Energetic landscape of polycystin channel gating

Members of the polycystin family (PKD2 and PKD2L1) of transient receptor potential (TRP) channels conduct Ca 2+ and depolarizing monovalent cations. Variants in PKD2 cause autosomal dominant polycystic kidney disease (ADPKD) in humans, whereas loss of PKD2L1 expression causes seizure susceptibility...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EMBO reports 2023-07, Vol.24 (7), p.e56783-n/a
Hauptverfasser: Ng, Leo CT, Harris, Brandon J, Larmore, Megan, Ta, My C, Vien, Thuy N, Tokars, Valerie L, Yarov‐Yarovoy, Vladimir, DeCaen, Paul G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 7
container_start_page e56783
container_title EMBO reports
container_volume 24
creator Ng, Leo CT
Harris, Brandon J
Larmore, Megan
Ta, My C
Vien, Thuy N
Tokars, Valerie L
Yarov‐Yarovoy, Vladimir
DeCaen, Paul G
description Members of the polycystin family (PKD2 and PKD2L1) of transient receptor potential (TRP) channels conduct Ca 2+ and depolarizing monovalent cations. Variants in PKD2 cause autosomal dominant polycystic kidney disease (ADPKD) in humans, whereas loss of PKD2L1 expression causes seizure susceptibility in mice. Understanding structural and functional regulation of these channels will provide the basis for interpreting their molecular dysregulation in disease states. However, the complete structures of polycystins are unresolved, as are the conformational changes regulating their conductive states. To provide a holistic understanding of the polycystin gating cycle, we use computational prediction tools to model missing PKD2L1 structural motifs and evaluate more than 150 mutations in an unbiased mutagenic functional screen of the entire pore module. Our results provide an energetic landscape of the polycystin pore, which enumerates gating sensitive sites and interactions required for opening, inactivation, and subsequent desensitization. These findings identify the external pore helices and specific cross‐domain interactions as critical structural regulators controlling the polycystin ion channel conductive and nonconductive states. Synopsis Conformational changes that open polycystins are critical for their ion channel function in brain and kidney. Results from an unbiased functional screen of the entire polycystin pore module and AI‐driven structural modeling provide an energetic landscape while enumerate gating‐sensitive sites controlling the conductive states of the channel. External pore helix interactions regulate the polycystin channel opening. Opening the inner and outer pore gates are energetically coupled. Inactivation and desensitized are structurally related states controlled by specific inter‐subunit interactions between the pore helix 1 and sixth transmembrane segment. Graphical Abstract Conformational changes that open polycystins are critical for their ion channel function in brain and kidney. Results from an unbiased functional screen of the entire polycystin pore module and AI‐driven structural modeling provide an energetic landscape while enumerate gating‐sensitive sites controlling the conductive states of the channel.
doi_str_mv 10.15252/embr.202356783
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10328073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2811570157</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4683-fd4a736b86b0b57fa8e787978ed29c33ac37a28450e1adf337af637b5b68274b3</originalsourceid><addsrcrecordid>eNqFkUtLAzEUhYMoVqtrdzLgxk3bPCaT1I1oqQ-oCKLgLmQyd6ZTppmatMr8e6OttQriIiSXfOfk3FyEjgjuEk457cE0dV2KKeOJkGwL7ZE46XcYEXJ7daaUPLfQvvcTjDHvC7mLWkwQLnlC9xAeWnAFzEsTVdpm3ugZRHUezeqqMY2flzYyY20tVFGhQ1UcoJ1cVx4OV3sbPV0NHwc3ndH99e3gYtQxcSJZJ89iLViSyiTFKRe5liCkCK9DRvuGMW2Y0FTGHAPRWc5ClSdMpDxNJBVxytrofOk7W6RTyAzYudOVmrlyql2jal2qnze2HKuiflUEMyqxYMHhdOXg6pcF-Lmalt5AFfqEeuEVlYRwgcMK6MkvdFIvnA39BYrFJBYUx4HqLSnjau8d5Os0BKvPcaiPcaj1OILieLOJNf_1_wE4WwJvZQXNf35qeHf5sOmOl2IfdLYA9536r0Dvy0emuA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2834147204</pqid></control><display><type>article</type><title>Energetic landscape of polycystin channel gating</title><source>MEDLINE</source><source>Springer Nature OA Free Journals</source><source>Wiley Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><source>PubMed Central</source><creator>Ng, Leo