GCPBayes pipeline: a tool for exploring pleiotropy at the gene level

Cross-phenotype association using gene-set analysis can help to detect pleiotropic genes and inform about common mechanisms between diseases. Although there are an increasing number of statistical methods for exploring pleiotropy, there is a lack of proper pipelines to apply gene-set analysis in thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NAR Genomics and Bioinformatics 2023-09, Vol.5 (3), p.lqad065-lqad065
Hauptverfasser: Asgari, Yazdan, Sugier, Pierre-Emmanuel, Baghfalaki, Taban, Lucotte, Elise, Karimi, Mojgan, Sedki, Mohammed, Ngo, Amélie, Liquet, Benoit, Truong, Thérèse
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page lqad065
container_issue 3
container_start_page lqad065
container_title NAR Genomics and Bioinformatics
container_volume 5
creator Asgari, Yazdan
Sugier, Pierre-Emmanuel
Baghfalaki, Taban
Lucotte, Elise
Karimi, Mojgan
Sedki, Mohammed
Ngo, Amélie
Liquet, Benoit
Truong, Thérèse
description Cross-phenotype association using gene-set analysis can help to detect pleiotropic genes and inform about common mechanisms between diseases. Although there are an increasing number of statistical methods for exploring pleiotropy, there is a lack of proper pipelines to apply gene-set analysis in this context and using genome-scale data in a reasonable running time. We designed a user-friendly pipeline to perform cross-phenotype gene-set analysis between two traits using GCPBayes, a method developed by our team. All analyses could be performed automatically by calling for different scripts in a simple way (using a Shiny app, Bash or R script). A Shiny application was also developed to create different plots to visualize outputs from GCPBayes. Finally, a comprehensive and step-by-step tutorial on how to use the pipeline is provided in our group’s GitHub page. We illustrated the application on publicly available GWAS (genome-wide association studies) summary statistics data to identify breast cancer and ovarian cancer susceptibility genes. We have shown that the GCPBayes pipeline could extract pleiotropic genes previously mentioned in the literature, while it also provided new pleiotropic genes and regions that are worthwhile for further investigation. We have also provided some recommendations about parameter selection for decreasing computational time of GCPBayes on genome-scale data.
doi_str_mv 10.1093/nargab/lqad065
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10320750</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A780453263</galeid><oup_id>10.1093/nargab/lqad065</oup_id><sourcerecordid>A780453263</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-560ce43cc176dfba02af257796d0e71d60abda568ac8e6eefd8d2c0709beab6e3</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhi1E1VZtrz2iHOGw7dhJbIcL2q5Ki7QSHOBsTZxJ1shrp052xb4Nz8KTkWqXtnBBPtga__8_Hn-MXXK44lDl1wFTh_W1f8AGZPmKnQqZ81klpH794nzCLobhOwCIsigL4MfsJFcFl0rLU3Z7t_hygzsast715F2g9xlmY4w-a2PK6EfvY3Khy3pPLo4p9rsMx2xc0a-fHQXKPG3Jn7OjFv1AF4f9jH37ePt1cT9bfr77tJgvZ7bQfJyVEiwVubVcyaatEQS2olSqkg2Q4o0ErBsspUarSRK1jW6EBQVVTVhLys_Yh31uv6nX1FgKY0Jv-uTWmHYmojN_3wS3Ml3cGg65AFXClPBun7D6x3c_X5rHGhS8AlXpLZ-0bw_dUnzY0DCatRsseY-B4mYwQuelUFxyMUmv9tIOPRkX2umr0E6robWzMVDrpvpcaSjKfCLzbLApDkOi9ukxHMwjXLOHaw5wJ8Obl6M_yf-gfJ4sbvr_hf0Gasqxcg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2835271612</pqid></control><display><type>article</type><title>GCPBayes pipeline: a tool for exploring pleiotropy at the gene level</title><source>Oxford Journals Open Access Collection</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><creator>Asgari, Yazdan ; Sugier, Pierre-Emmanuel ; Baghfalaki, Taban ; Lucotte, Elise ; Karimi, Mojgan ; Sedki, Mohammed ; Ngo, Amélie ; Liquet, Benoit ; Truong, Thérèse</creator><creatorcontrib>Asgari, Yazdan ; Sugier, Pierre-Emmanuel ; Baghfalaki, Taban ; Lucotte, Elise ; Karimi, Mojgan ; Sedki, Mohammed ; Ngo, Amélie ; Liquet, Benoit ; Truong, Thérèse</creatorcontrib><description>Cross-phenotype association using gene-set analysis can help to detect pleiotropic genes and inform about common mechanisms between diseases. Although there are an increasing number of statistical methods for exploring pleiotropy, there is a lack of proper pipelines to apply gene-set analysis in this context and using genome-scale data in a reasonable running time. We designed a user-friendly pipeline to perform cross-phenotype gene-set analysis between two traits using GCPBayes, a method developed by our team. All analyses could be performed automatically by calling for different scripts in a simple way (using a Shiny app, Bash or R script). A Shiny application was also developed to create different plots to visualize outputs from GCPBayes. Finally, a comprehensive and step-by-step tutorial on how to use the pipeline is provided in our group’s GitHub page. We illustrated the application on publicly available GWAS (genome-wide association studies) summary statistics data to identify breast cancer and ovarian cancer susceptibility genes. We have shown that the GCPBayes pipeline could extract pleiotropic genes previously mentioned in the literature, while it also provided new pleiotropic genes and regions that are worthwhile for further investigation. We have also provided some recommendations about parameter selection for decreasing computational time of GCPBayes on genome-scale data.</description><identifier>ISSN: 2631-9268</identifier><identifier>EISSN: 2631-9268</identifier><identifier>DOI: 10.1093/nargab/lqad065</identifier><identifier>PMID: 37416786</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Cancer ; Disease susceptibility ; Genes ; Genetic aspects ; Genetic research ; Genomes ; Genomics ; Life Sciences ; Oncology, Experimental ; Ovarian cancer ; Pipe lines</subject><ispartof>NAR Genomics and Bioinformatics, 2023-09, Vol.5 (3), p.lqad065-lqad065</ispartof><rights>The Author(s) 2023. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics. 2023</rights><rights>The Author(s) 2023. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics.</rights><rights>COPYRIGHT 2023 Oxford University Press</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c481t-560ce43cc176dfba02af257796d0e71d60abda568ac8e6eefd8d2c0709beab6e3</cites><orcidid>0000-0001-6993-6956 ; 0000-0002-8136-2294 ; 0000-0002-2100-4532</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10320750/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10320750/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1598,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37416786$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04190798$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Asgari, Yazdan</creatorcontrib><creatorcontrib>Sugier, Pierre-Emmanuel</creatorcontrib><creatorcontrib>Baghfalaki, Taban</creatorcontrib><creatorcontrib>Lucotte, Elise</creatorcontrib><creatorcontrib>Karimi, Mojgan</creatorcontrib><creatorcontrib>Sedki, Mohammed</creatorcontrib><creatorcontrib>Ngo, Amélie</creatorcontrib><creatorcontrib>Liquet, Benoit</creatorcontrib><creatorcontrib>Truong, Thérèse</creatorcontrib><title>GCPBayes pipeline: a tool for exploring pleiotropy at the gene level</title><title>NAR Genomics and Bioinformatics</title><addtitle>NAR Genom Bioinform</addtitle><description>Cross-phenotype association using gene-set analysis can help to detect pleiotropic genes and inform about common mechanisms between diseases. Although there are an increasing number of statistical methods for exploring pleiotropy, there