Modulating Temporospatial Phosphate Equilibrium by Nanoparticulate Mineralized Collagen Materials Induces Osteogenesis via PiT‐1 and PiT‐2
The temporospatial equilibrium of phosphate contributes to physiological bone development and fracture healing, yet optimal control of phosphate content has not been explored in skeletal regenerative materials. Nanoparticulate mineralized collagen glycosaminoglycan (MC‐GAG) is a synthetic, tunable m...
Gespeichert in:
Veröffentlicht in: | Advanced healthcare materials 2023-07, Vol.12 (17), p.e2202750-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 17 |
container_start_page | e2202750 |
container_title | Advanced healthcare materials |
container_volume | 12 |
creator | Ren, Xiaoyan Zhou, Qi Bedar, Meiwand Foulad, David Huang, Kelly X. Dejam, Dillon Dahan, Natalie J. Kolliopoulos, Vasiliki Harley, Brendan A.C. Lee, Justine C. |
description | The temporospatial equilibrium of phosphate contributes to physiological bone development and fracture healing, yet optimal control of phosphate content has not been explored in skeletal regenerative materials. Nanoparticulate mineralized collagen glycosaminoglycan (MC‐GAG) is a synthetic, tunable material that promotes in vivo skull regeneration. In this work, the effects of MC‐GAG phosphate content on the surrounding microenvironment and osteoprogenitor differentiation are investigated. This study finds that MC‐GAG exhibits a temporal relationship with soluble phosphate with elution early in culture shifting to absorption with or without differentiating primary bone marrow‐derived human mesenchymal stem cells (hMSCs). The intrinsic phosphate content of MC‐GAG is sufficient to stimulate osteogenic differentiation of hMSCs in basal growth media without the addition of exogenous phosphate in a manner that can be severely reduced, but not eliminated, by knockdown of the sodium phosphate transporters PiT‐1 or PiT‐2. The contributions of PiT‐1 and PiT‐2 to MC‐GAG‐mediated osteogenesis are nonredundant but also nonadditive, suggestive that the heterodimeric form is essential to its activity. These findings indicate that the mineral content of MC‐GAG alters phosphate concentrations within a local microenvironment resulting in osteogenic differentiation of progenitor cells via both PiT‐1 and PiT‐2.
Dynamic phosphate fluxes influence physiological bone development and healing; however, temporospatial phosphate control has not been explored in skeletal regenerative materials. This work describes the microenvironmental changes in phosphate equilibrium induced by a nanoparticulate mineralized collagen glycosaminoglycan material (MC‐GAG). The function of phosphate intrinsic to MC‐GAG in promoting osteoprogenitor differentiation via sodium phosphate cotransporters, PiT‐1 and PiT‐2, is characterized. |
doi_str_mv | 10.1002/adhm.202202750 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10330078</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2783492950</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4290-37ab81ee027a8f9a28386ae0c05343a7da3f29ec19192729aeada67e9c1cd5213</originalsourceid><addsrcrecordid>eNqFkU1vEzEQhlcIRKvSK0dkiQuXBH_sl0-oSktbqaE9hLM18U4SV7t2au8WhRO_oOI38kuYKCF8XFhZ2rHmmVfz-s2y14KPBefyPTSrbiy5pFMV_Fl2LIWWI1kW-vmhzvlRdprSPaevLERZi5fZkSrrUuU8P86epqEZWuidX7IZdusQQ1rTFVp2t6JyBT2yi4fBtW4e3dCx-YZ9Ah_WEHtnt5PIps5jhNZ9xYZNQtvCEj2bUieSTGLXvhksJnabegzUwuQSe3TA7tzsx7fvgoFv9rV8lb1Y0Aye7v8n2eePF7PJ1ejm9vJ6cnYzsrnUfKQqmNcCkXxDvdAga1WXgNzyQuUKqgbUQmq0QtMjVFIDQgNlhdoK2xRSqJPsw053Pcw7bCz6nhyYdXQdxI0J4MzfHe9WZhkejeBKcV7VpPBurxDDw4CpN51LFsm9xzAkI4nJtdQFJ_TtP-h9GKInf4YWVwXXWmxXGu8oSxGkiIvDNoKbbdxmG7c5xE0Db_70cMB_hUuA3gFfXIub_8iZs_Or6W_xnzivuyk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2833509911</pqid></control><display><type>article</type><title>Modulating Temporospatial Phosphate Equilibrium by Nanoparticulate Mineralized Collagen Materials Induces Osteogenesis via PiT‐1 and PiT‐2</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ren, Xiaoyan ; Zhou, Qi ; Bedar, Meiwand ; Foulad, David ; Huang, Kelly X. ; Dejam, Dillon ; Dahan, Natalie J. ; Kolliopoulos, Vasiliki ; Harley, Brendan A.C. ; Lee, Justine C.