Efficacy and Imaging-Enabled Pharmacodynamic Profiling of KRAS G12C Inhibitors in Xenograft and Genetically Engineered Mouse Models of Cancer

KRAS is one of the most commonly mutated oncogenes in lung, colorectal, and pancreatic cancers. Recent clinical trials directly targeting KRAS G12C presented encouraging results for a large population of non-small cell lung cancer (NSCLC), but resistance to treatment is a concern. Continued explorat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular cancer therapeutics 2023-07, Vol.22 (7), p.891-900
Hauptverfasser: Lee, Catherine, Jiang, Ziyue Karen, Planken, Simon, Manzuk, Lisa K, Ortiz, Roberto, Hall, Michael, Noorbehesht, Kavon, Ram, Sripad, Affolter, Timothy, Troche, Gabriel E, Ihle, Nathan T, Johnson, Theodore, Ahn, Youngwook, Kraus, Manfred, Giddabasappa, Anand
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 900
container_issue 7
container_start_page 891
container_title Molecular cancer therapeutics
container_volume 22
creator Lee, Catherine
Jiang, Ziyue Karen
Planken, Simon
Manzuk, Lisa K
Ortiz, Roberto
Hall, Michael
Noorbehesht, Kavon
Ram, Sripad
Affolter, Timothy
Troche, Gabriel E
Ihle, Nathan T
Johnson, Theodore
Ahn, Youngwook
Kraus, Manfred
Giddabasappa, Anand
description KRAS is one of the most commonly mutated oncogenes in lung, colorectal, and pancreatic cancers. Recent clinical trials directly targeting KRAS G12C presented encouraging results for a large population of non-small cell lung cancer (NSCLC), but resistance to treatment is a concern. Continued exploration of new inhibitors and preclinical models is needed to address resistance mechanisms and improve duration of patient responses. To further enable the development of KRAS G12C inhibitors, we present a preclinical framework involving translational, non-invasive imaging modalities (CT and PET) and histopathology in a conventional xenograft model and a novel KRAS G12C knock-in mouse model of NSCLC. We utilized an in-house developed KRAS G12C inhibitor (Compound A) as a tool to demonstrate the value of this framework in studying in vivo pharmacokinetic/pharmacodynamic (PK/PD) relationship and anti-tumor efficacy. We characterized the Kras G12C-driven genetically engineered mouse model (GEMM) and identify tumor growth and signaling differences compared to its Kras G12D-driven counterpart. We also find that Compound A has comparable efficacy to sotorasib in the Kras G12C-driven lung tumors arising in the GEMM, but like observations in the clinic, some tumors inevitably progress on treatment. These findings establish a foundation for evaluating future KRAS G12C inhibitors that is not limited to xenograft studies and can be applied in a translationally relevant mouse model that mirrors human disease progression and resistance.
