Neural Networks Applied for Predictive Parameters Analysis of the Refill Friction Stir Spot Welding Process of 6061-T6 Aluminum Alloy Plates

Refill friction stir spot welding (RFSSW) technology is a solid-state joint that can replace conventional welding or riveting processes in aerospace applications. The quality of the new welding process is directly influenced by the welding parameters selected. A finite element analysis was performed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2023-06, Vol.16 (13), p.4519
Hauptverfasser: Bîrsan, Dan Cătălin, Păunoiu, Viorel, Teodor, Virgil Gabriel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 13
container_start_page 4519
container_title Materials
container_volume 16
creator Bîrsan, Dan Cătălin
Păunoiu, Viorel
Teodor, Virgil Gabriel
description Refill friction stir spot welding (RFSSW) technology is a solid-state joint that can replace conventional welding or riveting processes in aerospace applications. The quality of the new welding process is directly influenced by the welding parameters selected. A finite element analysis was performed to understand the complexity of the thermomechanical phenomena during this welding process, validated by controlled experiments. An optimization model using neural networks was developed based on 98 parameter sets resulting from changing 3 welding parameters, namely pin penetration depth, pin rotation speed, and retention time. Ten parameter sets were used to verify the learning results of the optimization model. The 10 results were drawn to correspond to a uniform distribution over the training domain, with the aim of avoiding areas that might have contained distortions. The maximum temperature and normal stress reached at the end of the welding process were considered output data.
doi_str_mv 10.3390/ma16134519
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10342835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A758394821</galeid><sourcerecordid>A758394821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-ea4da2718d1b248d89677141df68ca192638694ceb4f01bc3b25ee2181f72263</originalsourceid><addsrcrecordid>eNpdklFrFDEQxxdRbKl98QNIwBcRtu5sctnkSY5iq1DqYQ98DNns7DU1u1mTbOW-gx-6uV6t1eQhA_Ob_0z-TFG8huqEUll9GDRwoGwB8llxCFLyEiRjz5_EB8VxjDdVPpSCqOXL4oA2jDFB6WHx-xLnoB25xPTLhx-RLKfJWexI7wNZBeysSfYWyUoHPWDCkIlRu220kfiepGsk37C3zpGzsEP9SK6SDeRq8ol8R9fZcZN1vMF4X8ArDuWak6WbBzvOQw6c35KV0wnjq-JFr13E44f3qFiffVqffi4vvp5_OV1elIYxnkrUrNN1A6KDtmaiE5I3DTDoei6MBllzKrhkBlvWV9Aa2tYLxBoE9E2dk0fFx73sNLcDdgbHlC1QU7CDDlvltVX_ZkZ7rTb-VkFFWS3oIiu8e1AI_ueMManBRoPO6RH9HFWGRJ5sj779D73xc8gW3lOcNbtZM3WypzbaobJj73Njk2-HgzV-3FmMatksBJVM1JAL3u8LTPAxBuwfx4dK7RZD_V2MDL95-uFH9M8a0DuT7LLb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2836473869</pqid></control><display><type>article</type><title>Neural Networks Applied for Predictive Parameters Analysis of the Refill Friction Stir Spot Welding Process of 6061-T6 Aluminum Alloy Plates</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Bîrsan, Dan Cătălin ; Păunoiu, Viorel ; Teodor, Virgil Gabriel</creator><creatorcontrib>Bîrsan, Dan Cătălin ; Păunoiu, Viorel ; Teodor, Virgil Gabriel</creatorcontrib><description>Refill friction stir spot welding (RFSSW) technology is a solid-state joint that can replace conventional welding or riveting processes in aerospace applications. The quality of the new welding process is directly influenced by the welding parameters selected. A finite element analysis was performed to understand the complexity of the thermomechanical phenomena during this welding process, validated by controlled experiments. An optimization model using neural networks was developed based on 98 parameter sets resulting from changing 3 welding parameters, namely pin penetration depth, pin rotation speed, and retention time. Ten parameter sets were used to verify the learning results of the optimization model. The 10 results were drawn to correspond to a uniform distribution over the training domain, with the aim of avoiding areas that might have contained distortions. The maximum temperature and normal stress reached at the end of the welding process were considered output data.