GCPBayes pipeline: a tool for exploring pleiotropy at the gene level
Cross-phenotype association using gene-set analysis can help to detect pleiotropic genes and inform about common mechanisms between diseases. Although there are an increasing number of statistical methods for exploring pleiotropy, there is a lack of proper pipelines to apply gene-set analysis in thi...
Gespeichert in:
Veröffentlicht in: | NAR Genomics and Bioinformatics 2023-09, Vol.5 (3), p.lqad065-lqad065 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | lqad065 |
---|---|
container_issue | 3 |
container_start_page | lqad065 |
container_title | NAR Genomics and Bioinformatics |
container_volume | 5 |
creator | Asgari, Yazdan Sugier, Pierre-Emmanuel Baghfalaki, Taban Lucotte, Elise Karimi, Mojgan Sedki, Mohammed Ngo, Amélie Liquet, Benoit Truong, Thérèse |
description | Cross-phenotype association using gene-set analysis can help to detect pleiotropic genes and inform about common mechanisms between diseases. Although there are an increasing number of statistical methods for exploring pleiotropy, there is a lack of proper pipelines to apply gene-set analysis in this context and using genome-scale data in a reasonable running time. We designed a user-friendly pipeline to perform cross-phenotype gene-set analysis between two traits using GCPBayes, a method developed by our team. All analyses could be performed automatically by calling for different scripts in a simple way (using a Shiny app, Bash or R script). A Shiny application was also developed to create different plots to visualize outputs from GCPBayes. Finally, a comprehensive and step-by-step tutorial on how to use the pipeline is provided in our group’s GitHub page. We illustrated the application on publicly available GWAS (genome-wide association studies) summary statistics data to identify breast cancer and ovarian cancer susceptibility genes. We have shown that the GCPBayes pipeline could extract pleiotropic genes previously mentioned in the literature, while it also provided new pleiotropic genes and regions that are worthwhile for further investigation. We have also provided some recommendations about parameter selection for decreasing computational time of GCPBayes on genome-scale data. |
doi_str_mv | 10.1093/nargab/lqad065 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10320750</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A780453263</galeid><oup_id>10.1093/nargab/lqad065</oup_id><sourcerecordid>A780453263</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-560ce43cc176dfba02af257796d0e71d60abda568ac8e6eefd8d2c0709beab6e3</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhi1E1VZtrz2iHOGw7dhJbIcL2q5Ki7QSHOBsTZxJ1shrp052xb4Nz8KTkWqXtnBBPtga__8_Hn-MXXK44lDl1wFTh_W1f8AGZPmKnQqZ81klpH794nzCLobhOwCIsigL4MfsJFcFl0rLU3Z7t_hygzsast715F2g9xlmY4w-a2PK6EfvY3Khy3pPLo4p9rsMx2xc0a-fHQXKPG3Jn7OjFv1AF4f9jH37ePt1cT9bfr77tJgvZ7bQfJyVEiwVubVcyaatEQS2olSqkg2Q4o0ErBsspUarSRK1jW6EBQVVTVhLys_Yh31uv6nX1FgKY0Jv-uTWmHYmojN_3wS3Ml3cGg65AFXClPBun7D6x3c_X5rHGhS8AlXpLZ-0bw_dUnzY0DCatRsseY-B4mYwQuelUFxyMUmv9tIOPRkX2umr0E6robWzMVDrpvpcaSjKfCLzbLApDkOi9ukxHMwjXLOHaw5wJ8Obl6M_yf-gfJ4sbvr_hf0Gasqxcg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2835271612</pqid></control><display><type>article</type><title>GCPBayes pipeline: a tool for exploring pleiotropy at the gene level</title><source>Oxford Journals Open Access Collection</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><creator>Asgari, Yazdan ; Sugier, Pierre-Emmanuel ; Baghfalaki, Taban ; Lucotte, Elise ; Karimi, Mojgan ; Sedki, Mohammed ; Ngo, Amélie ; Liquet, Benoit ; Truong, Thérèse</creator><creatorcontrib>Asgari, Yazdan ; Sugier, Pierre-Emmanuel ; Baghfalaki, Taban ; Lucotte, Elise ; Karimi, Mojgan ; Sedki, Mohammed ; Ngo, Amélie ; Liquet, Benoit ; Truong, Thérèse</creatorcontrib><description>Cross-phenotype association using gene-set analysis can help to detect pleiotropic genes and inform about common mechanisms between diseases. Although there are an increasing number of statistical methods for exploring pleiotropy, there is a lack of proper pipelines to apply gene-set analysis in this context and using genome-scale data in a reasonable running time. We designed a user-friendly pipeline to perform cross-phenotype gene-set analysis between two traits using GCPBayes, a method developed by our team. All analyses could be performed automatically by calling for different scripts in a simple way (using a Shiny app, Bash or R script). A Shiny application was also developed to create different plots to visualize outputs from GCPBayes. Finally, a comprehensive and step-by-step tutorial on how to use the pipeline is provided in our group’s GitHub page. We illustrated the application on publicly available GWAS (genome-wide association studies) summary statistics data to identify breast cancer and ovarian cancer susceptibility genes. We have shown that the GCPBayes pipeline could extract pleiotropic genes previously mentioned in the literature, while it also provided new pleiotropic genes and regions that are worthwhile for further investigation. We have also provided some recommendations about parameter selection for decreasing computational time of GCPBayes on genome-scale data.