Accumulation of Renal Fibrosis in Hyperuricemia Rats Is Attributed to the Recruitment of Mast Cells, Activation of the TGF-β1/Smad2/3 Pathway, and Aggravation of Oxidative Stress
Renal fibrosis is relentlessly progressive and irreversible, and a life-threatening risk. With the continuous intake of a high-purine diet, hyperuricemia has become a health risk factor in addition to hyperglycemia, hypertension, and hyperlipidemia. Hyperuricemia is also an independent risk factor f...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2023-06, Vol.24 (13), p.10839 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 13 |
container_start_page | 10839 |
container_title | International journal of molecular sciences |
container_volume | 24 |
creator | Zhang, Mingkang Cui, Ruirui Zhou, Yan Ma, Yanrong Jin, Yongwen Wang, Lina Kou, Wen Wu, Xin'an |
description | Renal fibrosis is relentlessly progressive and irreversible, and a life-threatening risk. With the continuous intake of a high-purine diet, hyperuricemia has become a health risk factor in addition to hyperglycemia, hypertension, and hyperlipidemia. Hyperuricemia is also an independent risk factor for renal interstitial fibrosis. Numerous studies have reported that increased mast cells (MCs) are closely associated with kidney injury induced by different triggering factors. This study investigated the effect of MCs on renal injury in rats caused by hyperuricemia and the relationship between MCs and renal fibrosis. Our results reveal that hyperuricemia contributes to renal injury, with a significant increase in renal MCs, leading to renal fibrosis, mitochondrial structural disorders, and oxidative stress damage. The administration of the MCs membrane stabilizer, sodium cromoglycate (SCG), decreased the expression of SCF/c-kit, reduced the expression of α-SMA, MMP2, and inhibited the TGF-β1/Smad2/3 pathway, thereby alleviating renal fibrosis. Additionally, SCG reduced renal oxidative stress and mitigated mitochondrial structural damage by inhibiting Ang II production and increasing renal GSH, GSH-Px, and GR levels. Collectively, the recruitment of MCs, activation of the TGF-β1/Smad2/3 pathway, and Ang II production drive renal oxidative stress, ultimately promoting the progression of renal fibrosis in hyperuricemic rats. |
doi_str_mv | 10.3390/ijms241310839 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10341566</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A758317575</galeid><sourcerecordid>A758317575</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-fa139ad5b44e0d3aaf8e61eea37a6556073fabd0dee0778e457e92cf0bf8eb5e3</originalsourceid><addsrcrecordid>eNptkk1vEzEQhlcIREvgyBVZ4tJDt7HX3q8TWkWkrVRU1JazNeudTRztroPtDeRvwf_gN-HQkjYI-eCvZ97RzDtR9JbRM85LOtWr3iWCcUYLXj6LjplIkpjSLH_-5HwUvXJuRWnCk7R8GR3xXIiMsuw4-lkpNfZjB16bgZiW3OAAHZnr2hqnHdEDudiu0Y5WK-w1kBvwjlw6UnlvdT16bIg3xC8xRCo7at_j4HdCn8B5MsOuc6ekUl5v9il28N35PP71g01ve2iSKSefwS-_wfaUwNCQarGw8Mhff9dNuGyQ3HqLzr2OXrTQOXzzsE-iL_OPd7OL-Or6_HJWXcVKFNzHLTBeQpPWQiBtOEBbYMYQgeeQpWlGc95C3dAGkeZ5gSLNsUxUS-sA1inySfThXnc91j02KhRmoZNrq3uwW2lAy8OfQS_lwmwko1ywNMuCwsmDgjVfR3Re9tqp0BMY0IxOJgUvgnllMGYSvf8HXZnRBi_-UJlIBc-KR2oBHUo9tCYkVjtRWeVpwVme5mmgzv5DhdUEC5UZsNXh_SAgvg9QwXVnsd0XyajcjZk8GLPAv3vamT39d674b9nk0Eo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2836454368</pqid></control><display><type>article</type><title>Accumulation of Renal Fibrosis in Hyperuricemia Rats Is Attributed to the Recruitment of Mast Cells, Activation of the TGF-β1/Smad2/3 Pathway, and Aggravation of Oxidative Stress</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Zhang, Mingkang ; Cui, Ruirui ; Zhou, Yan ; Ma, Yanrong ; Jin, Yongwen ; Wang, Lina ; Kou, Wen ; Wu, Xin'an</creator><creatorcontrib>Zhang, Mingkang ; Cui, Ruirui ; Zhou, Yan ; Ma, Yanrong ; Jin, Yongwen ; Wang, Lina ; Kou, Wen ; Wu, Xin'an</creatorcontrib><description>Renal fibrosis is relentlessly progressive and irreversible, and a life-threatening risk. With the continuous intake of a high-purine diet, hyperuricemia has become a health risk factor in addition to hyperglycemia, hypertension, and hyperlipidemia. Hyperuricemia is also an independent risk factor for renal interstitial