</creator><creatorcontrib>Ren, Xiaoyan ; Zhou, Qi ; Bedar, Meiwand ; Foulad, David ; Huang, Kelly X. ; Dejam, Dillon ; Dahan, Natalie J. ; Kolliopoulos, Vasiliki ; Harley, Brendan A.C. ; Lee, Justine C.</creatorcontrib><description>The temporospatial equilibrium of phosphate contributes to physiological bone development and fracture healing, yet optimal control of phosphate content has not been explored in skeletal regenerative materials. Nanoparticulate mineralized collagen glycosaminoglycan (MC‐GAG) is a synthetic, tunable material that promotes in vivo skull regeneration. In this work, the effects of MC‐GAG phosphate content on the surrounding microenvironment and osteoprogenitor differentiation are investigated. This study finds that MC‐GAG exhibits a temporal relationship with soluble phosphate with elution early in culture shifting to absorption with or without differentiating primary bone marrow‐derived human mesenchymal stem cells (hMSCs). The intrinsic phosphate content of MC‐GAG is sufficient to stimulate osteogenic differentiation of hMSCs in basal growth media without the addition of exogenous phosphate in a manner that can be severely reduced, but not eliminated, by knockdown of the sodium phosphate transporters PiT‐1 or PiT‐2. The contributions of PiT‐1 and PiT‐2 to MC‐GAG‐mediated osteogenesis are nonredundant but also nonadditive, suggestive that the heterodimeric form is essential to its activity. These findings indicate that the mineral content of MC‐GAG alters phosphate concentrations within a local microenvironment resulting in osteogenic differentiation of progenitor cells via both PiT‐1 and PiT‐2.
Dynamic phosphate fluxes influence physiological bone development and healing; however, temporospatial phosphate control has not been explored in skeletal regenerative materials. This work describes the microenvironmental changes in phosphate equilibrium induced by a nanoparticulate mineralized collagen glycosaminoglycan material (MC‐GAG). The function of phosphate intrinsic to MC‐GAG in promoting osteoprogenitor differentiation via sodium phosphate cotransporters, PiT‐1 and PiT‐2, is characterized.</description><identifier>ISSN: 2192-2640</identifier><identifier>ISSN: 2192-2659</identifier><identifier>EISSN: 2192-2659</identifier><identifier>DOI: 10.1002/adhm.202202750</identifier><identifier>PMID: 36863404</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Bone healing ; Bone marrow ; bone regeneration ; Cell culture ; Cell Differentiation ; Cells, Cultured ; Collagen ; Differentiation (biology) ; Glycosaminoglycans ; Humans ; Mesenchymal stem cells ; Microenvironments ; Mineralization ; Nanoparticles ; nanoparticulate mineralized collagen glycosaminoglycan scaffolds ; Optimal control ; Osteogenesis ; Osteoprogenitor cells ; Phosphate ; Phosphates ; Phosphates - pharmacology ; Progenitor cells ; Regeneration ; Sodium phosphate ; Stem cells ; Tissue Scaffolds</subject><ispartof>Advanced healthcare materials, 2023-07, Vol.12 (17), p.e2202750-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4290-37ab81ee027a8f9a28386ae0c05343a7da3f29ec19192729aeada67e9c1cd5213</citedby><cites>FETCH-LOGICAL-c4290-37ab81ee027a8f9a28386ae0c05343a7da3f29ec19192729aeada67e9c1cd5213</cites><orcidid>0000-0002-8943-0837 ; 0000-0001-9092-5135</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadhm.202202750$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadhm.202202750$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36863404$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ren, Xiaoyan</creatorcontrib><creatorcontrib>Zhou, Qi</creatorcontrib><creatorcontrib>Bedar, Meiwand</creatorcontrib><creatorcontrib>Foulad, David</creatorcontrib><creatorcontrib>Huang, Kelly X.