Exploring the Benefits of Ablation Grid Adaptation in 2D/3D Laser Ablation Inductively Coupled Plasma Mass Spectrometry Mapping through Geometrical Modeling

This study aims to investigate the potential benefits of adapting the ablating grid in two-dimensional (2D) and three-dimensional (3D) laser ablation inductively coupled plasma mass spectrometry in a single pulse mapping mode. The goals include enhancing the accuracy of surface sampling of element d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2023-07, Vol.95 (26), p.9863-9871
Hauptverfasser: van Elteren, Johannes T., Metarapi, Dino, Mervič, Kristina, Šala, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9871
container_issue 26
container_start_page 9863
container_title Analytical chemistry (Washington)
container_volume 95
creator van Elteren, Johannes T.
Metarapi, Dino
Mervič, Kristina
Šala, Martin
description This study aims to investigate the potential benefits of adapting the ablating grid in two-dimensional (2D) and three-dimensional (3D) laser ablation inductively coupled plasma mass spectrometry in a single pulse mapping mode. The goals include enhancing the accuracy of surface sampling of element distributions, improving the control of depth-related sampling, smoothing the post-ablation surface for layer-by-layer sampling, and increasing the image quality. To emulate the capabilities of currently unavailable laser ablation stages, a computational approach using geometrical modeling was employed to compound square or round experimentally obtained 3D crater profiles on variable orthogonal or hexagonal ablation grids. These grids were optimized by minimizing surface roughness as a function of average ablation depth, followed by simulating the post-ablation surface and related image quality. An online application (https://laicpms-apps.ki.si/webapps/home/) is available for users to virtually experiment with contracting/expanding orthogonal and hexagonal ablation grids for generic 3D super-Gaussian laser crater profiles, allowing for exploration of the resulting post-ablation surface layer roughness and depth.
doi_str_mv 10.1021/acs.analchem.3c00774
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10323869</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2833699518</sourcerecordid><originalsourceid>FETCH-LOGICAL-a478t-9f8097fc93ccc72adb4f56087b2095679e2b27864cd3c62e73e6c9d76e8697cb3</originalsourceid><addsrcrecordid>eNp9kc2O0zAUhS0EYjoDb4CQJTZs0vFPajsrVDpDGakjkIC15Tg3rUdOHOxkRN-Fh52UdMrPgpVln--ce62D0CtK5pQwemlsmpvWeLuDZs4tIVLmT9CMLhjJhFLsKZoRQnjGJCFn6DylO0IoJVQ8R2dcMsEoK2bo5_WPzofo2i3ud4DfQwu16xMONV6W3vQutHgdXYWXlen66e5azK4u-RXemATxN3fTVoPt3T34PV6FofNQ4c_epMbgW5MS_tKB7WNooI_78aXrpqkxDNsdXsMvwVnj8W2owI_iC_SsNj7By-N5gb59uP66-phtPq1vVstNZnKp-qyoFSlkbQturZXMVGVeLwRRsmSkWAhZACuZVCK3FbeCgeQgbFFJAUoU0pb8Ar2bcruhbKCy0PbReN1F15i418E4_bfSup3ehntNCWd8DBkT3h4TYvg-QOp145IF700LYUiaKca4VHLBR_TNP-hdGOJY5IHiXBTFgqqRyifKxpBShPq0DSX60L8e-9eP_etj_6Pt9Z8_OZkeCx8BMgEH-2nwfzMfAD--whU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2833699518</pqid></control><display><type>article</type><title>Exploring the Benefits of Ablation Grid Adaptation in 2D/3D Laser Ablation Inductively Coupled Plasma Mass Spectrometry Mapping through Geometrical Modeling</title><source>ACS Publications</source><creator>van Elteren, Johannes T. ; Metarapi, Dino ; Mervič, Kristina ; Šala, Martin</creator><creatorcontrib>van Elteren, Johannes T. ; Metarapi, Dino ; Mervič, Kristina ; Šala, Martin</creatorcontrib><description>This study aims to investigate the potential benefits of adapting the ablating grid in two-dimensional (2D) and three-dimensional (3D) laser ablation inductively coupled plasma mass spectrometry in a single pulse mapping mode. The goals include enhancing the accuracy of surface sampling of element distributions, improving the control of depth-related sampling, smoothing the post-ablation surface for layer-by-layer sampling, and increasing the image quality. To emulate the capabilities of currently unavailable laser ablation stages, a computational approach using geometrical modeling was employed to compound square or round experimentally obtained 3D crater profiles on variable orthogonal or hexagonal ablation grids. These grids were optimized by minimizing surface roughness as a function of average ablation depth, followed by simulating the post-ablation surface and related image quality. An online application (https://laicpms-apps.ki.si/webapps/home/) is available for users to virtually experiment with contracting/expanding orthogonal and hexagonal ablation grids for generic 3D super-Gaussian laser crater profiles, allowing for exploration of the resulting post-ablation surface layer roughness and depth.