NMP4, an Arbiter of Bone Cell Secretory Capacity and Regulator of Skeletal Response to PTH Therapy

The skeleton is a secretory organ, and the goal of some osteoporosis therapies is to maximize bone matrix output. Nmp4 encodes a novel transcription factor that regulates bone cell secretion as part of its functional repertoire. Loss of Nmp4 enhances bone response to osteoanabolic therapy, in part,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calcified tissue international 2023-07, Vol.113 (1), p.110-125
Hauptverfasser: Korff, Crystal, Atkinson, Emily, Adaway, Michele, Klunk, Angela, Wek, Ronald C., Vashishth, Deepak, Wallace, Joseph M., Anderson-Baucum, Emily K., Evans-Molina, Carmella, Robling, Alexander G., Bidwell, Joseph P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 125
container_issue 1
container_start_page 110
container_title Calcified tissue international
container_volume 113
creator Korff, Crystal
Atkinson, Emily
Adaway, Michele
Klunk, Angela
Wek, Ronald C.
Vashishth, Deepak
Wallace, Joseph M.
Anderson-Baucum, Emily K.
Evans-Molina, Carmella
Robling, Alexander G.
Bidwell, Joseph P.
description The skeleton is a secretory organ, and the goal of some osteoporosis therapies is to maximize bone matrix output. Nmp4 encodes a novel transcription factor that regulates bone cell secretion as part of its functional repertoire. Loss of Nmp4 enhances bone response to osteoanabolic therapy, in part, by increasing the production and delivery of bone matrix. Nmp4 shares traits with scaling factors, which are transcription factors that influence the expression of hundreds of genes to govern proteome allocation for establishing secretory cell infrastructure and capacity. Nmp4 is expressed in all tissues and while global loss of this gene leads to no overt baseline phenotype, deletion of Nmp4 has broad tissue effects in mice challenged with certain stressors. In addition to an enhanced response to osteoporosis therapies, Nmp4 -deficient mice are less sensitive to high fat diet-induced weight gain and insulin resistance, exhibit a reduced disease severity in response to influenza A virus (IAV) infection, and resist the development of some forms of rheumatoid arthritis. In this review, we present the current understanding of the mechanisms underlying Nmp4 regulation of the skeletal response to osteoanabolics, and we discuss how this unique gene contributes to the diverse phenotypes among different tissues and stresses. An emerging theme is that Nmp4 is important for the infrastructure and capacity of secretory cells that are critical for health and disease.
doi_str_mv 10.1007/s00223-023-01088-x
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10330242</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2810917900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-d6a2773223136864f121cc831494012598ce7d68a0c5dedd60e68a9c295ed05f3</originalsourceid><addsrcrecordid>eNp9kUtv1DAQxy0Eog_4AhyQJS4cGjp-JHZOVVn1JbWlosvZ8jqTbUo2DnaCut--jrZPDhwsj2d-87fHf0I-MfjGANR-BOBcZDAtBlpnd2_INpOCZ6C5evsi3iI7Md4CMFkUxXuyJRSTKsXbZHF5cSX3qO3oYVg0Awbqa_rdd0hn2Lb0Gl3AwYc1ndneumZYJ7SiP3E5tjblJ_r6N7Y42DZlY--7iHTw9Gp-Suc3GGy__kDe1baN-PFh3yW_jo_ms9Ps_MfJ2ezwPHNS5UNWFZYrJdJETBS6kDXjzDktmCwlMJ6X2qGqCm3B5RVWVQGYDqXjZY4V5LXYJQcb3X5crLBy2A3BtqYPzcqGtfG2Ma8rXXNjlv6vYSAEcMmTwtcHheD_jBgHs2qiS_9gO_RjNFwzKJkqARL65R_01o-hS_MlSggNIHOWKL6hXPAxBqyfXsPATB6ajYcGpjV5aO5S0-eXczy1PJqWALEBYip1SwzPd_9H9h7_k6YS</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2833800451</pqid></control><display><type>article</type><title>NMP4, an Arbiter of Bone Cell Secretory Capacity and Regulator of Skeletal Response to PTH Therapy</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Korff, Crystal ; Atkinson, Emily ; Adaway, Michele ; Klunk, Angela ; Wek, Ronald C. ; Vashishth, Deepak ; Wallace, Joseph M. ; Anderson-Baucum, Emily K. ; Evans-Molina, Carmella ; Robling, Alexander G. ; Bidwell, Joseph P.</creator><creatorcontrib>Korff, Crystal ; Atkinson, Emily ; Adaway, Michele ; Klunk, Angela ; Wek, Ronald C. ; Vashishth, Deepak ; Wallace, Joseph M. ; Anderson-Baucum, Emily K. ; Evans-Molina, Carmella ; Robling, Alexander G. ; Bidwell, Joseph P.