Ensuring privacy protection in the era of big laparoscopic video data: development and validation of an inside outside discrimination algorithm (IODA)
Background Laparoscopic videos are increasingly being used for surgical artificial intelligence (AI) and big data analysis. The purpose of this study was to ensure data privacy in video recordings of laparoscopic surgery by censoring extraabdominal parts. An inside-outside-discrimination algorithm (...
Gespeichert in:
Veröffentlicht in: | Surgical endoscopy 2023-08, Vol.37 (8), p.6153-6162 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6162 |
---|---|
container_issue | 8 |
container_start_page | 6153 |
container_title | Surgical endoscopy |
container_volume | 37 |
creator | Schulze, A. Tran, D. Daum, M. T. J. Kisilenko, A. Maier-Hein, L. Speidel, S. Distler, M. Weitz, J. Müller-Stich, B. P. Bodenstedt, S. Wagner, M. |
description | Background
Laparoscopic videos are increasingly being used for surgical artificial intelligence (AI) and big data analysis. The purpose of this study was to ensure data privacy in video recordings of laparoscopic surgery by censoring extraabdominal parts. An inside-outside-discrimination algorithm (IODA) was developed to ensure privacy protection while maximizing the remaining video data.
Methods
IODAs neural network architecture was based on a pretrained AlexNet augmented with a long-short-term-memory. The data set for algorithm training and testing contained a total of 100 laparoscopic surgery videos of 23 different operations with a total video length of 207 h (124 min ± 100 min per video) resulting in 18,507,217 frames (185,965 ± 149,718 frames per video). Each video frame was tagged either as abdominal cavity, trocar, operation site, outside for cleaning, or translucent trocar. For algorithm testing, a stratified fivefold cross-validation was used.
Results
The distribution of annotated classes were abdominal cavity 81.39%, trocar 1.39%, outside operation site 16.07%, outside for cleaning 1.08%, and translucent trocar 0.07%. Algorithm training on binary or all five classes showed similar excellent results for classifying outside frames with a mean F1-score of 0.96 ± 0.01 and 0.97 ± 0.01, sensitivity of 0.97 ± 0.02 and 0.0.97 ± 0.01, and a false positive rate of 0.99 ± 0.01 and 0.99 ± 0.01, respectively.
Conclusion
IODA is able to discriminate between inside and outside with a high certainty. In particular, only a few outside frames are misclassified as inside and therefore at risk for privacy breach. The anonymized videos can be used for multi-centric development of surgical AI, quality management or educational purposes. In contrast to expensive commercial solutions, IODA is made open source and can be improved by the scientific community. |
doi_str_mv | 10.1007/s00464-023-10078-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10338566</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2836110082</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-60095a78d5c5b18e2ba14f0529e52e6f0d6999e312045d06198ec507ffd2f0e33</originalsourceid><addsrcrecordid>eNp9kctu1TAQhi0EoofCC7BAltiURWBsx4nNBlWlQKVK3cDa8rGdc1wldrCTo_ZFeF6cppTLgtVoNN_8c_kRekngLQFo32WAuqkroKxaclHdPEIbUjNaUUrEY7QByaCirayP0LOcr6HwkvCn6Ii1pOakZRv04zzkOfmww2PyB21uS4yTM5OPAfuAp73DLmkcO7z1O9zrUaeYTRy9wQdvXcRWT_o9tu7g-jgOLkxYB4sPuvelsqiUVr1o5YLjOE930fpskh98WBnd72Ly037AJxdXH0_fPEdPOt1n9-I-HqNvn86_nn2pLq8-X5ydXlambvlUNQCS61ZYbviWCEe3mtQdcCodp67pwDZSSscIhZpbaIgUznBou87SDhxjx-jDqjvO28FZU9ZPulflF4NOtypqr_6uBL9Xu3hQBBgTvGmKwsm9QorfZ5cnNZTTXN_r4OKcFRUEJGWEi4K-_ge9jnMK5b5CsYYUEwUtFF0pUx6dk-setiGgFp_V6rsqvt_lQt2Upld_3vHQ8svoArAVyOPitku_Z_9H9ifmK7uT</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2836110082</pqid></control><display><type>article</type><title>Ensuring privacy protection in the era of big laparoscopic video data: development and validation of an inside outside discrimination algorithm (IODA)</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Schulze, A. ; Tran, D. ; Daum, M. T. J. ; Kisilenko, A. ; Maier-Hein, L. ; Speidel, S. ; Distler, M. ; Weitz, J. ; Müller-Stich, B. P. ; Bodenstedt, S. ; Wagner, M.</creator><creatorcontrib>Schulze, A. ; Tran, D. ; Daum, M. T. J. ; Kisilenko, A. ; Maier-Hein, L. ; Speidel, S. ; Distler, M. ; Weitz, J. ; Müller-Stich, B. P. ; Bodenstedt, S. ; Wagner, M.</creatorcontrib><description>Background
Laparoscopic videos are increasingly being used for surgical artificial intelligence (AI) and big data analysis. The purpose of this study was to ensure data privacy in video recordings of laparoscopic surgery by censoring extraabdominal parts. An inside-outside-discrimination algorithm (IODA) was developed to ensure privacy protection while maximizing the remaining video data.
