Efficacy and Imaging-Enabled Pharmacodynamic Profiling of KRAS G12C Inhibitors in Xenograft and Genetically Engineered Mouse Models of Cancer
KRAS is one of the most commonly mutated oncogenes in lung, colorectal, and pancreatic cancers. Recent clinical trials directly targeting KRAS G12C presented encouraging results for a large population of non-small cell lung cancer (NSCLC), but resistance to treatment is a concern. Continued explorat...
Gespeichert in:
Veröffentlicht in: | Molecular cancer therapeutics 2023-07, Vol.22 (7), p.891-900 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 900 |
---|---|
container_issue | 7 |
container_start_page | 891 |
container_title | Molecular cancer therapeutics |
container_volume | 22 |
creator | Lee, Catherine Jiang, Ziyue Karen Planken, Simon Manzuk, Lisa K Ortiz, Roberto Hall, Michael Noorbehesht, Kavon Ram, Sripad Affolter, Timothy Troche, Gabriel E Ihle, Nathan T Johnson, Theodore Ahn, Youngwook Kraus, Manfred Giddabasappa, Anand |
description | KRAS is one of the most commonly mutated oncogenes in lung, colorectal, and pancreatic cancers. Recent clinical trials directly targeting KRAS G12C presented encouraging results for a large population of non-small cell lung cancer (NSCLC), but resistance to treatment is a concern. Continued exploration of new inhibitors and preclinical models is needed to address resistance mechanisms and improve duration of patient responses. To further enable the development of KRAS G12C inhibitors, we present a preclinical framework involving translational, non-invasive imaging modalities (CT and PET) and histopathology in a conventional xenograft model and a novel KRAS G12C knock-in mouse model of NSCLC. We utilized an in-house developed KRAS G12C inhibitor (Compound A) as a tool to demonstrate the value of this framework in studying in vivo pharmacokinetic/pharmacodynamic (PK/PD) relationship and anti-tumor efficacy. We characterized the Kras G12C-driven genetically engineered mouse model (GEMM) and identify tumor growth and signaling differences compared to its Kras G12D-driven counterpart. We also find that Compound A has comparable efficacy to sotorasib in the Kras G12C-driven lung tumors arising in the GEMM, but like observations in the clinic, some tumors inevitably progress on treatment. These findings establish a foundation for evaluating future KRAS G12C inhibitors that is not limited to xenograft studies and can be applied in a translationally relevant mouse model that mirrors human disease progression and resistance. |
doi_str_mv | 10.1158/1535-7163.MCT-22-0810 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10320479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2814529039</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-9d7693d66e26cbb860d5753bd79ad21edb3eae9c5b110bf1d5360583a5a5d4da3</originalsourceid><addsrcrecordid>eNpVkc9u1DAQhyMEon_gEUA-cknx2OvEOaEqWrYrWrUqrdSb5diTXaPELnYWaR-Cd8bplgoutjX-zTe2vqL4APQMQMjPILgoa6j42VV7VzJWUgn0VXGc67KUAhavn86HzFFxktIPSkE2DN4WR7wGWQmQx8XvZd87o82eaG_JetQb5zfl0utuQEtutjqO2gS793p0htzE0LshJ0joybfb8-9kBawla791nZtCTMR58oA-bKLupyfkCj1OecIw7MnSZzpizOSrsEuYV4tDmmGt9gbju-JNr4eE75_30-L-6_KuvSgvr1fr9vyyNLyiU9nYumq4rSpklek6WVErasE7WzfaMkDbcdTYGNEB0K4HK3KbkFwLLezCan5afDlwH3fdiNagn6Ie1GN0o457FbRT_994t1Wb8EsB5Ywu6iYTPj0TYvi5wzSp0SWDw6A95q8pJmEhWEP5HBWHqIkhpYj9yxyganapZk9q9qSyS8WYml3mvo__PvKl6688_gfayJzk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2814529039</pqid></control><display><type>article</type><title>Efficacy and Imaging-Enabled Pharmacodynamic Profiling of KRAS G12C Inhibitors in Xenograft and Genetically Engineered Mouse Models of Cancer</title><source>MEDLINE</source><source>American Association for Cancer Research</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Lee, Catherine ; Jiang, Ziyue Karen ; Planken, Simon ; Manzuk, Lisa K ; Ortiz, Roberto ; Hall, Michael ; Noorbehesht, Kavon ; Ram, Sripad ; Affolter, Timothy ; Troche, Gabriel E ; Ihle, Nathan T ; Johnson, Theodore ; Ahn, Youngwook ; Kraus, Manfred ; Giddabasappa, Anand</creator><creatorcontrib>Lee, Catherine ; Jiang, Ziyue Karen ; Planken, Simon ; Manzuk, Lisa K ; Ortiz, Roberto ; Hall, Michael ; Noorbehesht, Kavon ; Ram, Sripad ; Affolter, Timothy ; Troche, Gabriel E ; Ihle, Nathan T ; Johnson, Theodore ; Ahn, Youngwook ; Kraus, Manfred ; Giddabasappa, Anand</creatorcontrib><description>KRAS is one of the most commonly mutated oncogenes in lung, colorectal, and pancreatic cancers. Recent clinical trials directly targeting KRAS G12C presented encouraging results for a large population of non-small cell lung cancer (NSCLC), but resistance to treatment is a concern. Continued exploration of new inhibitors and preclinical models is needed to address resistance mechanisms and improve duration of patient responses. To further enable the development of KRAS G12C inhibitors, we present a preclinical framework involving translational, non-invasive imaging modalities (CT and PET) and histopathology in a conventional xenograft model and a novel KRAS G12C knock-in mouse model of NSCLC. We utilized an in-house developed KRAS G12C inhibitor (Compound A) as a tool to demonstrate the value of this framework in studying in vivo pharmacokinetic/pharmacodynamic (PK/PD) relationship and anti-tumor efficacy. We characterized the Kras G12C-driven genetically engineered mouse model (GEMM) and identify tumor growth and signaling differences compared to its Kras G12D-driven counterpart. We also find that Compound A has comparable efficacy to sotorasib in the Kras G12C-driven lung tumors arising in the GEMM, but like observations in the clinic, some tumors inevitably progress on treatment. These findings establish a foundation for evaluating future KRAS G12C inhibitors that is not limited to xenograft studies and can be applied in a translationally relevant mouse model that mirrors human disease progression and resistance.</description><identifier>ISSN: 1535-7163</identifier><identifier>EISSN: 1538-8514</identifier><identifier>DOI: 10.1158/1535-7163.MCT-22-0810</identifier><identifier>PMID: 37186518</identifier><language>eng</language><publisher>United States: American Association for Cancer Research</publisher><subject>Animals ; Carcinoma, Non-Small-Cell Lung - drug therapy ; Carcinoma, Non-Small-Cell Lung - genetics ; Disease Models, Animal ; Heterografts ; Humans ; Lung Neoplasms - drug therapy ; Lung Neoplasms - genetics ; Mice ; Models and Technologies ; Mutation ; Proto-Oncogene Proteins p21(ras) - genetics ; Transplantation, Heterologous</subject><ispartof>Molecular cancer therapeutics, 2023-07, Vol.22 (7), p.891-900</ispartof><rights>2023 The Authors; Published by the American Association for Cancer Research.</rights><rights>2023 The Authors; Published by the American Association for Cancer Research 2023 American Association for Cancer Research</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c360t-9d7693d66e26cbb860d5753bd79ad21edb3eae9c5b110bf1d5360583a5a5d4da3</cites><orcidid>0009-0007-5008-7991 ; 0009-0000-2164-5906 ; 0009-0006-2991-2742 ; 0009-0006-1036-3085 ; 0009-0002-3979-3303 ; 0000-0003-4466-0732 ; 0009-0007-4158-4689 ; 0000-0001-5652-5971 ; 0000-0002-1546-2481 ; 0000-0002-3105-3557 ; 0000-0001-8901-8992 ; 0009-0002-0127-0339 ; 0000-0002-9770-106X ; 0000-0001-5988-7388 ; 0000-0002-8387-6192</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3343,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37186518$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Catherine</creatorcontrib><creatorcontrib>Jiang, Ziyue Karen</creatorcontrib><creatorcontrib>Planken, Simon</creatorcontrib><creatorcontrib>Manzuk, Lisa