CT ; Harris, Brandon J ; Larmore, Megan ; Ta, My C ; Vien, Thuy N ; Tokars, Valerie L ; Yarov‐Yarovoy, Vladimir ; DeCaen, Paul G</creator><creatorcontrib>Ng, Leo CT ; Harris, Brandon J ; Larmore, Megan ; Ta, My C ; Vien, Thuy N ; Tokars, Valerie L ; Yarov‐Yarovoy, Vladimir ; DeCaen, Paul G</creatorcontrib><description>Members of the polycystin family (PKD2 and PKD2L1) of transient receptor potential (TRP) channels conduct Ca 2+ and depolarizing monovalent cations. Variants in PKD2 cause autosomal dominant polycystic kidney disease (ADPKD) in humans, whereas loss of PKD2L1 expression causes seizure susceptibility in mice. Understanding structural and functional regulation of these channels will provide the basis for interpreting their molecular dysregulation in disease states. However, the complete structures of polycystins are unresolved, as are the conformational changes regulating their conductive states. To provide a holistic understanding of the polycystin gating cycle, we use computational prediction tools to model missing PKD2L1 structural motifs and evaluate more than 150 mutations in an unbiased mutagenic functional screen of the entire pore module. Our results provide an energetic landscape of the polycystin pore, which enumerates gating sensitive sites and interactions required for opening, inactivation, and subsequent desensitization. These findings identify the external pore helices and specific cross‐domain interactions as critical structural regulators controlling the polycystin ion channel conductive and nonconductive states. Synopsis Conformational changes that open polycystins are critical for their ion channel function in brain and kidney. Results from an unbiased functional screen of the entire polycystin pore module and AI‐driven structural modeling provide an energetic landscape while enumerate gating‐sensitive sites controlling the conductive states of the channel. External pore helix interactions regulate the polycystin channel opening. Opening the inner and outer pore gates are energetically coupled. Inactivation and desensitized are structurally related states controlled by specific inter‐subunit interactions between the pore helix 1 and sixth transmembrane segment. Graphical Abstract Conformational changes that open polycystins are critical for their ion channel function in brain and kidney. Results from an unbiased functional screen of the entire polycystin pore module and AI‐driven structural modeling provide an energetic landscape while enumerate gating‐sensitive sites controlling the conductive states of the channel.</description><identifier>ISSN: 1469-221X</identifier><identifier>ISSN: 1469-3178</identifier><identifier>EISSN: 1469-3178</identifier><identifier>DOI: 10.15252/embr.202356783</identifier><identifier>PMID: 37158562</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Animals ; Brain ; calcium ; Calcium channels ; Calcium Channels - metabolism ; Calcium ions ; Cations ; Channel gating ; Channel opening ; Channelopathy ; Computational neuroscience ; Conformation (molecular) ; Deactivation ; Depolarization ; Desensitization ; EMBO24 ; Helices ; Humans ; Inactivation ; Ion channels ; Ion Transport ; Kidney diseases ; Kidneys ; Life Sciences ; Membrane channels ; Mice ; Modules ; Mutation ; Pathogenesis ; Polycystic kidney ; polycystic kidney disease ; polycystins ; Receptors, Cell Surface - metabolism ; Seizures ; Signal Transduction ; Software ; structural biology ; Structure-function relationships ; Transient Receptor Potential Channels - genetics ; Transient receptor potential proteins ; TRP channels ; TRPP Cation Channels - chemistry</subject><ispartof>EMBO reports, 2023-07, Vol.24 (7), p.e56783-n/a</ispartof><rights>The Author(s) 2023</rights><rights>2023 The Authors. Published under the terms of the CC BY NC ND 4.0 license.