Ensuring privacy protection in the era of big laparoscopic video data: development and validation of an inside outside discrimination algorithm (IODA)

Background Laparoscopic videos are increasingly being used for surgical artificial intelligence (AI) and big data analysis. The purpose of this study was to ensure data privacy in video recordings of laparoscopic surgery by censoring extraabdominal parts. An inside-outside-discrimination algorithm (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surgical endoscopy 2023-08, Vol.37 (8), p.6153-6162
Hauptverfasser: Schulze, A., Tran, D., Daum, M. T. J., Kisilenko, A., Maier-Hein, L., Speidel, S., Distler, M., Weitz, J., Müller-Stich, B. P., Bodenstedt, S., Wagner, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6162
container_issue 8
container_start_page 6153
container_title Surgical endoscopy
container_volume 37
creator Schulze, A.
Tran, D.
Daum, M. T. J.
Kisilenko, A.
Maier-Hein, L.
Speidel, S.
Distler, M.
Weitz, J.
Müller-Stich, B. P.
Bodenstedt, S.
Wagner, M.
description Background Laparoscopic videos are increasingly being used for surgical artificial intelligence (AI) and big data analysis. The purpose of this study was to ensure data privacy in video recordings of laparoscopic surgery by censoring extraabdominal parts. An inside-outside-discrimination algorithm (IODA) was developed to ensure privacy protection while maximizing the remaining video data. Methods IODAs neural network architecture was based on a pretrained AlexNet augmented with a long-short-term-memory. The data set for algorithm training and testing contained a total of 100 laparoscopic surgery videos of 23 different operations with a total video length of 207 h (124 min ± 100 min per video) resulting in 18,507,217 frames (185,965 ± 149,718 frames per video). Each video frame was tagged either as abdominal cavity, trocar, operation site, outside for cleaning, or translucent trocar. For algorithm testing, a stratified fivefold cross-validation was used. Results The distribution of annotated classes were abdominal cavity 81.39%, trocar 1.39%, outside operation site 16.07%, outside for cleaning 1.08%, and translucent trocar 0.07%. Algorithm training on binary or all five classes showed similar excellent results for classifying outside frames with a mean F1-score of 0.96 ± 0.01 and 0.97 ± 0.01, sensitivity of 0.97 ± 0.02 and 0.0.97 ± 0.01, and a false positive rate of 0.99 ± 0.01 and 0.99 ± 0.01, respectively. Conclusion IODA is able to discriminate between inside and outside with a high certainty. In particular, only a few outside frames are misclassified as inside and therefore at risk for privacy breach. The anonymized videos can be used for multi-centric development of surgical AI, quality management or educational purposes. In contrast to expensive commercial solutions, IODA is made open source and can be improved by the scientific community.
doi_str_mv 10.1007/s00464-023-10078-x
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10338566</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2836110082</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-60095a78d5c5b18e2ba14f0529e52e6f0d6999e312045d06198ec507ffd2f0e33</originalsourceid><addsrcrecordid>eNp9kctu1TAQhi0EoofCC7BAltiURWBsx4nNBlWlQKVK3cDa8rGdc1wldrCTo_ZFeF6cppTLgtVoNN_8c_kRekngLQFo32WAuqkroKxaclHdPEIbUjNaUUrEY7QByaCirayP0LOcr6HwkvCn6Ii1pOakZRv04zzkOfmww2PyB21uS4yTM5OPAfuAp73DLmkcO7z1O9zrUaeYTRy9wQdvXcRWT_o9tu7g-jgOLkxYB4sPuvelsqiUVr1o5YLjOE930fpskh98WBnd72Ly037AJxdXH0_fPEdPOt1n9-I-HqNvn86_nn2pLq8-X5ydXlambvlUNQCS61ZYbviWCEe3mtQdcCodp67pwDZSSscIhZpbaIgUznBou87SDhxjx-jDqjvO28FZU9ZPulflF4NOtypqr_6uBL9Xu3hQBBgTvGmKwsm9QorfZ5cnNZTTXN_r4OKcFRUEJGWEi4K-_ge9jnMK5b5CsYYUEwUtFF0pUx6dk-setiGgFp_V6rsqvt_lQt2Upld_3vHQ8svoArAVyOPitku_Z_9H9ifmK7uT</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2836110082</pqid></control><display><type>article</type><title>Ensuring privacy protection in the era of big laparoscopic video data: development and validation of an inside outside discrimination algorithm (IODA)</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Schulze, A. ; Tran, D. ; Daum, M. T. J. ; Kisilenko, A. ; Maier-Hein, L. ; Speidel, S. ; Distler, M. ; Weitz, J. ; Müller-Stich, B. P. ; Bodenstedt, S. ; Wagner, M.</creator><creatorcontrib>Schulze, A. ; Tran, D. ; Daum, M. T. J. ; Kisilenko, A. ; Maier-Hein, L. ; Speidel, S. ; Distler, M. ; Weitz, J. ; Müller-Stich, B. P. ; Bodenstedt, S. ; Wagner, M.