</creatorcontrib><creatorcontrib>Dejam, Dillon</creatorcontrib><creatorcontrib>Dahan, Natalie J.</creatorcontrib><creatorcontrib>Kolliopoulos, Vasiliki</creatorcontrib><creatorcontrib>Harley, Brendan A.C.</creatorcontrib><creatorcontrib>Lee, Justine C.</creatorcontrib><title>Modulating Temporospatial Phosphate Equilibrium by Nanoparticulate Mineralized Collagen Materials Induces Osteogenesis via PiT‐1 and PiT‐2</title><title>Advanced healthcare materials</title><addtitle>Adv Healthc Mater</addtitle><description>The temporospatial equilibrium of phosphate contributes to physiological bone development and fracture healing, yet optimal control of phosphate content has not been explored in skeletal regenerative materials. Nanoparticulate mineralized collagen glycosaminoglycan (MC‐GAG) is a synthetic, tunable material that promotes in vivo skull regeneration. In this work, the effects of MC‐GAG phosphate content on the surrounding microenvironment and osteoprogenitor differentiation are investigated. This study finds that MC‐GAG exhibits a temporal relationship with soluble phosphate with elution early in culture shifting to absorption with or without differentiating primary bone marrow‐derived human mesenchymal stem cells (hMSCs). The intrinsic phosphate content of MC‐GAG is sufficient to stimulate osteogenic differentiation of hMSCs in basal growth media without the addition of exogenous phosphate in a manner that can be severely reduced, but not eliminated, by knockdown of the sodium phosphate transporters PiT‐1 or PiT‐2. The contributions of PiT‐1 and PiT‐2 to MC‐GAG‐mediated osteogenesis are nonredundant but also nonadditive, suggestive that the heterodimeric form is essential to its activity. These findings indicate that the mineral content of MC‐GAG alters phosphate concentrations within a local microenvironment resulting in osteogenic differentiation of progenitor cells via both PiT‐1 and PiT‐2.
Dynamic phosphate fluxes influence physiological bone development and healing; however, temporospatial phosphate control has not been explored in skeletal regenerative materials. This work describes the microenvironmental changes in phosphate equilibrium induced by a nanoparticulate mineralized collagen glycosaminoglycan material (MC‐GAG). The function of phosphate intrinsic to MC‐GAG in promoting osteoprogenitor differentiation via sodium phosphate cotransporters, PiT‐1 and PiT‐2, is characterized.</description><subject>Bone healing</subject><subject>Bone marrow</subject><subject>bone regeneration</subject><subject>Cell culture</subject><subject>Cell Differentiation</subject><subject>Cells, Cultured</subject><subject>Collagen</subject><subject>Differentiation (biology)</subject><subject>Glycosaminoglycans</subject><subject>Humans</subject><subject>Mesenchymal stem cells</subject><subject>Microenvironments</subject><subject>Mineralization</subject><subject>Nanoparticles</subject><subject>nanoparticulate mineralized collagen glycosaminoglycan scaffolds</subject><subject>Optimal control</subject><subject>Osteogenesis</subject><subject>Osteoprogenitor cells</subject><subject>Phosphate</subject><subject>Phosphates</subject><subject>Phosphates - pharmacology</subject><subject>Progenitor cells</subject><subject>Regeneration</subject><subject>Sodium phosphate</subject><subject>Stem cells</subject><subject>Tissue