Accumulation of Renal Fibrosis in Hyperuricemia Rats Is Attributed to the Recruitment of Mast Cells, Activation of the TGF-β1/Smad2/3 Pathway, and Aggravation of Oxidative Stress

Renal fibrosis is relentlessly progressive and irreversible, and a life-threatening risk. With the continuous intake of a high-purine diet, hyperuricemia has become a health risk factor in addition to hyperglycemia, hypertension, and hyperlipidemia. Hyperuricemia is also an independent risk factor f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2023-06, Vol.24 (13), p.10839
Hauptverfasser: Zhang, Mingkang, Cui, Ruirui, Zhou, Yan, Ma, Yanrong, Jin, Yongwen, Wang, Lina, Kou, Wen, Wu, Xin'an
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 13
container_start_page 10839
container_title International journal of molecular sciences
container_volume 24
creator Zhang, Mingkang
Cui, Ruirui
Zhou, Yan
Ma, Yanrong
Jin, Yongwen
Wang, Lina
Kou, Wen
Wu, Xin'an
description Renal fibrosis is relentlessly progressive and irreversible, and a life-threatening risk. With the continuous intake of a high-purine diet, hyperuricemia has become a health risk factor in addition to hyperglycemia, hypertension, and hyperlipidemia. Hyperuricemia is also an independent risk factor for renal interstitial fibrosis. Numerous studies have reported that increased mast cells (MCs) are closely associated with kidney injury induced by different triggering factors. This study investigated the effect of MCs on renal injury in rats caused by hyperuricemia and the relationship between MCs and renal fibrosis. Our results reveal that hyperuricemia contributes to renal injury, with a significant increase in renal MCs, leading to renal fibrosis, mitochondrial structural disorders, and oxidative stress damage. The administration of the MCs membrane stabilizer, sodium cromoglycate (SCG), decreased the expression of SCF/c-kit, reduced the expression of α-SMA, MMP2, and inhibited the TGF-β1/Smad2/3 pathway, thereby alleviating renal fibrosis. Additionally, SCG reduced renal oxidative stress and mitigated mitochondrial structural damage by inhibiting Ang II production and increasing renal GSH, GSH-Px, and GR levels. Collectively, the recruitment of MCs, activation of the TGF-β1/Smad2/3 pathway, and Ang II production drive renal oxidative stress, ultimately promoting the progression of renal fibrosis in hyperuricemic rats.
doi_str_mv 10.3390/ijms241310839
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10341566</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A758317575</galeid><sourcerecordid>A758317575</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-fa139ad5b44e0d3aaf8e61eea37a6556073fabd0dee0778e457e92cf0bf8eb5e3</originalsourceid><addsrcrecordid>eNptkk1vEzEQhlcIREvgyBVZ4tJDt7HX3q8TWkWkrVRU1JazNeudTRztroPtDeRvwf_gN-HQkjYI-eCvZ97RzDtR9JbRM85LOtWr3iWCcUYLXj6LjplIkpjSLH_-5HwUvXJuRWnCk7R8GR3xXIiMsuw4-lkpNfZjB16bgZiW3OAAHZnr2hqnHdEDudiu0Y5WK-w1kBvwjlw6UnlvdT16bIg3xC8xRCo7at_j4HdCn8B5MsOuc6ekUl5v9il28N35PP71g01ve2iSKSefwS-_wfaUwNCQarGw8Mhff9dNuGyQ3HqLzr2OXrTQOXzzsE-iL_OPd7OL-Or6_HJWXcVKFNzHLTBeQpPWQiBtOEBbYMYQgeeQpWlGc95C3dAGkeZ5gSLNsUxUS-sA1inySfThXnc91j02KhRmoZNrq3uwW2lAy8OfQS_lwmwko1ywNMuCwsmDgjVfR3Re9tqp0BMY0IxOJgUvgnllMGYSvf8HXZnRBi_-UJlIBc-KR2oBHUo9tCYkVjtRWeVpwVme5mmgzv5DhdUEC5UZsNXh_SAgvg9QwXVnsd0XyajcjZk8GLPAv3vamT39d674b9nk0Eo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2836454368</pqid></control><display><type>article</type><title>Accumulation of Renal Fibrosis in Hyperuricemia Rats Is Attributed to the Recruitment of Mast Cells, Activation of the TGF-β1/Smad2/3 Pathway, and Aggravation of Oxidative Stress</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Zhang, Mingkang ; Cui, Ruirui ; Zhou, Yan ; Ma, Yanrong ; Jin, Yongwen ; Wang, Lina ; Kou, Wen ; Wu, Xin'an</creator><creatorcontrib>Zhang, Mingkang ; Cui, Ruirui ; Zhou, Yan ; Ma, Yanrong ; Jin, Yongwen ; Wang, Lina ; Kou, Wen ; Wu, Xin'an</creatorcontrib><description>Renal fibrosis is relentlessly progressive and irreversible, and a life-threatening risk. With the continuous intake of a high-purine diet, hyperuricemia has become a health risk factor in addition to hyperglycemia, hypertension, and