Methods
IODAs neural network architecture was based on a pretrained AlexNet augmented with a long-short-term-memory. The data set for algorithm training and testing contained a total of 100 laparoscopic surgery videos of 23 different operations with a total video length of 207 h (124 min ± 100 min per video) resulting in 18,507,217 frames (185,965 ± 149,718 frames per video). Each video frame was tagged either as abdominal cavity, trocar, operation site, outside for cleaning, or translucent trocar. For algorithm testing, a stratified fivefold cross-validation was used.
Results
The distribution of annotated classes were abdominal cavity 81.39%, trocar 1.39%, outside operation site 16.07%, outside for cleaning 1.08%, and translucent trocar 0.07%. Algorithm training on binary or all five classes showed similar excellent results for classifying outside frames with a mean F1-score of 0.96 ± 0.01 and 0.97 ± 0.01, sensitivity of 0.97 ± 0.02 and 0.0.97 ± 0.01, and a false positive rate of 0.99 ± 0.01 and 0.99 ± 0.01, respectively.
Conclusion
IODA is able to discriminate between inside and outside with a high certainty. In particular, only a few outside frames are misclassified as inside and therefore at risk for privacy breach. The anonymized videos can be used for multi-centric development of surgical AI, quality management or educational purposes. In contrast to expensive commercial solutions, IODA is made open source and can be improved by the scientific community.</description><identifier>ISSN: 0930-2794</identifier><identifier>EISSN: 1432-2218</identifier><identifier>DOI: 10.1007/s00464-023-10078-x</identifier><identifier>PMID: 37145173</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abdomen ; Abdominal Surgery ; Algorithms ; Artificial Intelligence ; Big Data ; Cameras ; Data analysis ; Data science ; Endoscopy ; Gastroenterology ; General Data Protection Regulation ; Gynecology ; Hepatology ; Humans ; Laparoscopy ; Laparoscopy - methods ; Medical research ; Medicine ; Medicine & Public Health ; Neural networks ; Neural Networks, Computer ; Privacy ; Proctology ; Quality management ; Surgery</subject><ispartof>Surgical endoscopy, 2023-08, Vol.37 (8), p.6153-6162</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-60095a78d5c5b18e2ba14f0529e52e6f0d6999e312045d06198ec507ffd2f0e33</citedby><cites>FETCH-LOGICAL-c475t-60095a78d5c5b18e2ba14f0529e52e6f0d6999e312045d06198ec507ffd2f0e33</cites><orcidid>0000-0002-9831-9110</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00464-023-10078-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00464-023-10078-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37145173$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schulze, A.</creatorcontrib><creatorcontrib>Tran, D.</creatorcontrib><creatorcontrib>Daum, M. T. J.</creatorcontrib><creatorcontrib>Kisilenko, A.</creatorcontrib><creatorcontrib>Maier-Hein, L.</creatorcontrib><creatorcontrib>Speidel, S.</creatorcontrib><creatorcontrib>Distler, M.</creatorcontrib><creatorcontrib>Weitz, J.</creatorcontrib><creatorcontrib>Müller-Stich, B. P.</creatorcontrib><creatorcontrib>Bodenstedt, S.</creatorcontrib><creatorcontrib>Wagner, M.</creatorcontrib><title>Ensuring privacy protection in the era of big laparoscopic video data: development and validation of an inside outside discrimination algorithm (IODA)</title><title>Surgical endoscopy</title><addtitle>Surg Endosc</addtitle><addtitle>Surg Endosc</addtitle><description>Background
Laparoscopic videos are increasingly being used for surgical artificial intelligence (AI) and big data analysis. The purpose of this study was to ensure data privacy in video recordings of laparoscopic surgery by censoring extraabdominal parts. An inside-outside-discrimination algorithm (IODA) was developed to ensure privacy protection while maximizing the remaining video data.
