Defying the inverse energy gap law: a vacuum-evaporable Fe() low-spin complex with a long-lived LIESST state

The novel vacuum-evaporable complex [Fe(pypypyr) 2 ] (pypypyr = bipyridyl pyrrolide) was synthesised and analysed as bulk material and as a thin film. In both cases, the compound is in its low-spin state up to temperatures of at least 510 K. Thus, it is conventionally considered a pure low-spin comp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical science (Cambridge) 2023-07, Vol.14 (26), p.7361-738
Hauptverfasser: Grunwald, Jan, Torres, Jorge, Buchholz, Axel, Näther, Christian, Kämmerer, Lea, Gruber, Manuel, Rohlf, Sebastian, Thakur, Sangeeta, Wende, Heiko, Plass, Winfried, Kuch, Wolfgang, Tuczek, Felix
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 738
container_issue 26
container_start_page 7361
container_title Chemical science (Cambridge)
container_volume 14
creator Grunwald, Jan
Torres, Jorge
Buchholz, Axel
Näther, Christian
Kämmerer, Lea
Gruber, Manuel
Rohlf, Sebastian
Thakur, Sangeeta
Wende, Heiko
Plass, Winfried
Kuch, Wolfgang
Tuczek, Felix
description The novel vacuum-evaporable complex [Fe(pypypyr) 2 ] (pypypyr = bipyridyl pyrrolide) was synthesised and analysed as bulk material and as a thin film. In both cases, the compound is in its low-spin state up to temperatures of at least 510 K. Thus, it is conventionally considered a pure low-spin compound. According to the inverse energy gap law, the half time of the light-induced excited high-spin state of such compounds at temperatures approaching 0 K is expected to be in the regime of micro- or nanoseconds. In contrast to these expectations, the light-induced high-spin state of the title compound has a half time of several hours. We attribute this behaviour to a large structural difference between the two spin states along with four distinct distortion coordinates associated with the spin transition. This leads to a breakdown of single-mode behaviour and thus drastically decreases the relaxation rate of the metastable high-spin state. These unprecedented properties open up new strategies for the development of compounds showing light-induced excited spin state trapping (LIESST) at high temperatures, potentially around room temperature, which is relevant for applications in molecular spintronics, sensors, displays and the like. The novel vacuum-evaporable complex [Fe(pypypyr) 2 ] is in its LS state up to at least 510 K. Still, its light-induced HS state has a half time of several hours at 10 K, which is caused by a large structural difference between the two spin states.
doi_str_mv 10.1039/d3sc00561e
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10321519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2835274874</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-c5841855579d4dddce05bd5f8839426360c8dbe4dd276679609c330e3a0aef713</originalsourceid><addsrcrecordid>eNpdkk1v1DAQhi0EolXphTvIEpeCFPBHnMS9ILTdQqWVOGw5R15nknXl2MFOsuy_r9sty4cvHul95p3xjBF6TclHSrj81PCoCREFhWfolJGcZoXg8vkxZuQEncd4R9LhnApWvkQnvMxpUTJ6iuwVtHvjOjxuARs3Q4iAwUHo9rhTA7Zqd4kVnpWepj6DWQ0-qI0FfA0X77H1uywOxmHt-8HCL7wz4zbh1rsus2aGBq9uluv1LY6jGuEVetEqG-H86T5DP66Xt4tv2er715vFl1WmcybHTIsqp5UQopRN3jSNBiI2jWirisucFbwgumo2kCRWFkUpCyI15wS4IgrakvIz9PngO0ybHlK-G4Oy9RBMr8K-9srU_yrObOvOz3WaKKOCyuRw8eQQ_M8J4lj3JmqwVjnwU6xZxdMk86rME_ruP_TOT8Gl9z1QnIiKUZaoDwdKBx9jgPbYDSUPZWV9xdeLx0UuE_z27_6P6O-1JeDNAQhRH9U_P4HfA2YCoWs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2833058212</pqid></control><display><type>article</type><title>Defying the inverse energy gap law: a vacuum-evaporable Fe() low-spin complex with a long-lived LIESST state</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Grunwald, Jan ; Torres, Jorge ; Buchholz, Axel ; Näther, Christian ; Kämmerer, Lea ; Gruber, Manuel ; Rohlf, Sebastian ; Thakur, Sangeeta ; Wende, Heiko ; Plass, Winfried ; Kuch, Wolfgang ; Tuczek, Felix</creator><creatorcontrib>Grunwald, Jan ; Torres, Jorge ; Buchholz, Axel ; Näther, Christian ; Kämmerer, Lea ; Gruber, Manuel ; Rohlf, Sebastian ; Thakur, Sangeeta ; Wende, Heiko ; Plass, Winfried ; Kuch, Wolfgang ; Tuczek, Felix</creatorcontrib><description>The novel vacuum-evaporable complex [Fe(pypypyr) 2 ] (pypypyr = bipyridyl pyrrolide) was synthesised and analysed as bulk material and as a thin film. In both cases, the compound is in its low-spin state up to temperatures of at least 510 K. Thus, it is conventionally considered a pure low-spin compound. According to the inverse energy gap law, the half time of the light-induced excited high-spin state of such compounds at temperatures approaching 0 K is expected to be in the regime of micro- or nanoseconds. In contrast to these expectations, the light-induced high-spin state of the title compound has a half time of several hours. We attribute this behaviour to a large structural difference between the two spin states along with four distinct distortion coordinates associated with the spin transition. This leads to a breakdown of single-mode behaviour and thus drastically decreases the relaxation rate of the metastable high-spin state. These unprecedented properties open up new strategies for the development of compounds showing light-induced excited spin state trapping (LIESST) at high temperatures, potentially around room temperature, which is relevant for applications in molecular spintronics, sensors, displays and the like. The novel vacuum-evaporable complex [Fe(pypypyr) 2 ] is in its LS state up to at least 510 K. Still, its light-induced HS state has a half time of several hours at 10 K, which is caused by a large structural difference between the two spin states.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/d3sc00561e</identifier><identifier>PMID: 37416721</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Chemistry ; Energy gap ; High temperature ; Room temperature ; Spin transition ; Spintronics ; Thin films</subject><ispartof>Chemical science (Cambridge), 2023-07, Vol.14 (26), p.7361-738</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2023</rights><rights>This journal is © The Royal Society of Chemistry 2023 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-c5841855579d4dddce05bd5f8839426360c8dbe4dd276679609c330e3a0aef713</citedby><cites>FETCH-LOGICAL-c429t-c5841855579d4dddce05bd5f8839426360c8dbe4dd276679609c330e3a0aef713</cites><orcidid>0000-0002-3944-2696 ; 0000-0002-0848-7314 ; 0000-0003-3473-9682 ; 0000-0001-7290-9553 ; 0000-0001-8395-3541 ; 0000-0001-8741-6508 ; 0000-0002-5764-4574</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10321519/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10321519/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37416721$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Grunwald, Jan</creatorcontrib><creatorcontrib>Torres, Jorge</creatorcontrib><creatorcontrib>Buchholz, Axel</creatorcontrib><creatorcontrib>Näther, Christian</creatorcontrib><creatorcontrib>Kämmerer, Lea</creatorcontrib><creatorcontrib>Gruber, Manuel</creatorcontrib><creatorcontrib>Rohlf, Sebastian</creatorcontrib><creatorcontrib>Thakur, Sangeeta</creatorcontrib><creatorcontrib>Wende, Heiko</creatorcontrib><creatorcontrib>Plass, Winfried</creatorcontrib><creatorcontrib>Kuch, Wolfgang</creatorcontrib><creatorcontrib>Tuczek, Felix</creatorcontrib><title>Defying the inverse energy gap law: a vacuum-evaporable Fe() low-spin complex with a long-lived LIESST state</title><title>Chemical science (Cambridge)</title><addtitle>Chem Sci</addtitle><description>The novel vacuum-evaporable complex [Fe(pypypyr) 2 ] (pypypyr = bipyridyl pyrrolide) was synthesised and analysed as bulk material and as a thin film. In both cases, the compound is in its low-spin state up to temperatures of at least 510 K. Thus, it is conventionally considered a pure low-spin compound. According to the inverse energy gap law, the half time of the light-induced excited high-spin state of such compounds