hyperlipidemia. Hyperuricemia is also an independent risk factor for renal interstitial fibrosis. Numerous studies have reported that increased mast cells (MCs) are closely associated with kidney injury induced by different triggering factors. This study investigated the effect of MCs on renal injury in rats caused by hyperuricemia and the relationship between MCs and renal fibrosis. Our results reveal that hyperuricemia contributes to renal injury, with a significant increase in renal MCs, leading to renal fibrosis, mitochondrial structural disorders, and oxidative stress damage. The administration of the MCs membrane stabilizer, sodium cromoglycate (SCG), decreased the expression of SCF/c-kit, reduced the expression of α-SMA, MMP2, and inhibited the TGF-β1/Smad2/3 pathway, thereby alleviating renal fibrosis. Additionally, SCG reduced renal oxidative stress and mitigated mitochondrial structural damage by inhibiting Ang II production and increasing renal GSH, GSH-Px, and GR levels. Collectively, the recruitment of MCs, activation of the TGF-β1/Smad2/3 pathway, and Ang II production drive renal oxidative stress, ultimately promoting the progression of renal fibrosis in hyperuricemic rats.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms241310839</identifier><identifier>PMID: 37446016</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Adefovir dipivoxil ; Angiotensin II ; Animals ; c-Kit protein ; Cell activation ; Creatinine ; Diet ; Fibrosis ; Gelatinase A ; Health aspects ; Histopathology ; Hyperglycemia ; Hyperlipidemia ; Hypertension ; Hyperuricemia ; Hyperuricemia - metabolism ; Kidney - metabolism ; Kidney diseases ; Kidney Diseases - metabolism ; Mast cells ; Mast Cells - metabolism ; Oxidation ; Oxidative Stress ; Rats ; Risk factors ; Signal Transduction ; Smad2 protein ; Sodium cromoglycate ; Transforming Growth Factor beta1 - metabolism ; Transforming growth factor-b1 ; Transforming growth factors ; Uric acid ; Valsartan</subject><ispartof>International journal of molecular sciences, 2023-06, Vol.24 (13), p.10839</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-fa139ad5b44e0d3aaf8e61eea37a6556073fabd0dee0778e457e92cf0bf8eb5e3</citedby><cites>FETCH-LOGICAL-c483t-fa139ad5b44e0d3aaf8e61eea37a6556073fabd0dee0778e457e92cf0bf8eb5e3</cites><orcidid>0000-0002-0371-0361</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10341566/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10341566/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37446016$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Mingkang</creatorcontrib><creatorcontrib>Cui, Ruirui</creatorcontrib><creatorcontrib>Zhou, Yan</creatorcontrib><creatorcontrib>Ma, Yanrong</creatorcontrib><creatorcontrib>Jin, Yongwen</creatorcontrib><creatorcontrib>Wang, Lina</creatorcontrib><creatorcontrib>Kou, Wen</creatorcontrib><creatorcontrib>Wu, Xin'an</creatorcontrib><title>Accumulation of Renal Fibrosis in Hyperuricemia Rats Is Attributed to the Recruitment of Mast Cells, Activation of the TGF-β1/Smad2/3 Pathway, and Aggravation of Oxidative Stress</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>Renal fibrosis is relentlessly progressive and irreversible, and a life-threatening risk. With the continuous intake of a high-purine diet, hyperuricemia has become a health risk factor in addition to hyperglycemia, hypertension, and hyperlipidemia. Hyperuricemia is also an independent risk factor for renal interstitial fibrosis. Numerous studies have reported that increased mast cells (MCs) are closely associated with kidney injury induced by different triggering factors. This study investigated the effect of MCs on renal injury in rats caused by hyperuricemia and the relationship between MCs and renal fibrosis. Our results reveal that hyperuricemia contributes to renal injury, with a significant increase in renal MCs, leading to renal fibrosis, mitochondrial structural disorders, and oxidative stress damage. The administration of the MCs membrane stabilizer, sodium cromoglycate (SCG), decreased the expression of SCF/c-kit, reduced the expression of α-SMA, MMP2, and inhibited the TGF-β1/Smad2/3 pathway, thereby alleviating renal fibrosis. Additionally, SCG reduced renal oxidative stress and mitigated mitochondrial structural damage by inhibiting Ang II production and increasing renal GSH, GSH-Px, and GR levels. Collectively, the recruitment of MCs, activation of the TGF-β1/Smad2/3 pathway, and Ang II production drive renal oxidative stress, ultimately promoting the progression of renal fibrosis in hyperuricemic rats.