fibrosis. Numerous studies have reported that increased mast cells (MCs) are closely associated with kidney injury induced by different triggering factors. This study investigated the effect of MCs on renal injury in rats caused by hyperuricemia and the relationship between MCs and renal fibrosis. Our results reveal that hyperuricemia contributes to renal injury, with a significant increase in renal MCs, leading to renal fibrosis, mitochondrial structural disorders, and oxidative stress damage. The administration of the MCs membrane stabilizer, sodium cromoglycate (SCG), decreased the expression of SCF/c-kit, reduced the expression of α-SMA, MMP2, and inhibited the TGF-β1/Smad2/3 pathway, thereby alleviating renal fibrosis. Additionally, SCG reduced renal oxidative stress and mitigated mitochondrial structural damage by inhibiting Ang II production and increasing renal GSH, GSH-Px, and GR levels. Collectively, the recruitment of MCs, activation of the TGF-β1/Smad2/3 pathway, and Ang II production drive renal oxidative stress, ultimately promoting the progression of renal fibrosis in hyperuricemic rats.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms241310839</identifier><identifier>PMID: 37446016</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Adefovir dipivoxil ; Angiotensin II ; Animals ; c-Kit protein ; Cell activation ; Creatinine ; Diet ; Fibrosis ; Gelatinase A ; Health aspects ; Histopathology ; Hyperglycemia ; Hyperlipidemia ; Hypertension ; Hyperuricemia ; Hyperuricemia - metabolism ; Kidney - metabolism ; Kidney diseases ; Kidney Diseases - metabolism ; Mast cells ; Mast Cells - metabolism ; Oxidation ; Oxidative Stress ; Rats ; Risk factors ; Signal Transduction ; Smad2 protein ; Sodium cromoglycate ; Transforming Growth Factor beta1 - metabolism ; Transforming growth factor-b1 ; Transforming growth factors ; Uric acid ; Valsartan</subject><ispartof>International journal of molecular sciences, 2023-06, Vol.24 (13), p.10839</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-fa139ad5b44e0d3aaf8e61eea37a6556073fabd0dee0778e457e92cf0bf8eb5e3</citedby><cites>FETCH-LOGICAL-c483t-fa139ad5b44e0d3aaf8e61eea37a6556073fabd0dee0778e457e92cf0bf8eb5e3</cites><orcidid>0000-0002-0371-0361</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10341566/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10341566/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37446016$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Mingkang</creatorcontrib><creatorcontrib>Cui, Ruirui</creatorcontrib><creatorcontrib>Zhou, Yan</creatorcontrib><creatorcontrib>Ma, Yanrong</creatorcontrib><creatorcontrib>Jin, Yongwen</creatorcontrib><creatorcontrib>Wang, Lina</creatorcontrib><creatorcontrib>Kou, Wen</creatorcontrib><creatorcontrib>Wu, Xin'an</creatorcontrib><title>Accumulation of Renal Fibrosis in Hyperuricemia Rats Is Attributed to the Recruitment of Mast Cells, Activation of the TGF-β1/Smad2/3 Pathway, and Aggravation of Oxidative Stress</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>Renal fibrosis is relentlessly progressive and irreversible, and a life-threatening risk. With the continuous intake of a high-purine diet, hyperuricemia has become a health risk factor in addition to hyperglycemia, hypertension, and hyperlipidemia. Hyperuricemia is also an independent risk factor for renal interstitial fibrosis. Numerous studies have reported that increased mast cells (MCs) are closely associated with kidney injury induced by different triggering factors. This study investigated the effect of MCs on renal injury in rats caused by hyperuricemia and the relationship between MCs and renal fibrosis. Our results reveal that hyperuricemia contributes to renal injury, with a significant increase in renal MCs, leading to renal fibrosis, mitochondrial structural disorders, and oxidative stress damage. The administration of the MCs membrane stabilizer, sodium cromoglycate (SCG), decreased the expression of SCF/c-kit, reduced the expression of α-SMA, MMP2, and inhibited the TGF-β1/Smad2/3 pathway, thereby alleviating renal fibrosis. Additionally, SCG reduced renal oxidative stress and mitigated mitochondrial structural damage by inhibiting Ang II production and increasing renal GSH, GSH-Px, and GR levels. Collectively, the recruitment of MCs, activation of the TGF-β1/Smad2/3 pathway, and Ang II production drive renal oxidative stress, ultimately promoting the progression of renal fibrosis in hyperuricemic rats.