Defying the inverse energy gap law: a vacuum-evaporable Fe() low-spin complex with a long-lived LIESST state
The novel vacuum-evaporable complex [Fe(pypypyr) 2 ] (pypypyr = bipyridyl pyrrolide) was synthesised and analysed as bulk material and as a thin film. In both cases, the compound is in its low-spin state up to temperatures of at least 510 K. Thus, it is conventionally considered a pure low-spin comp...
Gespeichert in:
Veröffentlicht in: | Chemical science (Cambridge) 2023-07, Vol.14 (26), p.7361-738 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 738 |
---|---|
container_issue | 26 |
container_start_page | 7361 |
container_title | Chemical science (Cambridge) |
container_volume | 14 |
creator | Grunwald, Jan Torres, Jorge Buchholz, Axel Näther, Christian Kämmerer, Lea Gruber, Manuel Rohlf, Sebastian Thakur, Sangeeta Wende, Heiko Plass, Winfried Kuch, Wolfgang Tuczek, Felix |
description | The novel vacuum-evaporable complex [Fe(pypypyr)
2
] (pypypyr = bipyridyl pyrrolide) was synthesised and analysed as bulk material and as a thin film. In both cases, the compound is in its low-spin state up to temperatures of at least 510 K. Thus, it is conventionally considered a pure low-spin compound. According to the inverse energy gap law, the half time of the light-induced excited high-spin state of such compounds at temperatures approaching 0 K is expected to be in the regime of micro- or nanoseconds. In contrast to these expectations, the light-induced high-spin state of the title compound has a half time of several hours. We attribute this behaviour to a large structural difference between the two spin states along with four distinct distortion coordinates associated with the spin transition. This leads to a breakdown of single-mode behaviour and thus drastically decreases the relaxation rate of the metastable high-spin state. These unprecedented properties open up new strategies for the development of compounds showing light-induced excited spin state trapping (LIESST) at high temperatures, potentially around room temperature, which is relevant for applications in molecular spintronics, sensors, displays and the like.
The novel vacuum-evaporable complex [Fe(pypypyr)
2
] is in its LS state up to at least 510 K. Still, its light-induced HS state has a half time of several hours at 10 K, which is caused by a large structural difference between the two spin states. |
doi_str_mv | 10.1039/d3sc00561e |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10321519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2835274874</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-c5841855579d4dddce05bd5f8839426360c8dbe4dd276679609c330e3a0aef713</originalsourceid><addsrcrecordid>eNpdkk1v1DAQhi0EolXphTvIEpeCFPBHnMS9ILTdQqWVOGw5R15nknXl2MFOsuy_r9sty4cvHul95p3xjBF6TclHSrj81PCoCREFhWfolJGcZoXg8vkxZuQEncd4R9LhnApWvkQnvMxpUTJ6iuwVtHvjOjxuARs3Q4iAwUHo9rhTA7Zqd4kVnpWepj6DWQ0-qI0FfA0X77H1uywOxmHt-8HCL7wz4zbh1rsus2aGBq9uluv1LY6jGuEVetEqG-H86T5DP66Xt4tv2er715vFl1WmcybHTIsqp5UQopRN3jSNBiI2jWirisucFbwgumo2kCRWFkUpCyI15wS4IgrakvIz9PngO0ybHlK-G4Oy9RBMr8K-9srU_yrObOvOz3WaKKOCyuRw8eQQ_M8J4lj3JmqwVjnwU6xZxdMk86rME_ruP_TOT8Gl9z1QnIiKUZaoDwdKBx9jgPbYDSUPZWV9xdeLx0UuE_z27_6P6O-1JeDNAQhRH9U_P4HfA2YCoWs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2833058212</pqid></control><display><type>article</type><title>Defying the inverse energy gap law: a vacuum-evaporable Fe() low-spin complex with a long-lived LIESST state</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Grunwald, Jan ; Torres, Jorge ; Buchholz, Axel ; Näther, Christian ; Kämmerer, Lea ; Gruber, Manuel ; Rohlf, Sebastian ; Thakur, Sangeeta ; Wende, Heiko ; Plass, Winfried ; Kuch, Wolfgang ; Tuczek, Felix</creator><creatorcontrib>Grunwald, Jan ; Torres, Jorge ; Buchholz, Axel ; Näther, Christian ; Kämmerer, Lea ; Gruber, Manuel ; Rohlf, Sebastian ; Thakur, Sangeeta ; Wende, Heiko ; Plass, Winfried ; Kuch, Wolfgang ; Tuczek, Felix</creatorcontrib><description>The novel vacuum-evaporable complex [Fe(pypypyr)
2