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4683-fd4a736b86b0b57fa8e787978ed29c33ac37a28450e1adf337af637b5b68274b3</cites><orcidid>0000-0002-0492-5460 ; 0000-0003-3894-0180 ; 0000-0001-8776-983X ; 0000-0002-2619-3969 ; 0000-0002-2325-4834</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10328073/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10328073/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1416,1432,27922,27923,41118,42187,45572,45573,46407,46831,51574,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37158562$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ng, Leo CT</creatorcontrib><creatorcontrib>Harris, Brandon J</creatorcontrib><creatorcontrib>Larmore, Megan</creatorcontrib><creatorcontrib>Ta, My C</creatorcontrib><creatorcontrib>Vien, Thuy N</creatorcontrib><creatorcontrib>Tokars, Valerie L</creatorcontrib><creatorcontrib>Yarov‐Yarovoy, Vladimir</creatorcontrib><creatorcontrib>DeCaen, Paul G</creatorcontrib><title>Energetic landscape of polycystin channel gating</title><title>EMBO reports</title><addtitle>EMBO Rep</addtitle><addtitle>EMBO Rep</addtitle><description>Members of the polycystin family (PKD2 and PKD2L1) of transient receptor potential (TRP) channels conduct Ca 2+ and depolarizing monovalent cations. Variants in PKD2 cause autosomal dominant polycystic kidney disease (ADPKD) in humans, whereas loss of PKD2L1 expression causes seizure susceptibility in mice. Understanding structural and functional regulation of these channels will provide the basis for interpreting their molecular dysregulation in disease states. However, the complete structures of polycystins are unresolved, as are the conformational changes regulating their conductive states. To provide a holistic understanding of the polycystin gating cycle, we use computational prediction tools to model missing PKD2L1 structural motifs and evaluate more than 150 mutations in an unbiased mutagenic functional screen of the entire pore module. Our results provide an energetic landscape of the polycystin pore, which enumerates gating sensitive sites and interactions required for opening, inactivation, and subsequent desensitization. These findings identify the external pore helices and specific cross‐domain interactions as critical structural regulators controlling the polycystin ion channel conductive and nonconductive states. Synopsis Conformational changes that open polycystins are critical for their ion channel function in brain and kidney. Results from an unbiased functional screen of the entire polycystin pore module and AI‐driven structural modeling provide an energetic landscape while enumerate gating‐sensitive sites controlling the conductive states of the channel. External pore helix interactions regulate the polycystin channel opening. Opening the inner and outer pore gates are energetically coupled. Inactivation and desensitized are structurally related states controlled by specific inter‐subunit interactions between the pore helix 1 and sixth transmembrane segment. Graphical Abstract Conformational changes that open polycystins are critical for their ion channel function in brain and kidney. Results from an unbiased functional screen of the entire polycystin pore module and AI‐driven structural modeling provide an energetic landscape while enumerate gating‐sensitive sites controlling the conductive states of the channel.</description><subject>Animals</subject><subject>Brain</subject><subject>calcium</subject><subject>Calcium channels</subject><subject>Calcium Channels - metabolism</subject><subject>Calcium ions</subject><subject>Cations</subject><subject>Channel gating</subject><subject>Channel opening</subject><subject>Channelopathy</subject><subject>Computational neuroscience</subject><subject>Conformation (molecular)</subject><subject>Deactivation</subject><subject>Depolarization</subject><subject>Desensitization</subject><subject>EMBO24</subject><subject>Helices</subject><subject>Humans</subject><subject>Inactivation</subject><subject>Ion channels</subject><subject>Ion Transport</subject><subject>Kidney diseases</subject><subject>Kidneys</subject><subject>Life Sciences</subject><subject>Membrane channels</subject><subject>Mice</subject><subject>Modules</subject><subject>Mutation</subject><subject>Pathogenesis</subject><subject>Polycystic kidney</subject><subject>polycystic kidney disease</subject><subject>polycystins</subject><subject>Receptors, Cell Surface - metabolism</subject><subject>Seizures</subject><subject>Signal Transduction</subject><subject>Software</subject><subject>structural biology</subject><subject>Structure-function relationships</subject><subject>Transient Receptor Potential Channels - genetics</subject><subject>Transient