K</creatorcontrib><creatorcontrib>Ortiz, Roberto</creatorcontrib><creatorcontrib>Hall, Michael</creatorcontrib><creatorcontrib>Noorbehesht, Kavon</creatorcontrib><creatorcontrib>Ram, Sripad</creatorcontrib><creatorcontrib>Affolter, Timothy</creatorcontrib><creatorcontrib>Troche, Gabriel E</creatorcontrib><creatorcontrib>Ihle, Nathan T</creatorcontrib><creatorcontrib>Johnson, Theodore</creatorcontrib><creatorcontrib>Ahn, Youngwook</creatorcontrib><creatorcontrib>Kraus, Manfred</creatorcontrib><creatorcontrib>Giddabasappa, Anand</creatorcontrib><title>Efficacy and Imaging-Enabled Pharmacodynamic Profiling of KRAS G12C Inhibitors in Xenograft and Genetically Engineered Mouse Models of Cancer</title><title>Molecular cancer therapeutics</title><addtitle>Mol Cancer Ther</addtitle><description>KRAS is one of the most commonly mutated oncogenes in lung, colorectal, and pancreatic cancers. Recent clinical trials directly targeting KRAS G12C presented encouraging results for a large population of non-small cell lung cancer (NSCLC), but resistance to treatment is a concern. Continued exploration of new inhibitors and preclinical models is needed to address resistance mechanisms and improve duration of patient responses. To further enable the development of KRAS G12C inhibitors, we present a preclinical framework involving translational, non-invasive imaging modalities (CT and PET) and histopathology in a conventional xenograft model and a novel KRAS G12C knock-in mouse model of NSCLC. We utilized an in-house developed KRAS G12C inhibitor (Compound A) as a tool to demonstrate the value of this framework in studying in vivo pharmacokinetic/pharmacodynamic (PK/PD) relationship and anti-tumor efficacy. We characterized the Kras G12C-driven genetically engineered mouse model (GEMM) and identify tumor growth and signaling differences compared to its Kras G12D-driven counterpart. We also find that Compound A has comparable efficacy to sotorasib in the Kras G12C-driven lung tumors arising in the GEMM, but like observations in the clinic, some tumors inevitably progress on treatment. These findings establish a foundation for evaluating future KRAS G12C inhibitors that is not limited to xenograft studies and can be applied in a translationally relevant mouse model that mirrors human disease progression and resistance.</description><subject>Animals</subject><subject>Carcinoma, Non-Small-Cell Lung - drug therapy</subject><subject>Carcinoma, Non-Small-Cell Lung - genetics</subject><subject>Disease Models, Animal</subject><subject>Heterografts</subject><subject>Humans</subject><subject>Lung Neoplasms - drug therapy</subject><subject>Lung Neoplasms - genetics</subject><subject>Mice</subject><subject>Models and Technologies</subject><subject>Mutation</subject><subject>Proto-Oncogene Proteins p21(ras) - genetics</subject><subject>Transplantation, Heterologous</subject><issn>1535-7163</issn><issn>1538-8514</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkc9u1DAQhyMEon_gEUA-cknx2OvEOaEqWrYrWrUqrdSb5diTXaPELnYWaR-Cd8bplgoutjX-zTe2vqL4APQMQMjPILgoa6j42VV7VzJWUgn0VXGc67KUAhavn86HzFFxktIPSkE2DN4WR7wGWQmQx8XvZd87o82eaG_JetQb5zfl0utuQEtutjqO2gS793p0htzE0LshJ0joybfb8-9kBawla791nZtCTMR58oA-bKLupyfkCj1OecIw7MnSZzpizOSrsEuYV4tDmmGt9gbju-JNr4eE75_30-L-6_KuvSgvr1fr9vyyNLyiU9nYumq4rSpklek6WVErasE7WzfaMkDbcdTYGNEB0K4HK3KbkFwLLezCan5afDlwH3fdiNagn6Ie1GN0o457FbRT_994t1Wb8EsB5Ywu6iYTPj0TYvi5wzSp0SWDw6A95q8pJmEhWEP5HBWHqIkhpYj9yxyganapZk9q9qSyS8WYml3mvo__PvKl6688_gfayJzk</recordid><startdate>20230705</startdate><enddate>20230705</enddate><creator>Lee, Catherine</creator><creator>Jiang, Ziyue Karen</creator><creator>Planken, Simon</creator><creator>Manzuk, Lisa K</creator><creator>Ortiz, Roberto</creator><creator>Hall, Michael</creator><creator>Noorbehesht, Kavon</creator><creator>Ram, Sripad</creator><creator>Affolter, Timothy</creator><creator>Troche, Gabriel E</creator><creator>Ihle, Nathan T</creator><creator>Johnson, Theodore</creator><creator>Ahn, Youngwook</creator><creator>Kraus, Manfred</creator><creator>Giddabasappa, Anand</creator><general>American