] (pypypyr = bipyridyl pyrrolide) was synthesised and analysed as bulk material and as a thin film. In both cases, the compound is in its low-spin state up to temperatures of at least 510 K. Thus, it is conventionally considered a pure low-spin compound. According to the inverse energy gap law, the half time of the light-induced excited high-spin state of such compounds at temperatures approaching 0 K is expected to be in the regime of micro- or nanoseconds. In contrast to these expectations, the light-induced high-spin state of the title compound has a half time of several hours. We attribute this behaviour to a large structural difference between the two spin states along with four distinct distortion coordinates associated with the spin transition. This leads to a breakdown of single-mode behaviour and thus drastically decreases the relaxation rate of the metastable high-spin state. These unprecedented properties open up new strategies for the development of compounds showing light-induced excited spin state trapping (LIESST) at high temperatures, potentially around room temperature, which is relevant for applications in molecular spintronics, sensors, displays and the like.
The novel vacuum-evaporable complex [Fe(pypypyr)
2
] is in its LS state up to at least 510 K. Still, its light-induced HS state has a half time of several hours at 10 K, which is caused by a large structural difference between the two spin states.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/d3sc00561e</identifier><identifier>PMID: 37416721</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Chemistry ; Energy gap ; High temperature ; Room temperature ; Spin transition ; Spintronics ; Thin films</subject><ispartof>Chemical science (Cambridge), 2023-07, Vol.14 (26), p.7361-738</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2023</rights><rights>This journal is © The Royal Society of Chemistry 2023 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-c5841855579d4dddce05bd5f8839426360c8dbe4dd276679609c330e3a0aef713</citedby><cites>FETCH-LOGICAL-c429t-c5841855579d4dddce05bd5f8839426360c8dbe4dd276679609c330e3a0aef713</cites><orcidid>0000-0002-3944-2696 ; 0000-0002-0848-7314 ; 0000-0003-3473-9682 ; 0000-0001-7290-9553 ; 0000-0001-8395-3541 ; 0000-0001-8741-6508 ; 0000-0002-5764-4574</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10321519/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10321519/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37416721$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Grunwald, Jan</creatorcontrib><creatorcontrib>Torres, Jorge</creatorcontrib><creatorcontrib>Buchholz, Axel</creatorcontrib><creatorcontrib>Näther, Christian</creatorcontrib><creatorcontrib>Kämmerer, Lea</creatorcontrib><creatorcontrib>Gruber, Manuel</creatorcontrib><creatorcontrib>Rohlf, Sebastian</creatorcontrib><creatorcontrib>Thakur, Sangeeta</creatorcontrib><creatorcontrib>Wende, Heiko</creatorcontrib><creatorcontrib>Plass, Winfried</creatorcontrib><creatorcontrib>Kuch, Wolfgang</creatorcontrib><creatorcontrib>Tuczek, Felix</creatorcontrib><title>Defying the inverse energy gap law: a vacuum-evaporable Fe() low-spin complex with a long-lived LIESST state</title><title>Chemical science (Cambridge)</title><addtitle>Chem Sci</addtitle><description>The novel vacuum-evaporable complex [Fe(pypypyr)
2
] (pypypyr = bipyridyl pyrrolide) was synthesised and analysed as bulk material and as a thin film. In both cases, the compound is in its low-spin state up to temperatures of at least 510 K. Thus, it is conventionally considered a pure low-spin compound. According to the inverse energy gap law, the half time of the light-induced excited high-spin state of such compounds at temperatures approaching 0 K is expected to be in the regime of micro- or nanoseconds. In contrast to these expectations, the light-induced high-spin state of the title compound has a half time of several hours. We attribute this behaviour to a large structural difference between the two spin states along with four distinct distortion coordinates associated with the spin transition. This leads to a breakdown of single-mode behaviour and thus drastically decreases the relaxation rate of the metastable high-spin state. These unprecedented properties open up new strategies for the development of compounds showing light-induced excited spin state trapping (LIESST) at high temperatures, potentially around room temperature, which is relevant for applications in molecular spintronics, sensors, displays and the like.