receptor potential proteins</subject><subject>TRP channels</subject><subject>TRPP Cation Channels - chemistry</subject><issn>1469-221X</issn><issn>1469-3178</issn><issn>1469-3178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkUtLAzEUhYMoVqtrdzLgxk3bPCaT1I1oqQ-oCKLgLmQyd6ZTppmatMr8e6OttQriIiSXfOfk3FyEjgjuEk457cE0dV2KKeOJkGwL7ZE46XcYEXJ7daaUPLfQvvcTjDHvC7mLWkwQLnlC9xAeWnAFzEsTVdpm3ugZRHUezeqqMY2flzYyY20tVFGhQ1UcoJ1cVx4OV3sbPV0NHwc3ndH99e3gYtQxcSJZJ89iLViSyiTFKRe5liCkCK9DRvuGMW2Y0FTGHAPRWc5ClSdMpDxNJBVxytrofOk7W6RTyAzYudOVmrlyql2jal2qnze2HKuiflUEMyqxYMHhdOXg6pcF-Lmalt5AFfqEeuEVlYRwgcMK6MkvdFIvnA39BYrFJBYUx4HqLSnjau8d5Os0BKvPcaiPcaj1OILieLOJNf_1_wE4WwJvZQXNf35qeHf5sOmOl2IfdLYA9536r0Dvy0emuA</recordid><startdate>20230705</startdate><enddate>20230705</enddate><creator>Ng, Leo CT</creator><creator>Harris, Brandon J</creator><creator>Larmore, Megan</creator><creator>Ta, My C</creator><creator>Vien, Thuy N</creator><creator>Tokars, Valerie L</creator><creator>Yarov‐Yarovoy, Vladimir</creator><creator>DeCaen, Paul G</creator><general>Nature Publishing Group UK</general><general>Blackwell Publishing Ltd</general><general>John Wiley and Sons Inc</general><scope>C6C</scope><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0492-5460</orcidid><orcidid>https://orcid.org/0000-0003-3894-0180</orcidid><orcidid>https://orcid.org/0000-0001-8776-983X</orcidid><orcidid>https://orcid.org/0000-0002-2619-3969</orcidid><orcidid>https://orcid.org/0000-0002-2325-4834</orcidid></search><sort><creationdate>20230705</creationdate><title>Energetic landscape of polycystin channel gating</title><author>Ng, Leo CT ; Harris, Brandon J ; Larmore, Megan ; Ta, My C ; Vien, Thuy N ; Tokars, Valerie L ; Yarov‐Yarovoy, Vladimir ; DeCaen, Paul G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4683-fd4a736b86b0b57fa8e787978ed29c33ac37a28450e1adf337af637b5b68274b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>Brain</topic><topic>calcium</topic><topic>Calcium channels</topic><topic>Calcium Channels - metabolism</topic><topic>Calcium ions</topic><topic>Cations</topic><topic>Channel gating</topic><topic>Channel opening</topic><topic>Channelopathy</topic><topic>Computational neuroscience</topic><topic>Conformation (molecular)</topic><topic>Deactivation</topic><topic>Depolarization</topic><topic>Desensitization</topic><topic>EMBO24</topic><topic>Helices</topic><topic>Humans</topic><topic>Inactivation</topic><topic>Ion channels</topic><topic>Ion Transport</topic><topic>Kidney diseases</topic><topic>Kidneys</topic><topic>Life Sciences</topic><topic>Membrane channels</topic><topic>Mice</topic><topic>Modules</topic><topic>Mutation</topic><topic>Pathogenesis</topic><topic>Polycystic kidney</topic><topic>polycystic kidney disease</topic><topic>polycystins</topic><topic>Receptors, Cell Surface - metabolism</topic><topic>Seizures</topic><topic>Signal Transduction</topic><topic>Software</topic><topic>structural biology</topic><topic>Structure-function relationships</topic><topic>Transient Receptor Potential Channels - genetics</topic><topic>Transient receptor potential proteins</topic><topic>TRP channels</topic><topic>TRPP Cation Channels - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ng, Leo CT</creatorcontrib><creatorcontrib>Harris, Brandon J</creatorcontrib><creatorcontrib>Larmore, Megan</creatorcontrib><creatorcontrib>Ta, My C</creatorcontrib><creatorcontrib>Vien, Thuy N</creatorcontrib><creatorcontrib>Tokars, Valerie L</creatorcontrib><creatorcontrib>Yarov‐Yarovoy, Vladimir</creatorcontrib><creatorcontrib>DeCaen, Paul G</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>EMBO reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ng, Leo CT</au><au>Harris, Brandon J</au><au>Larmore, Megan</au><au>Ta, My C</au><au>Vien, Thuy N</au><au>Tokars, Valerie L</au><au>Yarov‐Yarovoy, Vladimir</au><au>DeCaen, Paul G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energetic landscape of polycystin channel gating</atitle><jtitle>EMBO reports</jtitle><stitle>EMBO Rep</stitle><addtitle>EMBO Rep</addtitle><date>2023-07-05</date><risdate>2023</risdate><volume>24</volume><issue>7</issue><spage>e56783</spage><epage>n/a</epage><pages>e56783-n/a</pages><issn>1469-221X</issn><issn>1469-3178</issn><eissn>1469-3178</eissn><abstract>Members of the polycystin