</creatorcontrib><description>The skeleton is a secretory organ, and the goal of some osteoporosis therapies is to maximize bone matrix output. Nmp4 encodes a novel transcription factor that regulates bone cell secretion as part of its functional repertoire. Loss of Nmp4 enhances bone response to osteoanabolic therapy, in part, by increasing the production and delivery of bone matrix. Nmp4 shares traits with scaling factors, which are transcription factors that influence the expression of hundreds of genes to govern proteome allocation for establishing secretory cell infrastructure and capacity. Nmp4 is expressed in all tissues and while global loss of this gene leads to no overt baseline phenotype, deletion of Nmp4 has broad tissue effects in mice challenged with certain stressors. In addition to an enhanced response to osteoporosis therapies, Nmp4 -deficient mice are less sensitive to high fat diet-induced weight gain and insulin resistance, exhibit a reduced disease severity in response to influenza A virus (IAV) infection, and resist the development of some forms of rheumatoid arthritis. In this review, we present the current understanding of the mechanisms underlying Nmp4 regulation of the skeletal response to osteoanabolics, and we discuss how this unique gene contributes to the diverse phenotypes among different tissues and stresses. An emerging theme is that Nmp4 is important for the infrastructure and capacity of secretory cells that are critical for health and disease.</description><identifier>ISSN: 1432-0827</identifier><identifier>ISSN: 0171-967X</identifier><identifier>EISSN: 1432-0827</identifier><identifier>DOI: 10.1007/s00223-023-01088-x</identifier><identifier>PMID: 37147466</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Animals ; Biochemistry ; Biomedical and Life Sciences ; Body weight gain ; Bone matrix ; Cell Biology ; Disease resistance ; Endocrinology ; Gene deletion ; Gene Expression Regulation ; High fat diet ; Influenza A ; Insulin resistance ; Life Sciences ; Mice ; Mice, Knockout ; Orthopedics ; Osteoporosis ; Osteoporosis - drug therapy ; Osteoporosis - genetics ; Parathyroid hormone ; Parathyroid Hormone - metabolism ; Phenotypes ; Proteomes ; Review ; Rheumatoid arthritis ; Skeleton ; Transcription factors ; Transcription Factors - genetics</subject><ispartof>Calcified tissue international, 2023-07, Vol.113 (1), p.110-125</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-d6a2773223136864f121cc831494012598ce7d68a0c5dedd60e68a9c295ed05f3</citedby><cites>FETCH-LOGICAL-c475t-d6a2773223136864f121cc831494012598ce7d68a0c5dedd60e68a9c295ed05f3</cites><orcidid>0000-0001-8886-6842</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00223-023-01088-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00223-023-01088-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,315,782,786,887,27931,27932,41495,42564,51326</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37147466$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Korff, Crystal</creatorcontrib><creatorcontrib>Atkinson, Emily</creatorcontrib><creatorcontrib>Adaway, Michele</creatorcontrib><creatorcontrib>Klunk, Angela</creatorcontrib><creatorcontrib>Wek, Ronald C.</creatorcontrib><creatorcontrib>Vashishth, Deepak</creatorcontrib><creatorcontrib>Wallace, Joseph M.</creatorcontrib><creatorcontrib>Anderson-Baucum, Emily K.</creatorcontrib><creatorcontrib>Evans-Molina, Carmella</creatorcontrib><creatorcontrib>Robling, Alexander G.</creatorcontrib><creatorcontrib>Bidwell, Joseph P.</creatorcontrib><title>NMP4, an Arbiter of Bone Cell Secretory Capacity and Regulator of Skeletal Response to PTH Therapy</title><title>Calcified tissue international</title><addtitle>Calcif Tissue Int</addtitle><addtitle>Calcif Tissue Int</addtitle><description>The skeleton is a secretory organ, and the goal of some osteoporosis therapies is to maximize bone matrix output. Nmp4 encodes a novel transcription factor that regulates bone cell secretion as part of its functional repertoire. Loss of Nmp4 enhances bone response to osteoanabolic therapy, in part, by increasing the production and delivery of bone matrix. Nmp4 shares traits with scaling factors, which are transcription factors that influence the expression of hundreds of genes to govern proteome allocation for establishing secretory cell infrastructure and capacity. Nmp4 is expressed in all tissues and while global loss of this gene leads to no overt baseline phenotype, deletion of Nmp4 has broad tissue effects in mice challenged with certain stressors. In addition