at temperatures approaching 0 K is expected to be in the regime of micro- or nanoseconds. In contrast to these expectations, the light-induced high-spin state of the title compound has a half time of several hours. We attribute this behaviour to a large structural difference between the two spin states along with four distinct distortion coordinates associated with the spin transition. This leads to a breakdown of single-mode behaviour and thus drastically decreases the relaxation rate of the metastable high-spin state. These unprecedented properties open up new strategies for the development of compounds showing light-induced excited spin state trapping (LIESST) at high temperatures, potentially around room temperature, which is relevant for applications in molecular spintronics, sensors, displays and the like. The novel vacuum-evaporable complex [Fe(pypypyr) 2 ] is in its LS state up to at least 510 K. Still, its light-induced HS state has a half time of several hours at 10 K, which is caused by a large structural difference between the two spin states.</description><subject>Chemistry</subject><subject>Energy gap</subject><subject>High temperature</subject><subject>Room temperature</subject><subject>Spin transition</subject><subject>Spintronics</subject><subject>Thin films</subject><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkk1v1DAQhi0EolXphTvIEpeCFPBHnMS9ILTdQqWVOGw5R15nknXl2MFOsuy_r9sty4cvHul95p3xjBF6TclHSrj81PCoCREFhWfolJGcZoXg8vkxZuQEncd4R9LhnApWvkQnvMxpUTJ6iuwVtHvjOjxuARs3Q4iAwUHo9rhTA7Zqd4kVnpWepj6DWQ0-qI0FfA0X77H1uywOxmHt-8HCL7wz4zbh1rsus2aGBq9uluv1LY6jGuEVetEqG-H86T5DP66Xt4tv2er715vFl1WmcybHTIsqp5UQopRN3jSNBiI2jWirisucFbwgumo2kCRWFkUpCyI15wS4IgrakvIz9PngO0ybHlK-G4Oy9RBMr8K-9srU_yrObOvOz3WaKKOCyuRw8eQQ_M8J4lj3JmqwVjnwU6xZxdMk86rME_ruP_TOT8Gl9z1QnIiKUZaoDwdKBx9jgPbYDSUPZWV9xdeLx0UuE_z27_6P6O-1JeDNAQhRH9U_P4HfA2YCoWs</recordid><startdate>20230705</startdate><enddate>20230705</enddate><creator>Grunwald, Jan</creator><creator>Torres, Jorge</creator><creator>Buchholz, Axel</creator><creator>Näther, Christian</creator><creator>Kämmerer, Lea</creator><creator>Gruber, Manuel</creator><creator>Rohlf, Sebastian</creator><creator>Thakur, Sangeeta</creator><creator>Wende, Heiko</creator><creator>Plass, Winfried</creator><creator>Kuch, Wolfgang</creator><creator>Tuczek, Felix</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3944-2696</orcidid><orcidid>https://orcid.org/0000-0002-0848-7314</orcidid><orcidid>https://orcid.org/0000-0003-3473-9682</orcidid><orcidid>https://orcid.org/0000-0001-7290-9553</orcidid><orcidid>https://orcid.org/0000-0001-8395-3541</orcidid><orcidid>https://orcid.org/0000-0001-8741-6508</orcidid><orcidid>https://orcid.org/0000-0002-5764-4574</orcidid></search><sort><creationdate>20230705</creationdate><title>Defying the inverse energy gap law: a vacuum-evaporable Fe() low-spin complex with a long-lived LIESST state</title><author>Grunwald, Jan ; Torres, Jorge ; Buchholz, Axel ; Näther, Christian ; Kämmerer, Lea ; Gruber, Manuel ; Rohlf, Sebastian ; Thakur, Sangeeta ; Wende, Heiko ; Plass, Winfried ; Kuch, Wolfgang ; Tuczek, Felix</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-c5841855579d4dddce05bd5f8839426360c8dbe4dd276679609c330e3a0aef713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chemistry</topic><topic>Energy gap</topic><topic>High temperature</topic><topic>Room temperature</topic><topic>Spin transition</topic><topic>Spintronics</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grunwald, Jan</creatorcontrib><creatorcontrib>Torres, Jorge</creatorcontrib><creatorcontrib>Buchholz, Axel</creatorcontrib><creatorcontrib>Näther, Christian</creatorcontrib><creatorcontrib>Kämmerer, Lea</creatorcontrib><creatorcontrib>Gruber, Manuel</creatorcontrib><creatorcontrib>Rohlf, Sebastian</creatorcontrib><creatorcontrib>Thakur, Sangeeta</creatorcontrib><creatorcontrib>Wende, Heiko</creatorcontrib><creatorcontrib>Plass, Winfried</creatorcontrib><creatorcontrib>Kuch, Wolfgang</creatorcontrib><creatorcontrib>Tuczek, Felix</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grunwald, Jan</au><au>Torres, Jorge</au><au>Buchholz, Axel</au><au>Näther, Christian</au><au>Kämmerer, Lea</au><au>Gruber, Manuel</au><au>Rohlf, Sebastian</au><au>Thakur, Sangeeta</au><au>Wende, Heiko</au><au>Plass, Winfried</au><au>Kuch, Wolfgang</au><au>Tuczek, Felix</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defying