</creatorcontrib><description>Background Laparoscopic videos are increasingly being used for surgical artificial intelligence (AI) and big data analysis. The purpose of this study was to ensure data privacy in video recordings of laparoscopic surgery by censoring extraabdominal parts. An inside-outside-discrimination algorithm (IODA) was developed to ensure privacy protection while maximizing the remaining video data. Methods IODAs neural network architecture was based on a pretrained AlexNet augmented with a long-short-term-memory. The data set for algorithm training and testing contained a total of 100 laparoscopic surgery videos of 23 different operations with a total video length of 207 h (124 min ± 100 min per video) resulting in 18,507,217 frames (185,965 ± 149,718 frames per video). Each video frame was tagged either as abdominal cavity, trocar, operation site, outside for cleaning, or translucent trocar. For algorithm testing, a stratified fivefold cross-validation was used. Results The distribution of annotated classes were abdominal cavity 81.39%, trocar 1.39%, outside operation site 16.07%, outside for cleaning 1.08%, and translucent trocar 0.07%. Algorithm training on binary or all five classes showed similar excellent results for classifying outside frames with a mean F1-score of 0.96 ± 0.01 and 0.97 ± 0.01, sensitivity of 0.97 ± 0.02 and 0.0.97 ± 0.01, and a false positive rate of 0.99 ± 0.01 and 0.99 ± 0.01, respectively. Conclusion IODA is able to discriminate between inside and outside with a high certainty. In particular, only a few outside frames are misclassified as inside and therefore at risk for privacy breach. The anonymized videos can be used for multi-centric development of surgical AI, quality management or educational purposes. In contrast to expensive commercial solutions, IODA is made open source and can be improved by the scientific community.</description><identifier>ISSN: 0930-2794</identifier><identifier>EISSN: 1432-2218</identifier><identifier>DOI: 10.1007/s00464-023-10078-x</identifier><identifier>PMID: 37145173</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abdomen ; Abdominal Surgery ; Algorithms ; Artificial Intelligence ; Big Data ; Cameras ; Data analysis ; Data science ; Endoscopy ; Gastroenterology ; General Data Protection Regulation ; Gynecology ; Hepatology ; Humans ; Laparoscopy ; Laparoscopy - methods ; Medical research ; Medicine ; Medicine &amp; Public Health ; Neural networks ; Neural Networks, Computer ; Privacy ; Proctology ; Quality management ; Surgery</subject><ispartof>Surgical endoscopy, 2023-08, Vol.37 (8), p.6153-6162</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-60095a78d5c5b18e2ba14f0529e52e6f0d6999e312045d06198ec507ffd2f0e33</citedby><cites>FETCH-LOGICAL-c475t-60095a78d5c5b18e2ba14f0529e52e6f0d6999e312045d06198ec507ffd2f0e33</cites><orcidid>0000-0002-9831-9110</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00464-023-10078-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00464-023-10078-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37145173$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schulze, A.</creatorcontrib><creatorcontrib>Tran, D.</creatorcontrib><creatorcontrib>Daum, M. T. J.</creatorcontrib><creatorcontrib>Kisilenko, A.</creatorcontrib><creatorcontrib>Maier-Hein, L.</creatorcontrib><creatorcontrib>Speidel, S.</creatorcontrib><creatorcontrib>Distler, M.</creatorcontrib><creatorcontrib>Weitz, J.</creatorcontrib><creatorcontrib>Müller-Stich, B. P.</creatorcontrib><creatorcontrib>Bodenstedt, S.</creatorcontrib><creatorcontrib>Wagner, M.</creatorcontrib><title>Ensuring privacy protection in the era of big laparoscopic video data: development and validation of an inside outside discrimination algorithm (IODA)</title><title>Surgical endoscopy</title><addtitle>Surg Endosc</addtitle><addtitle>Surg Endosc</addtitle><description>Background Laparoscopic videos are increasingly being used for surgical artificial intelligence (AI) and big data analysis. The purpose of this study was to ensure data privacy in video recordings of laparoscopic surgery by censoring extraabdominal parts. An inside-outside-discrimination algorithm (IODA) was developed to ensure privacy protection while maximizing the remaining video data. Methods IODAs neural network architecture was based on a pretrained AlexNet augmented with a long-short-term-memory. The data set for algorithm training and testing contained a total of 100 laparoscopic surgery videos of 23 different operations with a total