Association for Cancer Research</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0009-0007-5008-7991</orcidid><orcidid>https://orcid.org/0009-0000-2164-5906</orcidid><orcidid>https://orcid.org/0009-0006-2991-2742</orcidid><orcidid>https://orcid.org/0009-0006-1036-3085</orcidid><orcidid>https://orcid.org/0009-0002-3979-3303</orcidid><orcidid>https://orcid.org/0000-0003-4466-0732</orcidid><orcidid>https://orcid.org/0009-0007-4158-4689</orcidid><orcidid>https://orcid.org/0000-0001-5652-5971</orcidid><orcidid>https://orcid.org/0000-0002-1546-2481</orcidid><orcidid>https://orcid.org/0000-0002-3105-3557</orcidid><orcidid>https://orcid.org/0000-0001-8901-8992</orcidid><orcidid>https://orcid.org/0009-0002-0127-0339</orcidid><orcidid>https://orcid.org/0000-0002-9770-106X</orcidid><orcidid>https://orcid.org/0000-0001-5988-7388</orcidid><orcidid>https://orcid.org/0000-0002-8387-6192</orcidid></search><sort><creationdate>20230705</creationdate><title>Efficacy and Imaging-Enabled Pharmacodynamic Profiling of KRAS G12C Inhibitors in Xenograft and Genetically Engineered Mouse Models of Cancer</title><author>Lee, Catherine ; Jiang, Ziyue Karen ; Planken, Simon ; Manzuk, Lisa K ; Ortiz, Roberto ; Hall, Michael ; Noorbehesht, Kavon ; Ram, Sripad ; Affolter, Timothy ; Troche, Gabriel E ; Ihle, Nathan T ; Johnson, Theodore ; Ahn, Youngwook ; Kraus, Manfred ; Giddabasappa, Anand</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-9d7693d66e26cbb860d5753bd79ad21edb3eae9c5b110bf1d5360583a5a5d4da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>Carcinoma, Non-Small-Cell Lung - drug therapy</topic><topic>Carcinoma, Non-Small-Cell Lung - genetics</topic><topic>Disease Models, Animal</topic><topic>Heterografts</topic><topic>Humans</topic><topic>Lung Neoplasms - drug therapy</topic><topic>Lung Neoplasms - genetics</topic><topic>Mice</topic><topic>Models and Technologies</topic><topic>Mutation</topic><topic>Proto-Oncogene Proteins p21(ras) - genetics</topic><topic>Transplantation, Heterologous</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Catherine</creatorcontrib><creatorcontrib>Jiang, Ziyue Karen</creatorcontrib><creatorcontrib>Planken, Simon</creatorcontrib><creatorcontrib>Manzuk, Lisa K</creatorcontrib><creatorcontrib>Ortiz, Roberto</creatorcontrib><creatorcontrib>Hall, Michael</creatorcontrib><creatorcontrib>Noorbehesht, Kavon</creatorcontrib><creatorcontrib>Ram, Sripad</creatorcontrib><creatorcontrib>Affolter, Timothy</creatorcontrib><creatorcontrib>Troche, Gabriel E</creatorcontrib><creatorcontrib>Ihle, Nathan T</creatorcontrib><creatorcontrib>Johnson, Theodore</creatorcontrib><creatorcontrib>Ahn, Youngwook</creatorcontrib><creatorcontrib>Kraus, Manfred</creatorcontrib><creatorcontrib>Giddabasappa, Anand</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular cancer therapeutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Catherine</au><au>Jiang, Ziyue Karen</au><au>Planken, Simon</au><au>Manzuk, Lisa K</au><au>Ortiz, Roberto</au><au>Hall, Michael</au><au>Noorbehesht, Kavon</au><au>Ram, Sripad</au><au>Affolter, Timothy</au><au>Troche, Gabriel E</au><au>Ihle, Nathan T</au><au>Johnson, Theodore</au><au>Ahn, Youngwook</au><au>Kraus, Manfred</au><au>Giddabasappa, Anand</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficacy and Imaging-Enabled Pharmacodynamic Profiling of KRAS G12C Inhibitors in Xenograft and Genetically Engineered Mouse Models of Cancer</atitle><jtitle>Molecular cancer therapeutics</jtitle><addtitle>Mol Cancer Ther</addtitle><date>2023-07-05</date><risdate>2023</risdate><volume>22</volume><issue>7</issue><spage>891</spage><epage>900</epage><pages>891-900</pages><issn>1535-7163</issn><eissn>1538-8514</eissn><abstract>KRAS is one of the most commonly mutated oncogenes in lung, colorectal, and pancreatic cancers. Recent clinical trials