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma16134519</identifier><identifier>PMID: 37444833</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Alloys ; Aluminum ; Aluminum alloys ; Aluminum base alloys ; Defects ; Deformation ; Finite element analysis ; Finite element method ; Friction stir welding ; Friction welding ; Innovations ; Manufacturing ; Mechanical properties ; Metal plates ; Metals ; Neural networks ; Normal stress ; Optimization models ; Penetration depth ; Product reliability ; Residual stress ; Riveting ; Shear strength ; Simulation ; Spot welding ; Sustainable development ; Temperature ; Welding ; Welding parameters</subject><ispartof>Materials, 2023-06, Vol.16 (13), p.4519</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-ea4da2718d1b248d89677141df68ca192638694ceb4f01bc3b25ee2181f72263</citedby><cites>FETCH-LOGICAL-c446t-ea4da2718d1b248d89677141df68ca192638694ceb4f01bc3b25ee2181f72263</cites><orcidid>0009-0005-3522-9328 ; 0000-0002-3764-4243</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10342835/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10342835/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37444833$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bîrsan, Dan Cătălin</creatorcontrib><creatorcontrib>Păunoiu, Viorel</creatorcontrib><creatorcontrib>Teodor, Virgil Gabriel</creatorcontrib><title>Neural Networks Applied for Predictive Parameters Analysis of the Refill Friction Stir Spot Welding Process of 6061-T6 Aluminum Alloy Plates</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Refill friction stir spot welding (RFSSW) technology is a solid-state joint that can replace conventional welding or riveting processes in aerospace applications. The quality of the new welding process is directly influenced by the welding parameters selected. A finite element analysis was performed to understand the complexity of the thermomechanical phenomena during this welding process, validated by controlled experiments. An optimization model using neural networks was developed based on 98 parameter sets resulting from changing 3 welding parameters, namely pin penetration depth, pin rotation speed, and retention time. Ten parameter sets were used to verify the learning results of the optimization model. The 10 results were drawn to correspond to a uniform distribution over the training domain, with the aim of avoiding areas that might have contained distortions. The maximum temperature and normal stress reached at the end of the welding process were considered output data.</description><subject>Alloys</subject><subject>Aluminum</subject><subject>Aluminum alloys</subject><subject>Aluminum base alloys</subject><subject>Defects</subject><subject>Deformation</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Friction stir welding</subject><subject>Friction welding</subject><subject>Innovations</subject><subject>Manufacturing</subject><subject>Mechanical properties</subject><subject>Metal plates</subject><subject>Metals</subject><subject>Neural networks</subject><subject>Normal stress</subject><subject>Optimization models</subject><subject>Penetration depth</subject><subject>Product reliability</subject><subject>Residual stress</subject><subject>Riveting</subject><subject>Shear strength</subject><subject>Simulation</subject><subject>Spot welding</subject><subject>Sustainable development</subject><subject>Temperature</subject><subject>Welding</subject><subject>Welding parameters</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdklFrFDEQxxdRbKl98QNIwBcRtu5sctnkSY5iq1DqYQ98DNns7DU1u1mTbOW-gx-6uV6t1eQhA_Ob_0z-TFG8huqEUll9GDRwoGwB8llxCFLyEiRjz5_EB8VxjDdVPpSCqOXL4oA2jDFB6WHx-xLnoB25xPTLhx-RLKfJWexI7wNZBeysSfYWyUoHPWDCkIlRu220kfiepGsk37C3zpGzsEP9SK6SDeRq8ol8R9fZcZN1vMF4X8ArDuWak6WbBzvOQw6c35KV0wnjq-JFr13E44f3qFiffVqffi4vvp5_OV1elIYxnkrUrNN1A6KDtmaiE5I3DTDoei6MBllzKrhkBlvWV9Aa2tYLxBoE9E2dk0fFx73sNLcDdgbHlC1QU7CDDlvltVX_ZkZ7rTb-VkFFWS3oIiu8e1AI_ueMManBRoPO6RH9HFWGRJ5sj779D73xc8gW3lOcNbtZM3WypzbaobJj73Njk2-HgzV-3FmMatksBJVM1JAL3u8LTPAxBuwfx4dK7RZD_V2MDL95-uFH9M8a0DuT7LLb</recordid><startdate>20230621</startdate><enddate>20230621</enddate><creator>Bîrsan, Dan Cătălin</creator><creator>Păunoiu, Viorel</creator><creator>Teodor, Virgil Gabriel</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0009-0005-3522-9328</orcidid><orcidid>https://orcid.org/0000-0002-3764-4243</orcidid></search><sort><creationdate>20230621</creationdate><title>Neural Networks Applied for Predictive Parameters Analysis of the Refill Friction Stir Spot Welding Process of 6061-T6 Aluminum Alloy Plates</title><author>Bîrsan, Dan