video length of 207 h (124 min ± 100 min per video) resulting in 18,507,217 frames (185,965 ± 149,718 frames per video). Each video frame was tagged either as abdominal cavity, trocar, operation site, outside for cleaning, or translucent trocar. For algorithm testing, a stratified fivefold cross-validation was used. Results The distribution of annotated classes were abdominal cavity 81.39%, trocar 1.39%, outside operation site 16.07%, outside for cleaning 1.08%, and translucent trocar 0.07%. Algorithm training on binary or all five classes showed similar excellent results for classifying outside frames with a mean F1-score of 0.96 ± 0.01 and 0.97 ± 0.01, sensitivity of 0.97 ± 0.02 and 0.0.97 ± 0.01, and a false positive rate of 0.99 ± 0.01 and 0.99 ± 0.01, respectively. Conclusion IODA is able to discriminate between inside and outside with a high certainty. In particular, only a few outside frames are misclassified as inside and therefore at risk for privacy breach. The anonymized videos can be used for multi-centric development of surgical AI, quality management or educational purposes. In contrast to expensive commercial solutions, IODA is made open source and can be improved by the scientific community.</description><subject>Abdomen</subject><subject>Abdominal Surgery</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Big Data</subject><subject>Cameras</subject><subject>Data analysis</subject><subject>Data science</subject><subject>Endoscopy</subject><subject>Gastroenterology</subject><subject>General Data Protection Regulation</subject><subject>Gynecology</subject><subject>Hepatology</subject><subject>Humans</subject><subject>Laparoscopy</subject><subject>Laparoscopy - methods</subject><subject>Medical research</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Privacy</subject><subject>Proctology</subject><subject>Quality management</subject><subject>Surgery</subject><issn>0930-2794</issn><issn>1432-2218</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNp9kctu1TAQhi0EoofCC7BAltiURWBsx4nNBlWlQKVK3cDa8rGdc1wldrCTo_ZFeF6cppTLgtVoNN_8c_kRekngLQFo32WAuqkroKxaclHdPEIbUjNaUUrEY7QByaCirayP0LOcr6HwkvCn6Ii1pOakZRv04zzkOfmww2PyB21uS4yTM5OPAfuAp73DLmkcO7z1O9zrUaeYTRy9wQdvXcRWT_o9tu7g-jgOLkxYB4sPuvelsqiUVr1o5YLjOE930fpskh98WBnd72Ly037AJxdXH0_fPEdPOt1n9-I-HqNvn86_nn2pLq8-X5ydXlambvlUNQCS61ZYbviWCEe3mtQdcCodp67pwDZSSscIhZpbaIgUznBou87SDhxjx-jDqjvO28FZU9ZPulflF4NOtypqr_6uBL9Xu3hQBBgTvGmKwsm9QorfZ5cnNZTTXN_r4OKcFRUEJGWEi4K-_ge9jnMK5b5CsYYUEwUtFF0pUx6dk-setiGgFp_V6rsqvt_lQt2Upld_3vHQ8svoArAVyOPitku_Z_9H9ifmK7uT</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Schulze, A.</creator><creator>Tran, D.</creator><creator>Daum, M. T. J.</creator><creator>Kisilenko, A.</creator><creator>Maier-Hein, L.</creator><creator>Speidel, S.</creator><creator>Distler, M.</creator><creator>Weitz, J.</creator><creator>Müller-Stich, B. P.</creator><creator>Bodenstedt, S.</creator><creator>Wagner, M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9831-9110</orcidid></search><sort><creationdate>20230801</creationdate><title>Ensuring privacy protection in the era of big laparoscopic video data: development and validation of an inside outside discrimination algorithm (IODA)</title><author>Schulze, A. ; Tran, D. ; Daum, M. T. J. ; Kisilenko, A. ; Maier-Hein, L. ; Speidel, S. ; Distler, M. ; Weitz, J. ; Müller-Stich, B. P. ; Bodenstedt, S. ; Wagner, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-60095a78d5c5b18e2ba14f0529e52e6f0d6999e312045d06198ec507ffd2f0e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Abdomen</topic><topic>Abdominal Surgery</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Big Data</topic><topic>Cameras</topic><topic>Data analysis</topic><topic>Data science</topic><topic>Endoscopy</topic><topic>Gastroenterology</topic><topic>General Data Protection Regulation</topic><topic>Gynecology</topic><topic>Hepatology</topic><topic>Humans</topic><topic>Laparoscopy</topic><topic>Laparoscopy - methods</topic><topic>Medical research</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Privacy</topic><topic>Proctology</topic><topic>Quality management</topic><topic>Surgery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schulze, A.</creatorcontrib><creatorcontrib>Tran, D.</creatorcontrib><creatorcontrib>Daum, M. T. J.</creatorcontrib><creatorcontrib>Kisilenko, A.</creatorcontrib><creatorcontrib>Maier-Hein, L.</creatorcontrib><creatorcontrib>Speidel, S.</creatorcontrib><creatorcontrib>Distler, M.</creatorcontrib><creatorcontrib>Weitz, J.