is a lack of proper pipelines to apply gene-set analysis in this context and using genome-scale data in a reasonable running time. We designed a user-friendly pipeline to perform cross-phenotype gene-set analysis between two traits using GCPBayes, a method developed by our team. All analyses could be performed automatically by calling for different scripts in a simple way (using a Shiny app, Bash or R script). A Shiny application was also developed to create different plots to visualize outputs from GCPBayes. Finally, a comprehensive and step-by-step tutorial on how to use the pipeline is provided in our group’s GitHub page. We illustrated the application on publicly available GWAS (genome-wide association studies) summary statistics data to identify breast cancer and ovarian cancer susceptibility genes. We have shown that the GCPBayes pipeline could extract pleiotropic genes previously mentioned in the literature, while it also provided new pleiotropic genes and regions that are worthwhile for further investigation. We have also provided some recommendations about parameter selection for decreasing computational time of GCPBayes on genome-scale data.</description><subject>Cancer</subject><subject>Disease susceptibility</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic research</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Life Sciences</subject><subject>Oncology, Experimental</subject><subject>Ovarian cancer</subject><subject>Pipe lines</subject><issn>2631-9268</issn><issn>2631-9268</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqFkcFu1DAQhi1E1VZtrz2iHOGw7dhJbIcL2q5Ki7QSHOBsTZxJ1shrp052xb4Nz8KTkWqXtnBBPtga__8_Hn-MXXK44lDl1wFTh_W1f8AGZPmKnQqZ81klpH794nzCLobhOwCIsigL4MfsJFcFl0rLU3Z7t_hygzsast715F2g9xlmY4w-a2PK6EfvY3Khy3pPLo4p9rsMx2xc0a-fHQXKPG3Jn7OjFv1AF4f9jH37ePt1cT9bfr77tJgvZ7bQfJyVEiwVubVcyaatEQS2olSqkg2Q4o0ErBsspUarSRK1jW6EBQVVTVhLys_Yh31uv6nX1FgKY0Jv-uTWmHYmojN_3wS3Ml3cGg65AFXClPBun7D6x3c_X5rHGhS8AlXpLZ-0bw_dUnzY0DCatRsseY-B4mYwQuelUFxyMUmv9tIOPRkX2umr0E6robWzMVDrpvpcaSjKfCLzbLApDkOi9ukxHMwjXLOHaw5wJ8Obl6M_yf-gfJ4sbvr_hf0Gasqxcg</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Asgari, Yazdan</creator><creator>Sugier, Pierre-Emmanuel</creator><creator>Baghfalaki, Taban</creator><creator>Lucotte, Elise</creator><creator>Karimi, Mojgan</creator><creator>Sedki, Mohammed</creator><creator>Ngo, Amélie</creator><creator>Liquet, Benoit</creator><creator>Truong, Thérèse</creator><general>Oxford University Press</general><scope>TOX</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6993-6956</orcidid><orcidid>https://orcid.org/0000-0002-8136-2294</orcidid><orcidid>https://orcid.org/0000-0002-2100-4532</orcidid></search><sort><creationdate>20230901</creationdate><title>GCPBayes pipeline: a tool for exploring pleiotropy at the gene level</title><author>Asgari, Yazdan ; Sugier, Pierre-Emmanuel ; Baghfalaki, Taban ; Lucotte, Elise ; Karimi, Mojgan ; Sedki, Mohammed ; Ngo, Amélie ; Liquet, Benoit ; Truong, Thérèse</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-560ce43cc176dfba02af257796d0e71d60abda568ac8e6eefd8d2c0709beab6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cancer</topic><topic>Disease susceptibility</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic research</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Life Sciences</topic><topic>Oncology, Experimental</topic><topic>Ovarian cancer</topic><topic>Pipe lines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asgari, Yazdan</creatorcontrib><creatorcontrib>Sugier, Pierre-Emmanuel</creatorcontrib><creatorcontrib>Baghfalaki, Taban</creatorcontrib><creatorcontrib>Lucotte, Elise</creatorcontrib><creatorcontrib>Karimi, Mojgan</creatorcontrib><creatorcontrib>Sedki, Mohammed</creatorcontrib><creatorcontrib>Ngo, Amélie</creatorcontrib><creatorcontrib>Liquet, Benoit</creatorcontrib><creatorcontrib>Truong, Thérèse</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>NAR