Cătălin ; Păunoiu, Viorel ; Teodor, Virgil Gabriel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-ea4da2718d1b248d89677141df68ca192638694ceb4f01bc3b25ee2181f72263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alloys</topic><topic>Aluminum</topic><topic>Aluminum alloys</topic><topic>Aluminum base alloys</topic><topic>Defects</topic><topic>Deformation</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Friction stir welding</topic><topic>Friction welding</topic><topic>Innovations</topic><topic>Manufacturing</topic><topic>Mechanical properties</topic><topic>Metal plates</topic><topic>Metals</topic><topic>Neural networks</topic><topic>Normal stress</topic><topic>Optimization models</topic><topic>Penetration depth</topic><topic>Product reliability</topic><topic>Residual stress</topic><topic>Riveting</topic><topic>Shear strength</topic><topic>Simulation</topic><topic>Spot welding</topic><topic>Sustainable development</topic><topic>Temperature</topic><topic>Welding</topic><topic>Welding parameters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bîrsan, Dan Cătălin</creatorcontrib><creatorcontrib>Păunoiu, Viorel</creatorcontrib><creatorcontrib>Teodor, Virgil Gabriel</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bîrsan, Dan Cătălin</au><au>Păunoiu, Viorel</au><au>Teodor, Virgil Gabriel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural Networks Applied for Predictive Parameters Analysis of the Refill Friction Stir Spot Welding Process of 6061-T6 Aluminum Alloy Plates</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2023-06-21</date><risdate>2023</risdate><volume>16</volume><issue>13</issue><spage>4519</spage><pages>4519-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Refill friction stir spot welding (RFSSW) technology is a solid-state joint that can replace conventional welding or riveting processes in aerospace applications. The quality of the new welding process is directly influenced by the welding parameters selected. A finite element analysis was performed to understand the complexity of the thermomechanical phenomena during this welding process, validated by controlled experiments. An optimization model using neural networks was developed based on 98 parameter sets resulting from changing 3 welding parameters, namely pin penetration depth, pin rotation speed, and retention time. Ten parameter sets were used to verify the learning results of the optimization model. The 10 results were drawn to correspond to a uniform distribution over the training domain, with the aim of avoiding areas that might have contained distortions. The maximum temperature and normal stress reached at the end of the welding process were considered output data.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>37444833</pmid><doi>10.3390/ma16134519</doi><orcidid>https://orcid.org/0009-0005-3522-9328</orcidid><orcidid>https://orcid.org/0000-0002-3764-4243</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2023-06, Vol.16 (13), p.4519
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10342835
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access
subjects Alloys
Aluminum
Aluminum alloys
Aluminum base alloys
Defects
Deformation
Finite element analysis
Finite element method
Friction stir welding
Friction welding
Innovations
Manufacturing
Mechanical properties
Metal plates
Metals
Neural networks
Normal stress
Optimization models
Penetration depth
Product reliability
Residual stress
Riveting
Shear strength
Simulation
Spot welding
Sustainable development
Temperature
Welding
Welding parameters
title Neural Networks Applied for Predictive Parameters Analysis of the Refill Friction Stir Spot Welding Process of 6061-T6 Aluminum Alloy Plates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T03%3A17%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20Networks%20Applied%20for%20Predictive%20Parameters%20Analysis%20of%20the%20Refill%20Friction%20Stir%20Spot%20Welding%20Process%20of%206061-T6%20Aluminum%20Alloy%20Plates&rft.jtitle=Materials&rft.au=B%C3%AErsan,%20Dan%20C%C4%83t%C4%83lin&rft.date=2023-06-21&rft.volume=16&rft.issue=13&rft.spage=4519&rft.pages=4519-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma16134519&rft_dat=%3Cgale_pubme%3EA758394821%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2836473869&rft_id=info:pmid/37444833&rft_galeid=A758394821&rfr_iscdi=true