</description><identifier>ISSN: 2631-9268</identifier><identifier>EISSN: 2631-9268</identifier><identifier>DOI: 10.1093/nargab/lqad065</identifier><identifier>PMID: 37416786</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Cancer ; Disease susceptibility ; Genes ; Genetic aspects ; Genetic research ; Genomes ; Genomics ; Life Sciences ; Oncology, Experimental ; Ovarian cancer ; Pipe lines</subject><ispartof>NAR Genomics and Bioinformatics, 2023-09, Vol.5 (3), p.lqad065-lqad065</ispartof><rights>The Author(s) 2023. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics. 2023</rights><rights>The Author(s) 2023. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics.</rights><rights>COPYRIGHT 2023 Oxford University Press</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c481t-560ce43cc176dfba02af257796d0e71d60abda568ac8e6eefd8d2c0709beab6e3</cites><orcidid>0000-0001-6993-6956 ; 0000-0002-8136-2294 ; 0000-0002-2100-4532</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10320750/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10320750/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1598,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37416786$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04190798$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Asgari, Yazdan</creatorcontrib><creatorcontrib>Sugier, Pierre-Emmanuel</creatorcontrib><creatorcontrib>Baghfalaki, Taban</creatorcontrib><creatorcontrib>Lucotte, Elise</creatorcontrib><creatorcontrib>Karimi, Mojgan</creatorcontrib><creatorcontrib>Sedki, Mohammed</creatorcontrib><creatorcontrib>Ngo, Amélie</creatorcontrib><creatorcontrib>Liquet, Benoit</creatorcontrib><creatorcontrib>Truong, Thérèse</creatorcontrib><title>GCPBayes pipeline: a tool for exploring pleiotropy at the gene level</title><title>NAR Genomics and Bioinformatics</title><addtitle>NAR Genom Bioinform</addtitle><description>Cross-phenotype association using gene-set analysis can help to detect pleiotropic genes and inform about common mechanisms between diseases. Although there are an increasing number of statistical methods for exploring pleiotropy, there is a lack of proper pipelines to apply gene-set analysis in this context and using genome-scale data in a reasonable running time. We designed a user-friendly pipeline to perform cross-phenotype gene-set analysis between two traits using GCPBayes, a method developed by our team. All analyses could be performed automatically by calling for different scripts in a simple way (using a Shiny app, Bash or R script). A Shiny application was also developed to create different plots to visualize outputs from GCPBayes. Finally, a comprehensive and step-by-step tutorial on how to use the pipeline is provided in our group’s GitHub page. We illustrated the application on publicly available GWAS (genome-wide association studies) summary statistics data to identify breast cancer and ovarian cancer susceptibility genes. We have shown that the GCPBayes pipeline could extract pleiotropic genes previously mentioned in the literature, while it also provided new pleiotropic genes and regions that are worthwhile for further investigation. We have also provided some recommendations about parameter selection for decreasing computational time of GCPBayes on genome-scale data.</description><subject>Cancer</subject><subject>Disease susceptibility</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic research</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Life Sciences</subject><subject>Oncology, Experimental</subject><subject>Ovarian cancer</subject><subject>Pipe lines</subject><issn>2631-9268</issn><issn>2631-9268</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqFkcFu1DAQhi1E1VZtrz2iHOGw7dhJbIcL2q5Ki7QSHOBsTZxJ1shrp052xb4Nz8KTkWqXtnBBPtga__8_Hn-MXXK44lDl1wFTh_W1f8AGZPmKnQqZ81klpH794nzCLobhOwCIsigL4MfsJFcFl0rLU3Z7t_hygzsast715F2g9xlmY4w-a2PK6EfvY3Khy3pPLo4p9rsMx2xc0a-fHQXKPG3Jn7OjFv1AF4f9jH37ePt1cT9bfr77tJgvZ7bQfJyVEiwVubVcyaatEQS2olSqkg2Q4o0ErBsspUarSRK1jW6EBQVVTVhLys_Yh31uv6nX1FgKY0Jv-uTWmHYmojN_3wS3Ml3cGg65AFXClPBun7D6x3c_X5rHGhS8AlXpLZ-0bw_dUnzY0DCatRsseY-B4mYwQuelUFxyMUmv9tIOPRkX2umr0E6robWzMVDrpvpcaSjKfCLzbLApDkOi9ukxHMwjXLOHaw5wJ8Obl6M_yf-gfJ4sbvr_hf0Gasqxcg</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Asgari, Yazdan</creator><creator>Sugier, Pierre-Emmanuel</creator><creator>Baghfalaki, Taban</creator><creator>Lucotte, Elise</creator><creator>Karimi, Mojgan</creator><creator>Sedki, Mohammed</creator><creator>Ngo, Amélie</creator><creator>Liquet, Benoit</creator><creator>Truong, Thérèse</creator><general>Oxford University