Scaffolds</subject><issn>2192-2640</issn><issn>2192-2659</issn><issn>2192-2659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1vEzEQhlcIRKvSK0dkiQuXBH_sl0-oSktbqaE9hLM18U4SV7t2au8WhRO_oOI38kuYKCF8XFhZ2rHmmVfz-s2y14KPBefyPTSrbiy5pFMV_Fl2LIWWI1kW-vmhzvlRdprSPaevLERZi5fZkSrrUuU8P86epqEZWuidX7IZdusQQ1rTFVp2t6JyBT2yi4fBtW4e3dCx-YZ9Ah_WEHtnt5PIps5jhNZ9xYZNQtvCEj2bUieSTGLXvhksJnabegzUwuQSe3TA7tzsx7fvgoFv9rV8lb1Y0Aye7v8n2eePF7PJ1ejm9vJ6cnYzsrnUfKQqmNcCkXxDvdAga1WXgNzyQuUKqgbUQmq0QtMjVFIDQgNlhdoK2xRSqJPsw053Pcw7bCz6nhyYdXQdxI0J4MzfHe9WZhkejeBKcV7VpPBurxDDw4CpN51LFsm9xzAkI4nJtdQFJ_TtP-h9GKInf4YWVwXXWmxXGu8oSxGkiIvDNoKbbdxmG7c5xE0Db_70cMB_hUuA3gFfXIub_8iZs_Or6W_xnzivuyk</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Ren, Xiaoyan</creator><creator>Zhou, Qi</creator><creator>Bedar, Meiwand</creator><creator>Foulad, David</creator><creator>Huang, Kelly X.</creator><creator>Dejam, Dillon</creator><creator>Dahan, Natalie J.</creator><creator>Kolliopoulos, Vasiliki</creator><creator>Harley, Brendan A.C.</creator><creator>Lee, Justine C.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8943-0837</orcidid><orcidid>https://orcid.org/0000-0001-9092-5135</orcidid></search><sort><creationdate>20230701</creationdate><title>Modulating Temporospatial Phosphate Equilibrium by Nanoparticulate Mineralized Collagen Materials Induces Osteogenesis via PiT‐1 and PiT‐2</title><author>Ren, Xiaoyan ; Zhou, Qi ; Bedar, Meiwand ; Foulad, David ; Huang, Kelly X. ; Dejam, Dillon ; Dahan, Natalie J. ; Kolliopoulos, Vasiliki ; Harley, Brendan A.C. ; Lee, Justine C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4290-37ab81ee027a8f9a28386ae0c05343a7da3f29ec19192729aeada67e9c1cd5213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bone healing</topic><topic>Bone marrow</topic><topic>bone regeneration</topic><topic>Cell culture</topic><topic>Cell Differentiation</topic><topic>Cells, Cultured</topic><topic>Collagen</topic><topic>Differentiation (biology)</topic><topic>Glycosaminoglycans</topic><topic>Humans</topic><topic>Mesenchymal stem cells</topic><topic>Microenvironments</topic><topic>Mineralization</topic><topic>Nanoparticles</topic><topic>nanoparticulate mineralized collagen glycosaminoglycan scaffolds</topic><topic>Optimal control</topic><topic>Osteogenesis</topic><topic>Osteoprogenitor cells</topic><topic>Phosphate</topic><topic>Phosphates</topic><topic>Phosphates - pharmacology</topic><topic>Progenitor cells</topic><topic>Regeneration</topic><topic>Sodium phosphate</topic><topic>Stem cells</topic><topic>Tissue Scaffolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, Xiaoyan</creatorcontrib><creatorcontrib>Zhou, Qi</creatorcontrib><creatorcontrib>Bedar, Meiwand</creatorcontrib><creatorcontrib>Foulad, David</creatorcontrib><creatorcontrib>Huang, Kelly X.</creatorcontrib><creatorcontrib>Dejam, Dillon</creatorcontrib><creatorcontrib>Dahan, Natalie J.</creatorcontrib><creatorcontrib>Kolliopoulos, Vasiliki</creatorcontrib><creatorcontrib>Harley, Brendan A.C.</creatorcontrib><creatorcontrib>Lee, Justine C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Advanced healthcare materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ren, Xiaoyan</au><au>Zhou, Qi</au><au>Bedar, Meiwand</au><au>Foulad, David</au><au>Huang, Kelly X.</au><au>Dejam, Dillon</au><au>Dahan, Natalie J.</au><au>Kolliopoulos, Vasiliki</au><au>Harley, Brendan A.C.