the inverse energy gap law: a vacuum-evaporable Fe() low-spin complex with a long-lived LIESST state</atitle><jtitle>Chemical science (Cambridge)</jtitle><addtitle>Chem Sci</addtitle><date>2023-07-05</date><risdate>2023</risdate><volume>14</volume><issue>26</issue><spage>7361</spage><epage>738</epage><pages>7361-738</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>The novel vacuum-evaporable complex [Fe(pypypyr) 2 ] (pypypyr = bipyridyl pyrrolide) was synthesised and analysed as bulk material and as a thin film. In both cases, the compound is in its low-spin state up to temperatures of at least 510 K. Thus, it is conventionally considered a pure low-spin compound. According to the inverse energy gap law, the half time of the light-induced excited high-spin state of such compounds at temperatures approaching 0 K is expected to be in the regime of micro- or nanoseconds. In contrast to these expectations, the light-induced high-spin state of the title compound has a half time of several hours. We attribute this behaviour to a large structural difference between the two spin states along with four distinct distortion coordinates associated with the spin transition. This leads to a breakdown of single-mode behaviour and thus drastically decreases the relaxation rate of the metastable high-spin state. These unprecedented properties open up new strategies for the development of compounds showing light-induced excited spin state trapping (LIESST) at high temperatures, potentially around room temperature, which is relevant for applications in molecular spintronics, sensors, displays and the like. The novel vacuum-evaporable complex [Fe(pypypyr) 2 ] is in its LS state up to at least 510 K. Still, its light-induced HS state has a half time of several hours at 10 K, which is caused by a large structural difference between the two spin states.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>37416721</pmid><doi>10.1039/d3sc00561e</doi><tpages>2</tpages><orcidid>https://orcid.org/0000-0002-3944-2696</orcidid><orcidid>https://orcid.org/0000-0002-0848-7314</orcidid><orcidid>https://orcid.org/0000-0003-3473-9682</orcidid><orcidid>https://orcid.org/0000-0001-7290-9553</orcidid><orcidid>https://orcid.org/0000-0001-8395-3541</orcidid><orcidid>https://orcid.org/0000-0001-8741-6508</orcidid><orcidid>https://orcid.org/0000-0002-5764-4574</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-6520
ispartof Chemical science (Cambridge), 2023-07, Vol.14 (26), p.7361-738
issn 2041-6520
2041-6539
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10321519
source DOAJ Directory of Open Access Journals; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Chemistry
Energy gap
High temperature
Room temperature
Spin transition
Spintronics
Thin films
title Defying the inverse energy gap law: a vacuum-evaporable Fe() low-spin complex with a long-lived LIESST state
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A18%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defying%20the%20inverse%20energy%20gap%20law:%20a%20vacuum-evaporable%20Fe()%20low-spin%20complex%20with%20a%20long-lived%20LIESST%20state&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Grunwald,%20Jan&rft.date=2023-07-05&rft.volume=14&rft.issue=26&rft.spage=7361&rft.epage=738&rft.pages=7361-738&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/d3sc00561e&rft_dat=%3Cproquest_pubme%3E2835274874%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2833058212&rft_id=info:pmid/37416721&rfr_iscdi=true