</description><subject>Adefovir dipivoxil</subject><subject>Angiotensin II</subject><subject>Animals</subject><subject>c-Kit protein</subject><subject>Cell activation</subject><subject>Creatinine</subject><subject>Diet</subject><subject>Fibrosis</subject><subject>Gelatinase A</subject><subject>Health aspects</subject><subject>Histopathology</subject><subject>Hyperglycemia</subject><subject>Hyperlipidemia</subject><subject>Hypertension</subject><subject>Hyperuricemia</subject><subject>Hyperuricemia - metabolism</subject><subject>Kidney - metabolism</subject><subject>Kidney diseases</subject><subject>Kidney Diseases - metabolism</subject><subject>Mast cells</subject><subject>Mast Cells - metabolism</subject><subject>Oxidation</subject><subject>Oxidative Stress</subject><subject>Rats</subject><subject>Risk factors</subject><subject>Signal Transduction</subject><subject>Smad2 protein</subject><subject>Sodium cromoglycate</subject><subject>Transforming Growth Factor beta1 - metabolism</subject><subject>Transforming growth factor-b1</subject><subject>Transforming growth factors</subject><subject>Uric acid</subject><subject>Valsartan</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkk1vEzEQhlcIREvgyBVZ4tJDt7HX3q8TWkWkrVRU1JazNeudTRztroPtDeRvwf_gN-HQkjYI-eCvZ97RzDtR9JbRM85LOtWr3iWCcUYLXj6LjplIkpjSLH_-5HwUvXJuRWnCk7R8GR3xXIiMsuw4-lkpNfZjB16bgZiW3OAAHZnr2hqnHdEDudiu0Y5WK-w1kBvwjlw6UnlvdT16bIg3xC8xRCo7at_j4HdCn8B5MsOuc6ekUl5v9il28N35PP71g01ve2iSKSefwS-_wfaUwNCQarGw8Mhff9dNuGyQ3HqLzr2OXrTQOXzzsE-iL_OPd7OL-Or6_HJWXcVKFNzHLTBeQpPWQiBtOEBbYMYQgeeQpWlGc95C3dAGkeZ5gSLNsUxUS-sA1inySfThXnc91j02KhRmoZNrq3uwW2lAy8OfQS_lwmwko1ywNMuCwsmDgjVfR3Re9tqp0BMY0IxOJgUvgnllMGYSvf8HXZnRBi_-UJlIBc-KR2oBHUo9tCYkVjtRWeVpwVme5mmgzv5DhdUEC5UZsNXh_SAgvg9QwXVnsd0XyajcjZk8GLPAv3vamT39d674b9nk0Eo</recordid><startdate>20230629</startdate><enddate>20230629</enddate><creator>Zhang, Mingkang</creator><creator>Cui, Ruirui</creator><creator>Zhou, Yan</creator><creator>Ma, Yanrong</creator><creator>Jin, Yongwen</creator><creator>Wang, Lina</creator><creator>Kou, Wen</creator><creator>Wu, Xin'an</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0371-0361</orcidid></search><sort><creationdate>20230629</creationdate><title>Accumulation of Renal Fibrosis in Hyperuricemia Rats Is Attributed to the Recruitment of Mast Cells, Activation of the TGF-β1/Smad2/3 Pathway, and Aggravation of Oxidative Stress</title><author>Zhang, Mingkang ; Cui, Ruirui ; Zhou, Yan ; Ma, Yanrong ; Jin, Yongwen ; Wang, Lina ; Kou, Wen ; Wu, Xin'an</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-fa139ad5b44e0d3aaf8e61eea37a6556073fabd0dee0778e457e92cf0bf8eb5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adefovir dipivoxil</topic><topic>Angiotensin II</topic><topic>Animals</topic><topic>c-Kit protein</topic><topic>Cell activation</topic><topic>Creatinine</topic><topic>Diet</topic><topic>Fibrosis</topic><topic>Gelatinase A</topic><topic>Health aspects</topic><topic>Histopathology</topic><topic>Hyperglycemia</topic><topic>Hyperlipidemia</topic><topic>Hypertension</topic><topic>Hyperuricemia</topic><topic>Hyperuricemia - metabolism</topic><topic>Kidney - metabolism</topic><topic>Kidney diseases</topic><topic>Kidney Diseases - metabolism</topic><topic>Mast cells</topic><topic>Mast Cells - metabolism</topic><topic>Oxidation</topic><topic>Oxidative Stress</topic><topic>Rats</topic><topic>Risk factors</topic><topic>Signal Transduction</topic><topic>Smad2 protein</topic><topic>Sodium cromoglycate</topic><topic>Transforming Growth Factor beta1 - metabolism</topic><topic>Transforming growth factor-b1</topic><topic>Transforming growth factors</topic><topic>Uric