to an enhanced response to osteoporosis therapies, Nmp4 -deficient mice are less sensitive to high fat diet-induced weight gain and insulin resistance, exhibit a reduced disease severity in response to influenza A virus (IAV) infection, and resist the development of some forms of rheumatoid arthritis. In this review, we present the current understanding of the mechanisms underlying Nmp4 regulation of the skeletal response to osteoanabolics, and we discuss how this unique gene contributes to the diverse phenotypes among different tissues and stresses. An emerging theme is that Nmp4 is important for the infrastructure and capacity of secretory cells that are critical for health and disease.</description><subject>Animals</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Body weight gain</subject><subject>Bone matrix</subject><subject>Cell Biology</subject><subject>Disease resistance</subject><subject>Endocrinology</subject><subject>Gene deletion</subject><subject>Gene Expression Regulation</subject><subject>High fat diet</subject><subject>Influenza A</subject><subject>Insulin resistance</subject><subject>Life Sciences</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Orthopedics</subject><subject>Osteoporosis</subject><subject>Osteoporosis - drug therapy</subject><subject>Osteoporosis - genetics</subject><subject>Parathyroid hormone</subject><subject>Parathyroid Hormone - metabolism</subject><subject>Phenotypes</subject><subject>Proteomes</subject><subject>Review</subject><subject>Rheumatoid arthritis</subject><subject>Skeleton</subject><subject>Transcription factors</subject><subject>Transcription Factors - genetics</subject><issn>1432-0827</issn><issn>0171-967X</issn><issn>1432-0827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUtv1DAQxy0Eog_4AhyQJS4cGjp-JHZOVVn1JbWlosvZ8jqTbUo2DnaCut--jrZPDhwsj2d-87fHf0I-MfjGANR-BOBcZDAtBlpnd2_INpOCZ6C5evsi3iI7Md4CMFkUxXuyJRSTKsXbZHF5cSX3qO3oYVg0Awbqa_rdd0hn2Lb0Gl3AwYc1ndneumZYJ7SiP3E5tjblJ_r6N7Y42DZlY--7iHTw9Gp-Suc3GGy__kDe1baN-PFh3yW_jo_ms9Ps_MfJ2ezwPHNS5UNWFZYrJdJETBS6kDXjzDktmCwlMJ6X2qGqCm3B5RVWVQGYDqXjZY4V5LXYJQcb3X5crLBy2A3BtqYPzcqGtfG2Ma8rXXNjlv6vYSAEcMmTwtcHheD_jBgHs2qiS_9gO_RjNFwzKJkqARL65R_01o-hS_MlSggNIHOWKL6hXPAxBqyfXsPATB6ajYcGpjV5aO5S0-eXczy1PJqWALEBYip1SwzPd_9H9h7_k6YS</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Korff, Crystal</creator><creator>Atkinson, Emily</creator><creator>Adaway, Michele</creator><creator>Klunk, Angela</creator><creator>Wek, Ronald C.</creator><creator>Vashishth, Deepak</creator><creator>Wallace, Joseph M.</creator><creator>Anderson-Baucum, Emily K.</creator><creator>Evans-Molina, Carmella</creator><creator>Robling, Alexander G.</creator><creator>Bidwell, Joseph P.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8886-6842</orcidid></search><sort><creationdate>20230701</creationdate><title>NMP4, an Arbiter of Bone Cell Secretory Capacity and Regulator of Skeletal Response to PTH Therapy</title><author>Korff, Crystal ; Atkinson, Emily ; Adaway, Michele ; Klunk, Angela ; Wek, Ronald C. ; Vashishth, Deepak ; Wallace, Joseph M. ; Anderson-Baucum, Emily K. ; Evans-Molina, Carmella ; Robling, Alexander G. ; Bidwell, Joseph P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-d6a2773223136864f121cc831494012598ce7d68a0c5dedd60e68a9c295ed05f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Body weight gain</topic><topic>Bone matrix</topic><topic>Cell Biology</topic><topic>Disease resistance</topic><topic>Endocrinology</topic><topic>Gene deletion</topic><topic>Gene Expression Regulation</topic><topic>High fat diet</topic><topic>Influenza A</topic><topic>Insulin resistance</topic><topic>Life Sciences</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Orthopedics</topic><topic>Osteoporosis</topic><topic>Osteoporosis - drug therapy</topic><topic>Osteoporosis - genetics</topic><topic>Parathyroid hormone</topic><topic>Parathyroid Hormone - metabolism</topic><topic>Phenotypes</topic><topic>Proteomes</topic><topic>Review</topic><topic>Rheumatoid arthritis</topic><topic>Skeleton</topic><topic>Transcription factors</topic><topic>Transcription Factors - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Korff, Crystal</creatorcontrib><creatorcontrib>Atkinson, Emily</creatorcontrib><creatorcontrib>Adaway, Michele</creatorcontrib><creatorcontrib>Klunk, Angela</creatorcontrib><creatorcontrib>Wek, Ronald C.