Genomics and Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Asgari, Yazdan</au><au>Sugier, Pierre-Emmanuel</au><au>Baghfalaki, Taban</au><au>Lucotte, Elise</au><au>Karimi, Mojgan</au><au>Sedki, Mohammed</au><au>Ngo, Amélie</au><au>Liquet, Benoit</au><au>Truong, Thérèse</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GCPBayes pipeline: a tool for exploring pleiotropy at the gene level</atitle><jtitle>NAR Genomics and Bioinformatics</jtitle><addtitle>NAR Genom Bioinform</addtitle><date>2023-09-01</date><risdate>2023</risdate><volume>5</volume><issue>3</issue><spage>lqad065</spage><epage>lqad065</epage><pages>lqad065-lqad065</pages><issn>2631-9268</issn><eissn>2631-9268</eissn><abstract>Cross-phenotype association using gene-set analysis can help to detect pleiotropic genes and inform about common mechanisms between diseases. Although there are an increasing number of statistical methods for exploring pleiotropy, there is a lack of proper pipelines to apply gene-set analysis in this context and using genome-scale data in a reasonable running time. We designed a user-friendly pipeline to perform cross-phenotype gene-set analysis between two traits using GCPBayes, a method developed by our team. All analyses could be performed automatically by calling for different scripts in a simple way (using a Shiny app, Bash or R script). A Shiny application was also developed to create different plots to visualize outputs from GCPBayes. Finally, a comprehensive and step-by-step tutorial on how to use the pipeline is provided in our group’s GitHub page. We illustrated the application on publicly available GWAS (genome-wide association studies) summary statistics data to identify breast cancer and ovarian cancer susceptibility genes. We have shown that the GCPBayes pipeline could extract pleiotropic genes previously mentioned in the literature, while it also provided new pleiotropic genes and regions that are worthwhile for further investigation. We have also provided some recommendations about parameter selection for decreasing computational time of GCPBayes on genome-scale data.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>37416786</pmid><doi>10.1093/nargab/lqad065</doi><orcidid>https://orcid.org/0000-0001-6993-6956</orcidid><orcidid>https://orcid.org/0000-0002-8136-2294</orcidid><orcidid>https://orcid.org/0000-0002-2100-4532</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2631-9268
ispartof NAR Genomics and Bioinformatics, 2023-09, Vol.5 (3), p.lqad065-lqad065
issn 2631-9268
2631-9268
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10320750
source Oxford Journals Open Access Collection; DOAJ Directory of Open Access Journals; PubMed Central
subjects Cancer
Disease susceptibility
Genes
Genetic aspects
Genetic research
Genomes
Genomics
Life Sciences
Oncology, Experimental
Ovarian cancer
Pipe lines
title GCPBayes pipeline: a tool for exploring pleiotropy at the gene level
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T20%3A08%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GCPBayes%20pipeline:%20a%20tool%20for%20exploring%20pleiotropy%20at%20the%C2%A0gene%20level&rft.jtitle=NAR%20Genomics%20and%20Bioinformatics&rft.au=Asgari,%20Yazdan&rft.date=2023-09-01&rft.volume=5&rft.issue=3&rft.spage=lqad065&rft.epage=lqad065&rft.pages=lqad065-lqad065&rft.issn=2631-9268&rft.eissn=2631-9268&rft_id=info:doi/10.1093/nargab/lqad065&rft_dat=%3Cgale_pubme%3EA780453263%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2835271612&rft_id=info:pmid/37416786&rft_galeid=A780453263&rft_oup_id=10.1093/nargab/lqad065&rfr_iscdi=true