</creatorcontrib><creatorcontrib>Müller-Stich, B. P.</creatorcontrib><creatorcontrib>Bodenstedt, S.</creatorcontrib><creatorcontrib>Wagner, M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Surgical endoscopy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schulze, A.</au><au>Tran, D.</au><au>Daum, M. T. J.</au><au>Kisilenko, A.</au><au>Maier-Hein, L.</au><au>Speidel, S.</au><au>Distler, M.</au><au>Weitz, J.</au><au>Müller-Stich, B. P.</au><au>Bodenstedt, S.</au><au>Wagner, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ensuring privacy protection in the era of big laparoscopic video data: development and validation of an inside outside discrimination algorithm (IODA)</atitle><jtitle>Surgical endoscopy</jtitle><stitle>Surg Endosc</stitle><addtitle>Surg Endosc</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>37</volume><issue>8</issue><spage>6153</spage><epage>6162</epage><pages>6153-6162</pages><issn>0930-2794</issn><eissn>1432-2218</eissn><abstract>Background Laparoscopic videos are increasingly being used for surgical artificial intelligence (AI) and big data analysis. The purpose of this study was to ensure data privacy in video recordings of laparoscopic surgery by censoring extraabdominal parts. An inside-outside-discrimination algorithm (IODA) was developed to ensure privacy protection while maximizing the remaining video data. Methods IODAs neural network architecture was based on a pretrained AlexNet augmented with a long-short-term-memory. The data set for algorithm training and testing contained a total of 100 laparoscopic surgery videos of 23 different operations with a total video length of 207 h (124 min ± 100 min per video) resulting in 18,507,217 frames (185,965 ± 149,718 frames per video). Each video frame was tagged either as abdominal cavity, trocar, operation site, outside for cleaning, or translucent trocar. For algorithm testing, a stratified fivefold cross-validation was used. Results The distribution of annotated classes were abdominal cavity 81.39%, trocar 1.39%, outside operation site 16.07%, outside for cleaning 1.08%, and translucent trocar 0.07%. Algorithm training on binary or all five classes showed similar excellent results for classifying outside frames with a mean F1-score of 0.96 ± 0.01 and 0.97 ± 0.01, sensitivity of 0.97 ± 0.02 and 0.0.97 ± 0.01, and a false positive rate of 0.99 ± 0.01 and 0.99 ± 0.01, respectively. Conclusion IODA is able to discriminate between inside and outside with a high certainty. In particular, only a few outside frames are misclassified as inside and therefore at risk for privacy breach. The anonymized videos can be used for multi-centric development of surgical AI, quality management or educational purposes. In contrast to expensive commercial solutions, IODA is made open source and can be improved by the scientific community.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>37145173</pmid><doi>10.1007/s00464-023-10078-x</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9831-9110</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0930-2794
ispartof Surgical endoscopy, 2023-08, Vol.37 (8), p.6153-6162
issn 0930-2794
1432-2218
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10338566
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Abdomen
Abdominal Surgery
Algorithms
Artificial Intelligence
Big Data
Cameras
Data analysis
Data science
Endoscopy
Gastroenterology
General Data Protection Regulation
Gynecology
Hepatology
Humans
Laparoscopy
Laparoscopy - methods
Medical research
Medicine
Medicine & Public Health
Neural networks
Neural Networks, Computer
Privacy
Proctology
Quality management
Surgery
title Ensuring privacy protection in the era of big laparoscopic video data: development and validation of an inside outside discrimination algorithm (IODA)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T01%3A16%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ensuring%20privacy%20protection%20in%20the%20era%20of%20big%20laparoscopic%20video%20data:%20development%20and%20validation%20of%20an%20inside%20outside%20discrimination%20algorithm%20(IODA)&rft.jtitle=Surgical%20endoscopy&rft.au=Schulze,%20A.&rft.date=2023-08-01&rft.volume=37&rft.issue=8&rft.spage=6153&rft.epage=6162&rft.pages=6153-6162&rft.issn=0930-2794&rft.eissn=1432-2218&rft_id=info:doi/10.1007/s00464-023-10078-x&rft_dat=%3Cproquest_pubme%3E2836110082%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2836110082&rft_id=info:pmid/37145173&rfr_iscdi=true