doi_str_mv 10.1158/1535-7163.MCT-22-0810
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10320479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2814529039</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-9d7693d66e26cbb860d5753bd79ad21edb3eae9c5b110bf1d5360583a5a5d4da3</originalsourceid><addsrcrecordid>eNpVkc9u1DAQhyMEon_gEUA-cknx2OvEOaEqWrYrWrUqrdSb5diTXaPELnYWaR-Cd8bplgoutjX-zTe2vqL4APQMQMjPILgoa6j42VV7VzJWUgn0VXGc67KUAhavn86HzFFxktIPSkE2DN4WR7wGWQmQx8XvZd87o82eaG_JetQb5zfl0utuQEtutjqO2gS793p0htzE0LshJ0joybfb8-9kBawla791nZtCTMR58oA-bKLupyfkCj1OecIw7MnSZzpizOSrsEuYV4tDmmGt9gbju-JNr4eE75_30-L-6_KuvSgvr1fr9vyyNLyiU9nYumq4rSpklek6WVErasE7WzfaMkDbcdTYGNEB0K4HK3KbkFwLLezCan5afDlwH3fdiNagn6Ie1GN0o457FbRT_994t1Wb8EsB5Ywu6iYTPj0TYvi5wzSp0SWDw6A95q8pJmEhWEP5HBWHqIkhpYj9yxyganapZk9q9qSyS8WYml3mvo__PvKl6688_gfayJzk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2814529039</pqid></control><display><type>article</type><title>Efficacy and Imaging-Enabled Pharmacodynamic Profiling of KRAS G12C Inhibitors in Xenograft and Genetically Engineered Mouse Models of Cancer</title><source>MEDLINE</source><source>American Association for Cancer Research</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Lee, Catherine ; Jiang, Ziyue Karen ; Planken, Simon ; Manzuk, Lisa K ; Ortiz, Roberto ; Hall, Michael ; Noorbehesht, Kavon ; Ram, Sripad ; Affolter, Timothy ; Troche, Gabriel E ; Ihle, Nathan T ; Johnson, Theodore ; Ahn, Youngwook ; Kraus, Manfred ; Giddabasappa, Anand</creator><creatorcontrib>Lee, Catherine ; Jiang, Ziyue Karen ; Planken, Simon ; Manzuk, Lisa K ; Ortiz, Roberto ; Hall, Michael ; Noorbehesht, Kavon ; Ram, Sripad ; Affolter, Timothy ; Troche, Gabriel E ; Ihle, Nathan T ; Johnson, Theodore ; Ahn, Youngwook ; Kraus, Manfred ; Giddabasappa, Anand</creatorcontrib><description>KRAS is one of the most commonly mutated oncogenes in lung, colorectal, and pancreatic cancers. Recent clinical trials directly targeting KRAS G12C presented encouraging results for a large population of non-small cell lung cancer (NSCLC), but resistance to treatment is a concern. Continued exploration of new inhibitors and preclinical models is needed to address resistance mechanisms and improve duration of patient responses. To further enable the development of KRAS G12C inhibitors, we present a preclinical framework involving translational, non-invasive imaging modalities (CT and PET) and histopathology in a conventional xenograft model and a novel KRAS G12C knock-in mouse model of NSCLC. We utilized an in-house developed KRAS G12C inhibitor (Compound A) as a tool to demonstrate the value of this framework in studying in vivo pharmacokinetic/pharmacodynamic (PK/PD) relationship and anti-tumor efficacy. We characterized the Kras G12C-driven genetically engineered mouse model (GEMM) and identify tumor growth and signaling differences compared to its Kras G12D-driven counterpart. We also find that Compound A has comparable efficacy to sotorasib in the Kras G12C-driven lung tumors arising in the GEMM, but like observations in the clinic, some tumors inevitably progress on treatment. These findings establish a foundation for evaluating future KRAS G12C inhibitors that is not limited to xenograft studies and can be applied in a translationally relevant mouse model that mirrors human disease progression and resistance.