The novel vacuum-evaporable complex [Fe(pypypyr)
2
] is in its LS state up to at least 510 K. Still, its light-induced HS state has a half time of several hours at 10 K, which is caused by a large structural difference between the two spin states.</description><subject>Chemistry</subject><subject>Energy gap</subject><subject>High temperature</subject><subject>Room temperature</subject><subject>Spin transition</subject><subject>Spintronics</subject><subject>Thin films</subject><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkk1v1DAQhi0EolXphTvIEpeCFPBHnMS9ILTdQqWVOGw5R15nknXl2MFOsuy_r9sty4cvHul95p3xjBF6TclHSrj81PCoCREFhWfolJGcZoXg8vkxZuQEncd4R9LhnApWvkQnvMxpUTJ6iuwVtHvjOjxuARs3Q4iAwUHo9rhTA7Zqd4kVnpWepj6DWQ0-qI0FfA0X77H1uywOxmHt-8HCL7wz4zbh1rsus2aGBq9uluv1LY6jGuEVetEqG-H86T5DP66Xt4tv2er715vFl1WmcybHTIsqp5UQopRN3jSNBiI2jWirisucFbwgumo2kCRWFkUpCyI15wS4IgrakvIz9PngO0ybHlK-G4Oy9RBMr8K-9srU_yrObOvOz3WaKKOCyuRw8eQQ_M8J4lj3JmqwVjnwU6xZxdMk86rME_ruP_TOT8Gl9z1QnIiKUZaoDwdKBx9jgPbYDSUPZWV9xdeLx0UuE_z27_6P6O-1JeDNAQhRH9U_P4HfA2YCoWs</recordid><startdate>20230705</startdate><enddate>20230705</enddate><creator>Grunwald, Jan</creator><creator>Torres, Jorge</creator><creator>Buchholz, Axel</creator><creator>Näther, Christian</creator><creator>Kämmerer, Lea</creator><creator>Gruber, Manuel</creator><creator>Rohlf, Sebastian</creator><creator>Thakur, Sangeeta</creator><creator>Wende, Heiko</creator><creator>Plass, Winfried</creator><creator>Kuch, Wolfgang</creator><creator>Tuczek, Felix</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3944-2696</orcidid><orcidid>https://orcid.org/0000-0002-0848-7314</orcidid><orcidid>https://orcid.org/0000-0003-3473-9682</orcidid><orcidid>https://orcid.org/0000-0001-7290-9553</orcidid><orcidid>https://orcid.org/0000-0001-8395-3541</orcidid><orcidid>https://orcid.org/0000-0001-8741-6508</orcidid><orcidid>https://orcid.org/0000-0002-5764-4574</orcidid></search><sort><creationdate>20230705</creationdate><title>Defying the inverse energy gap law: a vacuum-evaporable Fe() low-spin complex with a long-lived LIESST state</title><author>Grunwald, Jan ; Torres, Jorge ; Buchholz, Axel ; Näther, Christian ; Kämmerer, Lea ; Gruber, Manuel ; Rohlf, Sebastian ; Thakur, Sangeeta ; Wende, Heiko ; Plass, Winfried ; Kuch, Wolfgang ; Tuczek, Felix</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-c5841855579d4dddce05bd5f8839426360c8dbe4dd276679609c330e3a0aef713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chemistry</topic><topic>Energy gap</topic><topic>High temperature</topic><topic>Room temperature</topic><topic>Spin transition</topic><topic>Spintronics</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grunwald, Jan</creatorcontrib><creatorcontrib>Torres, Jorge</creatorcontrib><creatorcontrib>Buchholz, Axel</creatorcontrib><creatorcontrib>Näther, Christian</creatorcontrib><creatorcontrib>Kämmerer, Lea</creatorcontrib><creatorcontrib>Gruber, Manuel</creatorcontrib><creatorcontrib>Rohlf, Sebastian</creatorcontrib><creatorcontrib>Thakur, Sangeeta</creatorcontrib><creatorcontrib>Wende, Heiko</creatorcontrib><creatorcontrib>Plass, Winfried</creatorcontrib><creatorcontrib>Kuch, Wolfgang</creatorcontrib><creatorcontrib>Tuczek, Felix</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grunwald, Jan</au><au>Torres, Jorge</au><au>Buchholz, Axel</au><au>Näther, Christian</au><au>Kämmerer, Lea</au><au>Gruber, Manuel</au><au>Rohlf, Sebastian</au><au>Thakur, Sangeeta</au><au>Wende, Heiko</au><au>Plass, Winfried</au><au>Kuch, Wolfgang</au><au>Tuczek, Felix</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defying the inverse energy gap law: a vacuum-evaporable Fe() low-spin complex with a long-lived LIESST state</atitle><jtitle>Chemical science (Cambridge)</jtitle><addtitle>Chem Sci</addtitle><date>2023-07-05</date><risdate>2023</risdate><volume>14</volume><issue>26</issue><spage>7361</spage><epage>738</epage><pages>7361-738</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>The novel vacuum-evaporable complex [Fe(pypypyr)