acid</topic><topic>Valsartan</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Mingkang</creatorcontrib><creatorcontrib>Cui, Ruirui</creatorcontrib><creatorcontrib>Zhou, Yan</creatorcontrib><creatorcontrib>Ma, Yanrong</creatorcontrib><creatorcontrib>Jin, Yongwen</creatorcontrib><creatorcontrib>Wang, Lina</creatorcontrib><creatorcontrib>Kou, Wen</creatorcontrib><creatorcontrib>Wu, Xin'an</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Mingkang</au><au>Cui, Ruirui</au><au>Zhou, Yan</au><au>Ma, Yanrong</au><au>Jin, Yongwen</au><au>Wang, Lina</au><au>Kou, Wen</au><au>Wu, Xin'an</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accumulation of Renal Fibrosis in Hyperuricemia Rats Is Attributed to the Recruitment of Mast Cells, Activation of the TGF-β1/Smad2/3 Pathway, and Aggravation of Oxidative Stress</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2023-06-29</date><risdate>2023</risdate><volume>24</volume><issue>13</issue><spage>10839</spage><pages>10839-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Renal fibrosis is relentlessly progressive and irreversible, and a life-threatening risk. With the continuous intake of a high-purine diet, hyperuricemia has become a health risk factor in addition to hyperglycemia, hypertension, and hyperlipidemia. Hyperuricemia is also an independent risk factor for renal interstitial fibrosis. Numerous studies have reported that increased mast cells (MCs) are closely associated with kidney injury induced by different triggering factors. This study investigated the effect of MCs on renal injury in rats caused by hyperuricemia and the relationship between MCs and renal fibrosis. Our results reveal that hyperuricemia contributes to renal injury, with a significant increase in renal MCs, leading to renal fibrosis, mitochondrial structural disorders, and oxidative stress damage. The administration of the MCs membrane stabilizer, sodium cromoglycate (SCG), decreased the expression of SCF/c-kit, reduced the expression of α-SMA, MMP2, and inhibited the TGF-β1/Smad2/3 pathway, thereby alleviating renal fibrosis. Additionally, SCG reduced renal oxidative stress and mitigated mitochondrial structural damage by inhibiting Ang II production and increasing renal GSH, GSH-Px, and GR levels. Collectively, the recruitment of MCs, activation of the TGF-β1/Smad2/3 pathway, and Ang II production drive renal oxidative stress, ultimately promoting the progression of renal fibrosis in hyperuricemic rats.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>37446016</pmid><doi>10.3390/ijms241310839</doi><orcidid>https://orcid.org/0000-0002-0371-0361</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-0067 |
ispartof | International journal of molecular sciences, 2023-06, Vol.24 (13), p.10839 |
issn | 1422-0067 1661-6596 1422-0067 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10341566 |
source | MDPI - Multidisciplinary Digital Publishing Institute; MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Adefovir dipivoxil Angiotensin II Animals c-Kit protein Cell activation Creatinine Diet Fibrosis Gelatinase A Health aspects Histopathology Hyperglycemia Hyperlipidemia Hypertension Hyperuricemia Hyperuricemia - metabolism Kidney - metabolism Kidney diseases Kidney Diseases - metabolism Mast cells Mast Cells - metabolism Oxidation Oxidative Stress Rats Risk factors Signal Transduction Smad2 protein Sodium cromoglycate Transforming Growth Factor beta1 - metabolism Transforming growth factor-b1 Transforming growth factors Uric acid Valsartan |
title | Accumulation of Renal Fibrosis in Hyperuricemia Rats Is Attributed to the Recruitment of Mast Cells, Activation of the TGF-β1/Smad2/3 Pathway, and Aggravation of Oxidative Stress |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A52%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accumulation%20of%20Renal%20Fibrosis%20in%20Hyperuricemia%20Rats%20Is%20Attributed%20to%20the%20Recruitment%20of%20Mast%20Cells,%20Activation%20of%20the%20TGF-%CE%B21/Smad2/3%20Pathway,%20and%20Aggravation%20of%20Oxidative%20Stress&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Zhang,%20Mingkang&rft.date=2023-06-29&rft.volume=24&rft.issue=13&rft.spage=10839&rft.pages=10839-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms241310839&rft_dat=%3Cgale_pubme%3EA758317575%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2836454368&rft_id=info:pmid/37446016&rft_galeid=A758317575&rfr_iscdi=true |