</description><identifier>ISSN: 1535-7163</identifier><identifier>EISSN: 1538-8514</identifier><identifier>DOI: 10.1158/1535-7163.MCT-22-0810</identifier><identifier>PMID: 37186518</identifier><language>eng</language><publisher>United States: American Association for Cancer Research</publisher><subject>Animals ; Carcinoma, Non-Small-Cell Lung - drug therapy ; Carcinoma, Non-Small-Cell Lung - genetics ; Disease Models, Animal ; Heterografts ; Humans ; Lung Neoplasms - drug therapy ; Lung Neoplasms - genetics ; Mice ; Models and Technologies ; Mutation ; Proto-Oncogene Proteins p21(ras) - genetics ; Transplantation, Heterologous</subject><ispartof>Molecular cancer therapeutics, 2023-07, Vol.22 (7), p.891-900</ispartof><rights>2023 The Authors; Published by the American Association for Cancer Research.</rights><rights>2023 The Authors; Published by the American Association for Cancer Research 2023 American Association for Cancer Research</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c360t-9d7693d66e26cbb860d5753bd79ad21edb3eae9c5b110bf1d5360583a5a5d4da3</cites><orcidid>0009-0007-5008-7991 ; 0009-0000-2164-5906 ; 0009-0006-2991-2742 ; 0009-0006-1036-3085 ; 0009-0002-3979-3303 ; 0000-0003-4466-0732 ; 0009-0007-4158-4689 ; 0000-0001-5652-5971 ; 0000-0002-1546-2481 ; 0000-0002-3105-3557 ; 0000-0001-8901-8992 ; 0009-0002-0127-0339 ; 0000-0002-9770-106X ; 0000-0001-5988-7388 ; 0000-0002-8387-6192</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3343,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37186518$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Catherine</creatorcontrib><creatorcontrib>Jiang, Ziyue Karen</creatorcontrib><creatorcontrib>Planken, Simon</creatorcontrib><creatorcontrib>Manzuk, Lisa K</creatorcontrib><creatorcontrib>Ortiz, Roberto</creatorcontrib><creatorcontrib>Hall, Michael</creatorcontrib><creatorcontrib>Noorbehesht, Kavon</creatorcontrib><creatorcontrib>Ram, Sripad</creatorcontrib><creatorcontrib>Affolter, Timothy</creatorcontrib><creatorcontrib>Troche, Gabriel E</creatorcontrib><creatorcontrib>Ihle, Nathan T</creatorcontrib><creatorcontrib>Johnson, Theodore</creatorcontrib><creatorcontrib>Ahn, Youngwook</creatorcontrib><creatorcontrib>Kraus, Manfred</creatorcontrib><creatorcontrib>Giddabasappa, Anand</creatorcontrib><title>Efficacy and Imaging-Enabled Pharmacodynamic Profiling of KRAS G12C Inhibitors in Xenograft and Genetically Engineered Mouse Models of Cancer</title><title>Molecular cancer therapeutics</title><addtitle>Mol Cancer Ther</addtitle><description>KRAS is one of the most commonly mutated oncogenes in lung, colorectal, and pancreatic cancers. Recent clinical trials directly targeting KRAS G12C presented encouraging results for a large population of non-small cell lung cancer (NSCLC), but resistance to treatment is a concern. Continued exploration of new inhibitors and preclinical models is needed to address resistance mechanisms and improve duration of patient responses. To further enable the development of KRAS G12C inhibitors, we present a preclinical framework involving translational, non-invasive imaging modalities (CT and PET) and histopathology in a conventional xenograft model and a novel KRAS G12C knock-in mouse model of NSCLC. We utilized an in-house developed KRAS G12C inhibitor (Compound A) as a tool to demonstrate the value of this framework in studying in vivo pharmacokinetic/pharmacodynamic (PK/PD) relationship and anti-tumor efficacy. We characterized the Kras G12C-driven genetically engineered mouse model (GEMM) and identify tumor growth and signaling differences compared to its Kras G12D-driven counterpart. We also find that Compound A has comparable efficacy to sotorasib in the Kras G12C-driven lung tumors arising in the GEMM, but like observations in the clinic, some tumors inevitably progress on treatment. These findings establish a foundation for evaluating future KRAS G12C inhibitors that is not limited to xenograft studies and can be applied in a translationally relevant mouse model that mirrors human disease progression and resistance.