Press</general><scope>TOX</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6993-6956</orcidid><orcidid>https://orcid.org/0000-0002-8136-2294</orcidid><orcidid>https://orcid.org/0000-0002-2100-4532</orcidid></search><sort><creationdate>20230901</creationdate><title>GCPBayes pipeline: a tool for exploring pleiotropy at the gene level</title><author>Asgari, Yazdan ; Sugier, Pierre-Emmanuel ; Baghfalaki, Taban ; Lucotte, Elise ; Karimi, Mojgan ; Sedki, Mohammed ; Ngo, Amélie ; Liquet, Benoit ; Truong, Thérèse</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-560ce43cc176dfba02af257796d0e71d60abda568ac8e6eefd8d2c0709beab6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cancer</topic><topic>Disease susceptibility</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic research</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Life Sciences</topic><topic>Oncology, Experimental</topic><topic>Ovarian cancer</topic><topic>Pipe lines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asgari, Yazdan</creatorcontrib><creatorcontrib>Sugier, Pierre-Emmanuel</creatorcontrib><creatorcontrib>Baghfalaki, Taban</creatorcontrib><creatorcontrib>Lucotte, Elise</creatorcontrib><creatorcontrib>Karimi, Mojgan</creatorcontrib><creatorcontrib>Sedki, Mohammed</creatorcontrib><creatorcontrib>Ngo, Amélie</creatorcontrib><creatorcontrib>Liquet, Benoit</creatorcontrib><creatorcontrib>Truong, Thérèse</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>NAR Genomics and Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Asgari, Yazdan</au><au>Sugier, Pierre-Emmanuel</au><au>Baghfalaki, Taban</au><au>Lucotte, Elise</au><au>Karimi, Mojgan</au><au>Sedki, Mohammed</au><au>Ngo, Amélie</au><au>Liquet, Benoit</au><au>Truong, Thérèse</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GCPBayes pipeline: a tool for exploring pleiotropy at the gene level</atitle><jtitle>NAR Genomics and Bioinformatics</jtitle><addtitle>NAR Genom Bioinform</addtitle><date>2023-09-01</date><risdate>2023</risdate><volume>5</volume><issue>3</issue><spage>lqad065</spage><epage>lqad065</epage><pages>lqad065-lqad065</pages><issn>2631-9268</issn><eissn>2631-9268</eissn><abstract>Cross-phenotype association using gene-set analysis can help to detect pleiotropic genes and inform about common mechanisms between diseases. Although there are an increasing number of statistical methods for exploring pleiotropy, there is a lack of proper pipelines to apply gene-set analysis in this context and using genome-scale data in a reasonable running time. We designed a user-friendly pipeline to perform cross-phenotype gene-set analysis between two traits using GCPBayes, a method developed by our team. All analyses could be performed automatically by calling for different scripts in a simple way (using a Shiny app, Bash or R script). A Shiny application was also developed to create different plots to visualize outputs from GCPBayes. Finally, a comprehensive and step-by-step tutorial on how to use the pipeline is provided in our group’s GitHub page. We illustrated the application on publicly available GWAS (genome-wide association studies) summary statistics data to identify breast cancer and ovarian cancer susceptibility genes. We have shown that the GCPBayes pipeline could extract pleiotropic genes previously mentioned in the literature, while it also provided new pleiotropic genes and regions that are worthwhile for further investigation. We have also provided some recommendations about parameter selection for decreasing computational time of GCPBayes on genome-scale data.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>37416786</pmid><doi>10.1093/nargab/lqad065</doi><orcidid>https://orcid.org/0000-0001-6993-6956</orcidid><orcidid>https://orcid.org/0000-0002-8136-2294</orcidid><orcidid>https://orcid.org/0000-0002-2100-4532</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2631-9268 |
ispartof | NAR Genomics and Bioinformatics, 2023-09, Vol.5 (3), p.lqad065-lqad065 |
issn | 2631-9268 2631-9268 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10320750 |
source | Oxford Journals Open Access Collection; DOAJ Directory of Open Access Journals; PubMed Central |
subjects | Cancer Disease susceptibility Genes Genetic aspects Genetic research Genomes Genomics Life Sciences Oncology, Experimental Ovarian cancer Pipe lines |
title | GCPBayes pipeline: a tool for exploring pleiotropy at the gene level |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T20%3A08%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GCPBayes%20pipeline:%20a%20tool%20for%20exploring%20pleiotropy%20at%20the%C2%A0gene%20level&rft.jtitle=NAR%20Genomics%20and%20Bioinformatics&rft.au=Asgari,%20Yazdan&rft.date=2023-09-01&rft.volume=5&rft.issue=3&rft.spage=lqad065&rft.epage=lqad065&rft.pages=lqad065-lqad065&rft.issn=2631-9268&rft.eissn=2631-9268&rft_id=info:doi/10.1093/nargab/lqad065&rft_dat=%3Cgale_pubme%3EA780453263%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2835271612&rft_id=info:pmid/37416786&rft_galeid=A780453263&rft_oup_id=10.1093/nargab/lqad065&rfr_iscdi=true |