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.3c00774</identifier><identifier>PMID: 37262129</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Ablation ; Analytical chemistry ; Chemistry ; Image quality ; Inductively coupled plasma mass spectrometry ; Laser ablation ; Lasers ; Mapping ; Mass spectrometry ; Mass spectroscopy ; Sampling ; Scientific imaging ; Surface layers ; Surface roughness</subject><ispartof>Analytical chemistry (Washington), 2023-07, Vol.95 (26), p.9863-9871</ispartof><rights>2023 The Authors. Published by American Chemical Society</rights><rights>Copyright American Chemical Society Jul 4, 2023</rights><rights>2023 The Authors. Published by American Chemical Society 2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a478t-9f8097fc93ccc72adb4f56087b2095679e2b27864cd3c62e73e6c9d76e8697cb3</citedby><cites>FETCH-LOGICAL-a478t-9f8097fc93ccc72adb4f56087b2095679e2b27864cd3c62e73e6c9d76e8697cb3</cites><orcidid>0000-0003-0524-0487 ; 0009-0006-5000-3201 ; 0000-0001-7845-860X ; 0000-0003-2237-7821</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.3c00774$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.3c00774$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2756,27067,27915,27916,56729,56779</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37262129$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>van Elteren, Johannes T.</creatorcontrib><creatorcontrib>Metarapi, Dino</creatorcontrib><creatorcontrib>Mervič, Kristina</creatorcontrib><creatorcontrib>Šala, Martin</creatorcontrib><title>Exploring the Benefits of Ablation Grid Adaptation in 2D/3D Laser Ablation Inductively Coupled Plasma Mass Spectrometry Mapping through Geometrical Modeling</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>This study aims to investigate the potential benefits of adapting the ablating grid in two-dimensional (2D) and three-dimensional (3D) laser ablation inductively coupled plasma mass spectrometry in a single pulse mapping mode. The goals include enhancing the accuracy of surface sampling of element distributions, improving the control of depth-related sampling, smoothing the post-ablation surface for layer-by-layer sampling, and increasing the image quality. To emulate the capabilities of currently unavailable laser ablation stages, a computational approach using geometrical modeling was employed to compound square or round experimentally obtained 3D crater profiles on variable orthogonal or hexagonal ablation grids. These grids were optimized by minimizing surface roughness as a function of average ablation depth, followed by simulating the post-ablation surface and related image quality. An online application (https://laicpms-apps.ki.si/webapps/home/) is available for users to virtually experiment with contracting/expanding orthogonal and hexagonal ablation grids for generic 3D super-Gaussian laser crater profiles, allowing for exploration of the resulting post-ablation surface layer roughness and depth.</description><subject>Ablation</subject><subject>Analytical chemistry</subject><subject>Chemistry</subject><subject>Image quality</subject><subject>Inductively coupled plasma mass spectrometry</subject><subject>Laser ablation</subject><subject>Lasers</subject><subject>Mapping</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Sampling</subject><subject>Scientific imaging</subject><subject>Surface layers</subject><subject>Surface roughness</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kc2O0zAUhS0EYjoDb4CQJTZs0vFPajsrVDpDGakjkIC15Tg3rUdOHOxkRN-Fh52UdMrPgpVln--ce62D0CtK5pQwemlsmpvWeLuDZs4tIVLmT9CMLhjJhFLsKZoRQnjGJCFn6DylO0IoJVQ8R2dcMsEoK2bo5_WPzofo2i3ud4DfQwu16xMONV6W3vQutHgdXYWXlen66e5azK4u-RXemATxN3fTVoPt3T34PV6FofNQ4c_epMbgW5MS_tKB7WNooI_78aXrpqkxDNsdXsMvwVnj8W2owI_iC_SsNj7By-N5gb59uP66-phtPq1vVstNZnKp-qyoFSlkbQturZXMVGVeLwRRsmSkWAhZACuZVCK3FbeCgeQgbFFJAUoU0pb8Ar2bcruhbKCy0PbReN1F15i418E4_bfSup3ehntNCWd8DBkT3h4TYvg-QOp145IF700LYUiaKca4VHLBR_TNP-hdGOJY5IHiXBTFgqqRyifKxpBShPq0DSX60L8e-9eP_etj_6Pt9Z8_OZkeCx8BMgEH-2nwfzMfAD--whU</recordid><startdate>20230704</startdate><enddate>20230704</enddate><creator>van Elteren, Johannes T.