</description><subject>Adefovir dipivoxil</subject><subject>Angiotensin II</subject><subject>Animals</subject><subject>c-Kit protein</subject><subject>Cell activation</subject><subject>Creatinine</subject><subject>Diet</subject><subject>Fibrosis</subject><subject>Gelatinase A</subject><subject>Health aspects</subject><subject>Histopathology</subject><subject>Hyperglycemia</subject><subject>Hyperlipidemia</subject><subject>Hypertension</subject><subject>Hyperuricemia</subject><subject>Hyperuricemia - metabolism</subject><subject>Kidney - metabolism</subject><subject>Kidney diseases</subject><subject>Kidney Diseases - metabolism</subject><subject>Mast cells</subject><subject>Mast Cells - metabolism</subject><subject>Oxidation</subject><subject>Oxidative Stress</subject><subject>Rats</subject><subject>Risk factors</subject><subject>Signal Transduction</subject><subject>Smad2 protein</subject><subject>Sodium cromoglycate</subject><subject>Transforming Growth Factor beta1 - metabolism</subject><subject>Transforming growth factor-b1</subject><subject>Transforming growth factors</subject><subject>Uric acid</subject><subject>Valsartan</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkk1vEzEQhlcIREvgyBVZ4tJDt7HX3q8TWkWkrVRU1JazNeudTRztroPtDeRvwf_gN-HQkjYI-eCvZ97RzDtR9JbRM85LOtWr3iWCcUYLXj6LjplIkpjSLH_-5HwUvXJuRWnCk7R8GR3xXIiMsuw4-lkpNfZjB16bgZiW3OAAHZnr2hqnHdEDudiu0Y5WK-w1kBvwjlw6UnlvdT16bIg3xC8xRCo7at_j4HdCn8B5MsOuc6ekUl5v9il28N35PP71g01ve2iSKSefwS-_wfaUwNCQarGw8Mhff9dNuGyQ3HqLzr2OXrTQOXzzsE-iL_OPd7OL-Or6_HJWXcVKFNzHLTBeQpPWQiBtOEBbYMYQgeeQpWlGc95C3dAGkeZ5gSLNsUxUS-sA1inySfThXnc91j02KhRmoZNrq3uwW2lAy8OfQS_lwmwko1ywNMuCwsmDgjVfR3Re9tqp0BMY0IxOJgUvgnllMGYSvf8HXZnRBi_-UJlIBc-KR2oBHUo9tCYkVjtRWeVpwVme5mmgzv5DhdUEC5UZsNXh_SAgvg9QwXVnsd0XyajcjZk8GLPAv3vamT39d674b9nk0Eo</recordid><startdate>20230629</startdate><enddate>20230629</enddate><creator>Zhang, Mingkang</creator><creator>Cui, Ruirui</creator><creator>Zhou, Yan</creator><creator>Ma, Yanrong</creator><creator>Jin, Yongwen</creator><creator>Wang, Lina</creator><creator>Kou, Wen</creator><creator>Wu, Xin'an</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0371-0361</orcidid></search><sort><creationdate>20230629</creationdate><title>Accumulation of Renal Fibrosis in Hyperuricemia Rats Is Attributed to the Recruitment of Mast Cells, Activation of the TGF-β1/Smad2/3 Pathway, and Aggravation of Oxidative Stress</title><author>Zhang, Mingkang ; Cui, Ruirui ; Zhou, Yan ; Ma, Yanrong ; Jin, Yongwen ; Wang, Lina ; Kou, Wen ; Wu, Xin'an</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-fa139ad5b44e0d3aaf8e61eea37a6556073fabd0dee0778e457e92cf0bf8eb5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adefovir dipivoxil</topic><topic>Angiotensin II</topic><topic>Animals</topic><topic>c-Kit protein</topic><topic>Cell activation</topic><topic>Creatinine</topic><topic>Diet</topic><topic>Fibrosis</topic><topic>Gelatinase A</topic><topic>Health aspects</topic><topic>Histopathology</topic><topic>Hyperglycemia</topic><topic>Hyperlipidemia</topic><topic>Hypertension</topic><topic>Hyperuricemia</topic><topic>Hyperuricemia - metabolism</topic><topic>Kidney - metabolism</topic><topic>Kidney diseases</topic><topic>Kidney Diseases - metabolism</topic><topic>Mast cells</topic><topic>Mast Cells - metabolism</topic><topic>Oxidation</topic><topic>Oxidative Stress</topic><topic>Rats</topic><topic>Risk factors</topic><topic>Signal Transduction</topic><topic>Smad2 protein</topic><topic>Sodium cromoglycate</topic><topic>Transforming Growth Factor beta1 - metabolism</topic><topic>Transforming growth factor-b1</topic><topic>Transforming growth factors</topic><topic>Uric