Methods
IODAs neural network architecture was based on a pretrained AlexNet augmented with a long-short-term-memory. The data set for algorithm training and testing contained a total of 100 laparoscopic surgery videos of 23 different operations with a total video length of 207 h (124 min ± 100 min per video) resulting in 18,507,217 frames (185,965 ± 149,718 frames per video). Each video frame was tagged either as abdominal cavity, trocar, operation site, outside for cleaning, or translucent trocar. For algorithm testing, a stratified fivefold cross-validation was used.
Results
The distribution of annotated classes were abdominal cavity 81.39%, trocar 1.39%, outside operation site 16.07%, outside for cleaning 1.08%, and translucent trocar 0.07%. Algorithm training on binary or all five classes showed similar excellent results for classifying outside frames with a mean F1-score of 0.96 ± 0.01 and 0.97 ± 0.01, sensitivity of 0.97 ± 0.02 and 0.0.97 ± 0.01, and a false positive rate of 0.99 ± 0.01 and 0.99 ± 0.01, respectively.
Conclusion
IODA is able to discriminate between inside and outside with a high certainty. In particular, only a few outside frames are misclassified as inside and therefore at risk for privacy breach. The anonymized videos can be used for multi-centric development of surgical AI, quality management or educational purposes. In contrast to expensive commercial solutions, IODA is made open source and can be improved by the scientific community.</description><subject>Abdomen</subject><subject>Abdominal Surgery</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Big Data</subject><subject>Cameras</subject><subject>Data analysis</subject><subject>Data science</subject><subject>Endoscopy</subject><subject>Gastroenterology</subject><subject>General Data Protection Regulation</subject><subject>Gynecology</subject><subject>Hepatology</subject><subject>Humans</subject><subject>Laparoscopy</subject><subject>Laparoscopy - methods</subject><subject>Medical research</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Privacy</subject><subject>Proctology</subject><subject>Quality management</subject><subject>Surgery</subject><issn>0930-2794</issn><issn>1432-2218</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNp9kctu1TAQhi0EoofCC7BAltiURWBsx4nNBlWlQKVK3cDa8rGdc1wldrCTo_ZFeF6cppTLgtVoNN_8c_kRekngLQFo32WAuqkroKxaclHdPEIbUjNaUUrEY7QByaCirayP0LOcr6HwkvCn6Ii1pOakZRv04zzkOfmww2PyB21uS4yTM5OPAfuAp73DLmkcO7z1O9zrUaeYTRy9wQdvXcRWT_o9tu7g-jgOLkxYB4sPuvelsqiUVr1o5YLjOE930fpskh98WBnd72Ly037AJxdXH0_fPEdPOt1n9-I-HqNvn86_nn2pLq8-X5ydXlambvlUNQCS61ZYbviWCEe3mtQdcCodp67pwDZSSscIhZpbaIgUznBou87SDhxjx-jDqjvO28FZU9ZPulflF4NOtypqr_6uBL9Xu3hQBBgTvGmKwsm9QorfZ5cnNZTTXN_r4OKcFRUEJGWEi4K-_ge9jnMK5b5CsYYUEwUtFF0pUx6dk-setiGgFp_V6rsqvt_lQt2Upld_3vHQ8svoArAVyOPitku_Z_9H9ifmK7uT</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Schulze, A.</creator><creator>Tran, D.</creator><creator>Daum, M. T. J.</creator><creator>Kisilenko, A.</creator><creator>Maier-Hein, L.</creator><creator>Speidel, S.</creator><creator>Distler, M.</creator><creator>Weitz, J.</creator><creator>Müller-Stich, B. P.</creator><creator>Bodenstedt, S.</creator><creator>Wagner, M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9831-9110</orcidid></search><sort><creationdate>20230801</creationdate><title>Ensuring privacy protection in the era of big laparoscopic video data: development and validation of an inside outside discrimination algorithm (IODA)</title><author>Schulze, A. ; Tran, D. ; Daum, M. T. J. ; Kisilenko, A. ; Maier-Hein, L. ; Speidel, S. ; Distler, M. ; Weitz, J. ; Müller-Stich, B. P. ; Bodenstedt, S. ; Wagner, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-60095a78d5c5b18e2ba14f0529e52e6f0d6999e312045d06198ec507ffd2f0e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Abdomen</topic><topic>Abdominal Surgery</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Big Data</topic><topic>Cameras</topic><topic>Data analysis</topic><topic>Data science</topic><topic>Endoscopy</topic><topic>Gastroenterology</topic><topic>General Data Protection Regulation</topic><topic>Gynecology</topic><topic>Hepatology</topic><topic>Humans</topic><topic>Laparoscopy</topic><topic>Laparoscopy - methods</topic><topic>Medical research</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Privacy</topic><topic>Proctology</topic><topic>Quality management</topic><topic>Surgery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schulze, A.</creatorcontrib><creatorcontrib>Tran, D.</creatorcontrib><creatorcontrib>Daum, M. T. J.</creatorcontrib><creatorcontrib>Kisilenko, A.</creatorcontrib><creatorcontrib>Maier-Hein, L.