2
] (pypypyr = bipyridyl pyrrolide) was synthesised and analysed as bulk material and as a thin film. In both cases, the compound is in its low-spin state up to temperatures of at least 510 K. Thus, it is conventionally considered a pure low-spin compound. According to the inverse energy gap law, the half time of the light-induced excited high-spin state of such compounds at temperatures approaching 0 K is expected to be in the regime of micro- or nanoseconds. In contrast to these expectations, the light-induced high-spin state of the title compound has a half time of several hours. We attribute this behaviour to a large structural difference between the two spin states along with four distinct distortion coordinates associated with the spin transition. This leads to a breakdown of single-mode behaviour and thus drastically decreases the relaxation rate of the metastable high-spin state. These unprecedented properties open up new strategies for the development of compounds showing light-induced excited spin state trapping (LIESST) at high temperatures, potentially around room temperature, which is relevant for applications in molecular spintronics, sensors, displays and the like.
The novel vacuum-evaporable complex [Fe(pypypyr)
2
] is in its LS state up to at least 510 K. Still, its light-induced HS state has a half time of several hours at 10 K, which is caused by a large structural difference between the two spin states.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>37416721</pmid><doi>10.1039/d3sc00561e</doi><tpages>2</tpages><orcidid>https://orcid.org/0000-0002-3944-2696</orcidid><orcidid>https://orcid.org/0000-0002-0848-7314</orcidid><orcidid>https://orcid.org/0000-0003-3473-9682</orcidid><orcidid>https://orcid.org/0000-0001-7290-9553</orcidid><orcidid>https://orcid.org/0000-0001-8395-3541</orcidid><orcidid>https://orcid.org/0000-0001-8741-6508</orcidid><orcidid>https://orcid.org/0000-0002-5764-4574</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-6520 |
ispartof | Chemical science (Cambridge), 2023-07, Vol.14 (26), p.7361-738 |
issn | 2041-6520 2041-6539 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10321519 |
source | DOAJ Directory of Open Access Journals; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Chemistry Energy gap High temperature Room temperature Spin transition Spintronics Thin films |
title | Defying the inverse energy gap law: a vacuum-evaporable Fe() low-spin complex with a long-lived LIESST state |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A18%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defying%20the%20inverse%20energy%20gap%20law:%20a%20vacuum-evaporable%20Fe()%20low-spin%20complex%20with%20a%20long-lived%20LIESST%20state&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Grunwald,%20Jan&rft.date=2023-07-05&rft.volume=14&rft.issue=26&rft.spage=7361&rft.epage=738&rft.pages=7361-738&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/d3sc00561e&rft_dat=%3Cproquest_pubme%3E2835274874%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2833058212&rft_id=info:pmid/37416721&rfr_iscdi=true |