directly targeting KRAS G12C presented encouraging results for a large population of non-small cell lung cancer (NSCLC), but resistance to treatment is a concern. Continued exploration of new inhibitors and preclinical models is needed to address resistance mechanisms and improve duration of patient responses. To further enable the development of KRAS G12C inhibitors, we present a preclinical framework involving translational, non-invasive imaging modalities (CT and PET) and histopathology in a conventional xenograft model and a novel KRAS G12C knock-in mouse model of NSCLC. We utilized an in-house developed KRAS G12C inhibitor (Compound A) as a tool to demonstrate the value of this framework in studying in vivo pharmacokinetic/pharmacodynamic (PK/PD) relationship and anti-tumor efficacy. We characterized the Kras G12C-driven genetically engineered mouse model (GEMM) and identify tumor growth and signaling differences compared to its Kras G12D-driven counterpart. We also find that Compound A has comparable efficacy to sotorasib in the Kras G12C-driven lung tumors arising in the GEMM, but like observations in the clinic, some tumors inevitably progress on treatment. These findings establish a foundation for evaluating future KRAS G12C inhibitors that is not limited to xenograft studies and can be applied in a translationally relevant mouse model that mirrors human disease progression and resistance.</abstract><cop>United States</cop><pub>American Association for Cancer Research</pub><pmid>37186518</pmid><doi>10.1158/1535-7163.MCT-22-0810</doi><tpages>10</tpages><orcidid>https://orcid.org/0009-0007-5008-7991</orcidid><orcidid>https://orcid.org/0009-0000-2164-5906</orcidid><orcidid>https://orcid.org/0009-0006-2991-2742</orcidid><orcidid>https://orcid.org/0009-0006-1036-3085</orcidid><orcidid>https://orcid.org/0009-0002-3979-3303</orcidid><orcidid>https://orcid.org/0000-0003-4466-0732</orcidid><orcidid>https://orcid.org/0009-0007-4158-4689</orcidid><orcidid>https://orcid.org/0000-0001-5652-5971</orcidid><orcidid>https://orcid.org/0000-0002-1546-2481</orcidid><orcidid>https://orcid.org/0000-0002-3105-3557</orcidid><orcidid>https://orcid.org/0000-0001-8901-8992</orcidid><orcidid>https://orcid.org/0009-0002-0127-0339</orcidid><orcidid>https://orcid.org/0000-0002-9770-106X</orcidid><orcidid>https://orcid.org/0000-0001-5988-7388</orcidid><orcidid>https://orcid.org/0000-0002-8387-6192</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1535-7163 |
ispartof | Molecular cancer therapeutics, 2023-07, Vol.22 (7), p.891-900 |
issn | 1535-7163 1538-8514 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10320479 |
source | MEDLINE; American Association for Cancer Research; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Animals Carcinoma, Non-Small-Cell Lung - drug therapy Carcinoma, Non-Small-Cell Lung - genetics Disease Models, Animal Heterografts Humans Lung Neoplasms - drug therapy Lung Neoplasms - genetics Mice Models and Technologies Mutation Proto-Oncogene Proteins p21(ras) - genetics Transplantation, Heterologous |
title | Efficacy and Imaging-Enabled Pharmacodynamic Profiling of KRAS G12C Inhibitors in Xenograft and Genetically Engineered Mouse Models of Cancer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A26%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficacy%20and%20Imaging-Enabled%20Pharmacodynamic%20Profiling%20of%20KRAS%20G12C%20Inhibitors%20in%20Xenograft%20and%20Genetically%20Engineered%20Mouse%20Models%20of%20Cancer&rft.jtitle=Molecular%20cancer%20therapeutics&rft.au=Lee,%20Catherine&rft.date=2023-07-05&rft.volume=22&rft.issue=7&rft.spage=891&rft.epage=900&rft.pages=891-900&rft.issn=1535-7163&rft.eissn=1538-8514&rft_id=info:doi/10.1158/1535-7163.MCT-22-0810&rft_dat=%3Cproquest_pubme%3E2814529039%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2814529039&rft_id=info:pmid/37186518&rfr_iscdi=true |