</creatorcontrib><creatorcontrib>Speidel, S.</creatorcontrib><creatorcontrib>Distler, M.</creatorcontrib><creatorcontrib>Weitz, J.</creatorcontrib><creatorcontrib>Müller-Stich, B. P.</creatorcontrib><creatorcontrib>Bodenstedt, S.</creatorcontrib><creatorcontrib>Wagner, M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Surgical endoscopy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schulze, A.</au><au>Tran, D.</au><au>Daum, M. T. J.</au><au>Kisilenko, A.</au><au>Maier-Hein, L.</au><au>Speidel, S.</au><au>Distler, M.</au><au>Weitz, J.</au><au>Müller-Stich, B. P.</au><au>Bodenstedt, S.</au><au>Wagner, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ensuring privacy protection in the era of big laparoscopic video data: development and validation of an inside outside discrimination algorithm (IODA)</atitle><jtitle>Surgical endoscopy</jtitle><stitle>Surg Endosc</stitle><addtitle>Surg Endosc</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>37</volume><issue>8</issue><spage>6153</spage><epage>6162</epage><pages>6153-6162</pages><issn>0930-2794</issn><eissn>1432-2218</eissn><abstract>Background
Laparoscopic videos are increasingly being used for surgical artificial intelligence (AI) and big data analysis. The purpose of this study was to ensure data privacy in video recordings of laparoscopic surgery by censoring extraabdominal parts. An inside-outside-discrimination algorithm (IODA) was developed to ensure privacy protection while maximizing the remaining video data.
Methods
IODAs neural network architecture was based on a pretrained AlexNet augmented with a long-short-term-memory. The data set for algorithm training and testing contained a total of 100 laparoscopic surgery videos of 23 different operations with a total video length of 207 h (124 min ± 100 min per video) resulting in 18,507,217 frames (185,965 ± 149,718 frames per video). Each video frame was tagged either as abdominal cavity, trocar, operation site, outside for cleaning, or translucent trocar. For algorithm testing, a stratified fivefold cross-validation was used.
Results
The distribution of annotated classes were abdominal cavity 81.39%, trocar 1.39%, outside operation site 16.07%, outside for cleaning 1.08%, and translucent trocar 0.07%. Algorithm training on binary or all five classes showed similar excellent results for classifying outside frames with a mean F1-score of 0.96 ± 0.01 and 0.97 ± 0.01, sensitivity of 0.97 ± 0.02 and 0.0.97 ± 0.01, and a false positive rate of 0.99 ± 0.01 and 0.99 ± 0.01, respectively.
Conclusion
IODA is able to discriminate between inside and outside with a high certainty. In particular, only a few outside frames are misclassified as inside and therefore at risk for privacy breach. The anonymized videos can be used for multi-centric development of surgical AI, quality management or educational purposes. In contrast to expensive commercial solutions, IODA is made open source and can be improved by the scientific community.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>37145173</pmid><doi>10.1007/s00464-023-10078-x</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9831-9110</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0930-2794 |
ispartof | Surgical endoscopy, 2023-08, Vol.37 (8), p.6153-6162 |
issn | 0930-2794 1432-2218 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10338566 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Abdomen Abdominal Surgery Algorithms Artificial Intelligence Big Data Cameras Data analysis Data science Endoscopy Gastroenterology General Data Protection Regulation Gynecology Hepatology Humans Laparoscopy Laparoscopy - methods Medical research Medicine Medicine & Public Health Neural networks Neural Networks, Computer Privacy Proctology Quality management Surgery |
title | Ensuring privacy protection in the era of big laparoscopic video data: development and validation of an inside outside discrimination algorithm (IODA) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T01%3A16%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ensuring%20privacy%20protection%20in%20the%20era%20of%20big%20laparoscopic%20video%20data:%20development%20and%20validation%20of%20an%20inside%20outside%20discrimination%20algorithm%20(IODA)&rft.jtitle=Surgical%20endoscopy&rft.au=Schulze,%20A.&rft.date=2023-08-01&rft.volume=37&rft.issue=8&rft.spage=6153&rft.epage=6162&rft.pages=6153-6162&rft.issn=0930-2794&rft.eissn=1432-2218&rft_id=info:doi/10.1007/s00464-023-10078-x&rft_dat=%3Cproquest_pubme%3E2836110082%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2836110082&rft_id=info:pmid/37145173&rfr_iscdi=true |