic><topic>Optimization models</topic><topic>Penetration depth</topic><topic>Product reliability</topic><topic>Residual stress</topic><topic>Riveting</topic><topic>Shear strength</topic><topic>Simulation</topic><topic>Spot welding</topic><topic>Sustainable development</topic><topic>Temperature</topic><topic>Welding</topic><topic>Welding parameters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bîrsan, Dan Cătălin</creatorcontrib><creatorcontrib>Păunoiu, Viorel</creatorcontrib><creatorcontrib>Teodor, Virgil Gabriel</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bîrsan, Dan Cătălin</au><au>Păunoiu, Viorel</au><au>Teodor, Virgil Gabriel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural Networks Applied for Predictive Parameters Analysis of the Refill Friction Stir Spot Welding Process of 6061-T6 Aluminum Alloy Plates</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2023-06-21</date><risdate>2023</risdate><volume>16</volume><issue>13</issue><spage>4519</spage><pages>4519-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Refill friction stir spot welding (RFSSW) technology is a solid-state joint that can replace conventional welding or riveting processes in aerospace applications. The quality of the new welding process is directly influenced by the welding parameters selected. A finite element analysis was performed to understand the complexity of the thermomechanical phenomena during this welding process, validated by controlled experiments. An optimization model using neural networks was developed based on 98 parameter sets resulting from changing 3 welding parameters, namely pin penetration depth, pin rotation speed, and retention time. Ten parameter sets were used to verify the learning results of the optimization model. The 10 results were drawn to correspond to a uniform distribution over the training domain, with the aim of avoiding areas that might have contained distortions. The maximum temperature and normal stress reached at the end of the welding process were considered output data.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>37444833</pmid><doi>10.3390/ma16134519</doi><orcidid>https://orcid.org/0009-0005-3522-9328</orcidid><orcidid>https://orcid.org/0000-0002-3764-4243</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2023-06, Vol.16 (13), p.4519 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10342835 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access |
subjects | Alloys Aluminum Aluminum alloys Aluminum base alloys Defects Deformation Finite element analysis Finite element method Friction stir welding Friction welding Innovations Manufacturing Mechanical properties Metal plates Metals Neural networks Normal stress Optimization models Penetration depth Product reliability Residual stress Riveting Shear strength Simulation Spot welding Sustainable development Temperature Welding Welding parameters |
title | Neural Networks Applied for Predictive Parameters Analysis of the Refill Friction Stir Spot Welding Process of 6061-T6 Aluminum Alloy Plates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T03%3A17%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20Networks%20Applied%20for%20Predictive%20Parameters%20Analysis%20of%20the%20Refill%20Friction%20Stir%20Spot%20Welding%20Process%20of%206061-T6%20Aluminum%20Alloy%20Plates&rft.jtitle=Materials&rft.au=B%C3%AErsan,%20Dan%20C%C4%83t%C4%83lin&rft.date=2023-06-21&rft.volume=16&rft.issue=13&rft.spage=4519&rft.pages=4519-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma16134519&rft_dat=%3Cgale_pubme%3EA758394821%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2836473869&rft_id=info:pmid/37444833&rft_galeid=A758394821&rfr_iscdi=true |