</creatorcontrib><creatorcontrib>Vashishth, Deepak</creatorcontrib><creatorcontrib>Wallace, Joseph M.</creatorcontrib><creatorcontrib>Anderson-Baucum, Emily K.</creatorcontrib><creatorcontrib>Evans-Molina, Carmella</creatorcontrib><creatorcontrib>Robling, Alexander G.</creatorcontrib><creatorcontrib>Bidwell, Joseph P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Calcified tissue international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Korff, Crystal</au><au>Atkinson, Emily</au><au>Adaway, Michele</au><au>Klunk, Angela</au><au>Wek, Ronald C.</au><au>Vashishth, Deepak</au><au>Wallace, Joseph M.</au><au>Anderson-Baucum, Emily K.</au><au>Evans-Molina, Carmella</au><au>Robling, Alexander G.</au><au>Bidwell, Joseph P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NMP4, an Arbiter of Bone Cell Secretory Capacity and Regulator of Skeletal Response to PTH Therapy</atitle><jtitle>Calcified tissue international</jtitle><stitle>Calcif Tissue Int</stitle><addtitle>Calcif Tissue Int</addtitle><date>2023-07-01</date><risdate>2023</risdate><volume>113</volume><issue>1</issue><spage>110</spage><epage>125</epage><pages>110-125</pages><issn>1432-0827</issn><issn>0171-967X</issn><eissn>1432-0827</eissn><abstract>The skeleton is a secretory organ, and the goal of some osteoporosis therapies is to maximize bone matrix output. Nmp4 encodes a novel transcription factor that regulates bone cell secretion as part of its functional repertoire. Loss of Nmp4 enhances bone response to osteoanabolic therapy, in part, by increasing the production and delivery of bone matrix. Nmp4 shares traits with scaling factors, which are transcription factors that influence the expression of hundreds of genes to govern proteome allocation for establishing secretory cell infrastructure and capacity. Nmp4 is expressed in all tissues and while global loss of this gene leads to no overt baseline phenotype, deletion of Nmp4 has broad tissue effects in mice challenged with certain stressors. In addition to an enhanced response to osteoporosis therapies, Nmp4 -deficient mice are less sensitive to high fat diet-induced weight gain and insulin resistance, exhibit a reduced disease severity in response to influenza A virus (IAV) infection, and resist the development of some forms of rheumatoid arthritis. In this review, we present the current understanding of the mechanisms underlying Nmp4 regulation of the skeletal response to osteoanabolics, and we discuss how this unique gene contributes to the diverse phenotypes among different tissues and stresses. An emerging theme is that Nmp4 is important for the infrastructure and capacity of secretory cells that are critical for health and disease.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>37147466</pmid><doi>10.1007/s00223-023-01088-x</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-8886-6842</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1432-0827
ispartof Calcified tissue international, 2023-07, Vol.113 (1), p.110-125
issn 1432-0827
0171-967X
1432-0827
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10330242
source MEDLINE; SpringerNature Journals
subjects Animals
Biochemistry
Biomedical and Life Sciences
Body weight gain
Bone matrix
Cell Biology
Disease resistance
Endocrinology
Gene deletion
Gene Expression Regulation
High fat diet
Influenza A
Insulin resistance
Life Sciences
Mice
Mice, Knockout
Orthopedics
Osteoporosis
Osteoporosis - drug therapy
Osteoporosis - genetics
Parathyroid hormone
Parathyroid Hormone - metabolism
Phenotypes
Proteomes
Review
Rheumatoid arthritis
Skeleton
Transcription factors
Transcription Factors - genetics
title NMP4, an Arbiter of Bone Cell Secretory Capacity and Regulator of Skeletal Response to PTH Therapy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-06T11%3A49%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NMP4,%20an%20Arbiter%20of%20Bone%20Cell%20Secretory%20Capacity%20and%20Regulator%20of%20Skeletal%20Response%20to%20PTH%20Therapy&rft.jtitle=Calcified%20tissue%20international&rft.au=Korff,%20Crystal&rft.date=2023-07-01&rft.volume=113&rft.issue=1&rft.spage=110&rft.epage=125&rft.pages=110-125&rft.issn=1432-0827&rft.eissn=1432-0827&rft_id=info:doi/10.1007/s00223-023-01088-x&rft_dat=%3Cproquest_pubme%3E2810917900%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2833800451&rft_id=info:pmid/37147466&rfr_iscdi=true