acid</topic><topic>Valsartan</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Mingkang</creatorcontrib><creatorcontrib>Cui, Ruirui</creatorcontrib><creatorcontrib>Zhou, Yan</creatorcontrib><creatorcontrib>Ma, Yanrong</creatorcontrib><creatorcontrib>Jin, Yongwen</creatorcontrib><creatorcontrib>Wang, Lina</creatorcontrib><creatorcontrib>Kou, Wen</creatorcontrib><creatorcontrib>Wu, Xin'an</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Mingkang</au><au>Cui, Ruirui</au><au>Zhou, Yan</au><au>Ma, Yanrong</au><au>Jin, Yongwen</au><au>Wang, Lina</au><au>Kou, Wen</au><au>Wu, Xin'an</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accumulation of Renal Fibrosis in Hyperuricemia Rats Is Attributed to the Recruitment of Mast Cells, Activation of the TGF-β1/Smad2/3 Pathway, and Aggravation of Oxidative Stress</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2023-06-29</date><risdate>2023</risdate><volume>24</volume><issue>13</issue><spage>10839</spage><pages>10839-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Renal fibrosis is relentlessly progressive and irreversible, and a life-threatening risk. With the continuous intake of a high-purine diet, hyperuricemia has become a health risk factor in addition to hyperglycemia, hypertension, and hyperlipidemia. Hyperuricemia is also an independent risk factor for renal interstitial fibrosis. Numerous studies have reported that increased mast cells (MCs) are closely associated with kidney injury induced by different triggering factors. This study investigated the effect of MCs on renal injury in rats caused by hyperuricemia and the relationship between MCs and renal fibrosis. Our results reveal that hyperuricemia contributes to renal injury, with a significant increase in renal MCs, leading to renal fibrosis, mitochondrial structural disorders, and oxidative stress damage. The administration of the MCs membrane stabilizer, sodium cromoglycate (SCG), decreased the expression of SCF/c-kit, reduced the expression of α-SMA, MMP2, and inhibited the TGF-β1/Smad2/3 pathway, thereby alleviating renal fibrosis. Additionally, SCG reduced renal oxidative stress and mitigated mitochondrial structural damage by inhibiting Ang II production and increasing renal GSH, GSH-Px, and GR levels. Collectively, the recruitment of MCs, activation of the TGF-β1/Smad2/3 pathway, and Ang II production drive renal oxidative stress, ultimately promoting the progression of renal fibrosis in hyperuricemic rats.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>37446016</pmid><doi>10.3390/ijms241310839</doi><orcidid>https://orcid.org/0000-0002-0371-0361</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2023-06, Vol.24 (13), p.10839
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10341566
source MDPI - Multidisciplinary Digital Publishing Institute; MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Adefovir dipivoxil
Angiotensin II
Animals
c-Kit protein
Cell activation
Creatinine
Diet
Fibrosis
Gelatinase A
Health aspects
Histopathology
Hyperglycemia
Hyperlipidemia
Hypertension
Hyperuricemia
Hyperuricemia - metabolism
Kidney - metabolism
Kidney diseases
Kidney Diseases - metabolism
Mast cells
Mast Cells - metabolism
Oxidation
Oxidative Stress
Rats
Risk factors
Signal Transduction
Smad2 protein
Sodium cromoglycate
Transforming Growth Factor beta1 - metabolism
Transforming growth factor-b1
Transforming growth factors
Uric acid
Valsartan
title Accumulation of Renal Fibrosis in Hyperuricemia Rats Is Attributed to the Recruitment of Mast Cells, Activation of the TGF-β1/Smad2/3 Pathway, and Aggravation of Oxidative Stress
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A52%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accumulation%20of%20Renal%20Fibrosis%20in%20Hyperuricemia%20Rats%20Is%20Attributed%20to%20the%20Recruitment%20of%20Mast%20Cells,%20Activation%20of%20the%20TGF-%CE%B21/Smad2/3%20Pathway,%20and%20Aggravation%20of%20Oxidative%20Stress&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Zhang,%20Mingkang&rft.date=2023-06-29&rft.volume=24&rft.issue=13&rft.spage=10839&rft.pages=10839-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms241310839&rft_dat=%3Cgale_pubme%3EA758317575%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2836454368&rft_id=info:pmid/37446016&rft_galeid=A758317575&rfr_iscdi=true