</au><au>Lee, Justine C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modulating Temporospatial Phosphate Equilibrium by Nanoparticulate Mineralized Collagen Materials Induces Osteogenesis via PiT‐1 and PiT‐2</atitle><jtitle>Advanced healthcare materials</jtitle><addtitle>Adv Healthc Mater</addtitle><date>2023-07-01</date><risdate>2023</risdate><volume>12</volume><issue>17</issue><spage>e2202750</spage><epage>n/a</epage><pages>e2202750-n/a</pages><issn>2192-2640</issn><issn>2192-2659</issn><eissn>2192-2659</eissn><abstract>The temporospatial equilibrium of phosphate contributes to physiological bone development and fracture healing, yet optimal control of phosphate content has not been explored in skeletal regenerative materials. Nanoparticulate mineralized collagen glycosaminoglycan (MC‐GAG) is a synthetic, tunable material that promotes in vivo skull regeneration. In this work, the effects of MC‐GAG phosphate content on the surrounding microenvironment and osteoprogenitor differentiation are investigated. This study finds that MC‐GAG exhibits a temporal relationship with soluble phosphate with elution early in culture shifting to absorption with or without differentiating primary bone marrow‐derived human mesenchymal stem cells (hMSCs). The intrinsic phosphate content of MC‐GAG is sufficient to stimulate osteogenic differentiation of hMSCs in basal growth media without the addition of exogenous phosphate in a manner that can be severely reduced, but not eliminated, by knockdown of the sodium phosphate transporters PiT‐1 or PiT‐2. The contributions of PiT‐1 and PiT‐2 to MC‐GAG‐mediated osteogenesis are nonredundant but also nonadditive, suggestive that the heterodimeric form is essential to its activity. These findings indicate that the mineral content of MC‐GAG alters phosphate concentrations within a local microenvironment resulting in osteogenic differentiation of progenitor cells via both PiT‐1 and PiT‐2.
Dynamic phosphate fluxes influence physiological bone development and healing; however, temporospatial phosphate control has not been explored in skeletal regenerative materials. This work describes the microenvironmental changes in phosphate equilibrium induced by a nanoparticulate mineralized collagen glycosaminoglycan material (MC‐GAG). The function of phosphate intrinsic to MC‐GAG in promoting osteoprogenitor differentiation via sodium phosphate cotransporters, PiT‐1 and PiT‐2, is characterized.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36863404</pmid><doi>10.1002/adhm.202202750</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8943-0837</orcidid><orcidid>https://orcid.org/0000-0001-9092-5135</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2192-2640 |
ispartof | Advanced healthcare materials, 2023-07, Vol.12 (17), p.e2202750-n/a |
issn | 2192-2640 2192-2659 2192-2659 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10330078 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Bone healing Bone marrow bone regeneration Cell culture Cell Differentiation Cells, Cultured Collagen Differentiation (biology) Glycosaminoglycans Humans Mesenchymal stem cells Microenvironments Mineralization Nanoparticles nanoparticulate mineralized collagen glycosaminoglycan scaffolds Optimal control Osteogenesis Osteoprogenitor cells Phosphate Phosphates Phosphates - pharmacology Progenitor cells Regeneration Sodium phosphate Stem cells Tissue Scaffolds |
title | Modulating Temporospatial Phosphate Equilibrium by Nanoparticulate Mineralized Collagen Materials Induces Osteogenesis via PiT‐1 and PiT‐2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A12%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modulating%20Temporospatial%20Phosphate%20Equilibrium%20by%20Nanoparticulate%20Mineralized%20Collagen%20Materials%20Induces%20Osteogenesis%20via%20PiT%E2%80%901%20and%20PiT%E2%80%902&rft.jtitle=Advanced%20healthcare%20materials&rft.au=Ren,%20Xiaoyan&rft.date=2023-07-01&rft.volume=12&rft.issue=17&rft.spage=e2202750&rft.epage=n/a&rft.pages=e2202750-n/a&rft.issn=2192-2640&rft.eissn=2192-2659&rft_id=info:doi/10.1002/adhm.202202750&rft_dat=%3Cproquest_pubme%3E2783492950%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2833509911&rft_id=info:pmid/36863404&rfr_iscdi=true |