</creator><creator>Metarapi, Dino</creator><creator>Mervič, Kristina</creator><creator>Šala, Martin</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0524-0487</orcidid><orcidid>https://orcid.org/0009-0006-5000-3201</orcidid><orcidid>https://orcid.org/0000-0001-7845-860X</orcidid><orcidid>https://orcid.org/0000-0003-2237-7821</orcidid></search><sort><creationdate>20230704</creationdate><title>Exploring the Benefits of Ablation Grid Adaptation in 2D/3D Laser Ablation Inductively Coupled Plasma Mass Spectrometry Mapping through Geometrical Modeling</title><author>van Elteren, Johannes T. ; Metarapi, Dino ; Mervič, Kristina ; Šala, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a478t-9f8097fc93ccc72adb4f56087b2095679e2b27864cd3c62e73e6c9d76e8697cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Ablation</topic><topic>Analytical chemistry</topic><topic>Chemistry</topic><topic>Image quality</topic><topic>Inductively coupled plasma mass spectrometry</topic><topic>Laser ablation</topic><topic>Lasers</topic><topic>Mapping</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Sampling</topic><topic>Scientific imaging</topic><topic>Surface layers</topic><topic>Surface roughness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Elteren, Johannes T.</creatorcontrib><creatorcontrib>Metarapi, Dino</creatorcontrib><creatorcontrib>Mervič, Kristina</creatorcontrib><creatorcontrib>Šala, Martin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Elteren, Johannes T.</au><au>Metarapi, Dino</au><au>Mervič, Kristina</au><au>Šala, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring the Benefits of Ablation Grid Adaptation in 2D/3D Laser Ablation Inductively Coupled Plasma Mass Spectrometry Mapping through Geometrical Modeling</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2023-07-04</date><risdate>2023</risdate><volume>95</volume><issue>26</issue><spage>9863</spage><epage>9871</epage><pages>9863-9871</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>This study aims to investigate the potential benefits of adapting the ablating grid in two-dimensional (2D) and three-dimensional (3D) laser ablation inductively coupled plasma mass spectrometry in a single pulse mapping mode. The goals include enhancing the accuracy of surface sampling of element distributions, improving the control of depth-related sampling, smoothing the post-ablation surface for layer-by-layer sampling, and increasing the image quality. To emulate the capabilities of currently unavailable laser ablation stages, a computational approach using geometrical modeling was employed to compound square or round experimentally obtained 3D crater profiles on variable orthogonal or hexagonal ablation grids. These grids were optimized by minimizing surface roughness as a function of average ablation depth, followed by simulating the post-ablation surface and related image quality. An online application (https://laicpms-apps.ki.si/webapps/home/) is available for users to virtually experiment with contracting/expanding orthogonal and hexagonal ablation grids for generic 3D super-Gaussian laser crater profiles, allowing for exploration of the resulting post-ablation surface layer roughness and depth.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37262129</pmid><doi>10.1021/acs.analchem.3c00774</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0524-0487</orcidid><orcidid>https://orcid.org/0009-0006-5000-3201</orcidid><orcidid>https://orcid.org/0000-0001-7845-860X</orcidid><orcidid>https://orcid.org/0000-0003-2237-7821</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2023-07, Vol.95 (26), p.9863-9871
issn 0003-2700
1520-6882
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10323869
source ACS Publications
subjects Ablation
Analytical chemistry
Chemistry
Image quality
Inductively coupled plasma mass spectrometry
Laser ablation
Lasers
Mapping
Mass spectrometry
Mass spectroscopy
Sampling
Scientific imaging
Surface layers
Surface roughness
title Exploring the Benefits of Ablation Grid Adaptation in 2D/3D Laser Ablation Inductively Coupled Plasma Mass Spectrometry Mapping through Geometrical Modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T06%3A15%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20the%20Benefits%20of%20Ablation%20Grid%20Adaptation%20in%202D/3D%20Laser%20Ablation%20Inductively%20Coupled%20Plasma%20Mass%20Spectrometry%20Mapping%20through%20Geometrical%20Modeling&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=van%20Elteren,%20Johannes%20T.&rft.date=2023-07-04&rft.volume=95&rft.issue=26&rft.spage=9863&rft.epage=9871&rft.pages=9863-9871&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.3c00774&rft_dat=%3Cproquest_pubme%3E2833699518%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2833699518&rft_id=info:pmid/37262129&rfr_iscdi=true