family (PKD2 and PKD2L1) of transient receptor potential (TRP) channels conduct Ca 2+ and depolarizing monovalent cations. Variants in PKD2 cause autosomal dominant polycystic kidney disease (ADPKD) in humans, whereas loss of PKD2L1 expression causes seizure susceptibility in mice. Understanding structural and functional regulation of these channels will provide the basis for interpreting their molecular dysregulation in disease states. However, the complete structures of polycystins are unresolved, as are the conformational changes regulating their conductive states. To provide a holistic understanding of the polycystin gating cycle, we use computational prediction tools to model missing PKD2L1 structural motifs and evaluate more than 150 mutations in an unbiased mutagenic functional screen of the entire pore module. Our results provide an energetic landscape of the polycystin pore, which enumerates gating sensitive sites and interactions required for opening, inactivation, and subsequent desensitization. These findings identify the external pore helices and specific cross‐domain interactions as critical structural regulators controlling the polycystin ion channel conductive and nonconductive states. Synopsis Conformational changes that open polycystins are critical for their ion channel function in brain and kidney. Results from an unbiased functional screen of the entire polycystin pore module and AI‐driven structural modeling provide an energetic landscape while enumerate gating‐sensitive sites controlling the conductive states of the channel. External pore helix interactions regulate the polycystin channel opening. Opening the inner and outer pore gates are energetically coupled. Inactivation and desensitized are structurally related states controlled by specific inter‐subunit interactions between the pore helix 1 and sixth transmembrane segment. Graphical Abstract Conformational changes that open polycystins are critical for their ion channel function in brain and kidney. Results from an unbiased functional screen of the entire polycystin pore module and AI‐driven structural modeling provide an energetic landscape while enumerate gating‐sensitive sites controlling the conductive states of the channel.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37158562</pmid><doi>10.15252/embr.202356783</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-0492-5460</orcidid><orcidid>https://orcid.org/0000-0003-3894-0180</orcidid><orcidid>https://orcid.org/0000-0001-8776-983X</orcidid><orcidid>https://orcid.org/0000-0002-2619-3969</orcidid><orcidid>https://orcid.org/0000-0002-2325-4834</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1469-221X
ispartof EMBO reports, 2023-07, Vol.24 (7), p.e56783-n/a
issn 1469-221X
1469-3178
1469-3178
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10328073
source MEDLINE; Springer Nature OA Free Journals; Wiley Free Content; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals; PubMed Central
subjects Animals
Brain
calcium
Calcium channels
Calcium Channels - metabolism
Calcium ions
Cations
Channel gating
Channel opening
Channelopathy
Computational neuroscience
Conformation (molecular)
Deactivation
Depolarization
Desensitization
EMBO24
Helices
Humans
Inactivation
Ion channels
Ion Transport
Kidney diseases
Kidneys
Life Sciences
Membrane channels
Mice
Modules
Mutation
Pathogenesis
Polycystic kidney
polycystic kidney disease
polycystins
Receptors, Cell Surface - metabolism
Seizures
Signal Transduction
Software
structural biology
Structure-function relationships
Transient Receptor Potential Channels - genetics
Transient receptor potential proteins
TRP channels
TRPP Cation Channels - chemistry
title Energetic landscape of polycystin channel gating
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T00%3A57%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energetic%20landscape%20of%20polycystin%20channel%20gating&rft.jtitle=EMBO%20reports&rft.au=Ng,%20Leo%20CT&rft.date=2023-07-05&rft.volume=24&rft.issue=7&rft.spage=e56783&rft.epage=n/a&rft.pages=e56783-n/a&rft.issn=1469-221X&rft.eissn=1469-3178&rft_id=info:doi/10.15252/embr.202356783&rft_dat=%3Cproquest_pubme%3E2811570157%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2834147204&rft_id=info:pmid/37158562&rfr_iscdi=true