</description><subject>Animals</subject><subject>Carcinoma, Non-Small-Cell Lung - drug therapy</subject><subject>Carcinoma, Non-Small-Cell Lung - genetics</subject><subject>Disease Models, Animal</subject><subject>Heterografts</subject><subject>Humans</subject><subject>Lung Neoplasms - drug therapy</subject><subject>Lung Neoplasms - genetics</subject><subject>Mice</subject><subject>Models and Technologies</subject><subject>Mutation</subject><subject>Proto-Oncogene Proteins p21(ras) - genetics</subject><subject>Transplantation, Heterologous</subject><issn>1535-7163</issn><issn>1538-8514</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkc9u1DAQhyMEon_gEUA-cknx2OvEOaEqWrYrWrUqrdSb5diTXaPELnYWaR-Cd8bplgoutjX-zTe2vqL4APQMQMjPILgoa6j42VV7VzJWUgn0VXGc67KUAhavn86HzFFxktIPSkE2DN4WR7wGWQmQx8XvZd87o82eaG_JetQb5zfl0utuQEtutjqO2gS793p0htzE0LshJ0joybfb8-9kBawla791nZtCTMR58oA-bKLupyfkCj1OecIw7MnSZzpizOSrsEuYV4tDmmGt9gbju-JNr4eE75_30-L-6_KuvSgvr1fr9vyyNLyiU9nYumq4rSpklek6WVErasE7WzfaMkDbcdTYGNEB0K4HK3KbkFwLLezCan5afDlwH3fdiNagn6Ie1GN0o457FbRT_994t1Wb8EsB5Ywu6iYTPj0TYvi5wzSp0SWDw6A95q8pJmEhWEP5HBWHqIkhpYj9yxyganapZk9q9qSyS8WYml3mvo__PvKl6688_gfayJzk</recordid><startdate>20230705</startdate><enddate>20230705</enddate><creator>Lee, Catherine</creator><creator>Jiang, Ziyue Karen</creator><creator>Planken, Simon</creator><creator>Manzuk, Lisa K</creator><creator>Ortiz, Roberto</creator><creator>Hall, Michael</creator><creator>Noorbehesht, Kavon</creator><creator>Ram, Sripad</creator><creator>Affolter, Timothy</creator><creator>Troche, Gabriel E</creator><creator>Ihle, Nathan T</creator><creator>Johnson, Theodore</creator><creator>Ahn, Youngwook</creator><creator>Kraus, Manfred</creator><creator>Giddabasappa, Anand</creator><general>American Association for Cancer Research</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0009-0007-5008-7991</orcidid><orcidid>https://orcid.org/0009-0000-2164-5906</orcidid><orcidid>https://orcid.org/0009-0006-2991-2742</orcidid><orcidid>https://orcid.org/0009-0006-1036-3085</orcidid><orcidid>https://orcid.org/0009-0002-3979-3303</orcidid><orcidid>https://orcid.org/0000-0003-4466-0732</orcidid><orcidid>https://orcid.org/0009-0007-4158-4689</orcidid><orcidid>https://orcid.org/0000-0001-5652-5971</orcidid><orcidid>https://orcid.org/0000-0002-1546-2481</orcidid><orcidid>https://orcid.org/0000-0002-3105-3557</orcidid><orcidid>https://orcid.org/0000-0001-8901-8992</orcidid><orcidid>https://orcid.org/0009-0002-0127-0339</orcidid><orcidid>https://orcid.org/0000-0002-9770-106X</orcidid><orcidid>https://orcid.org/0000-0001-5988-7388</orcidid><orcidid>https://orcid.org/0000-0002-8387-6192</orcidid></search><sort><creationdate>20230705</creationdate><title>Efficacy and Imaging-Enabled Pharmacodynamic Profiling of KRAS G12C Inhibitors in Xenograft and Genetically Engineered Mouse Models of Cancer</title><author>Lee, Catherine ; Jiang, Ziyue Karen ; Planken, Simon ; Manzuk, Lisa K ; Ortiz, Roberto ; Hall, Michael ; Noorbehesht, Kavon ; Ram, Sripad ; Affolter, Timothy ; Troche, Gabriel E ; Ihle, Nathan T ; Johnson, Theodore ; Ahn, Youngwook ; Kraus, Manfred ; Giddabasappa, Anand</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-9d7693d66e26cbb860d5753bd79ad21edb3eae9c5b110bf1d5360583a5a5d4da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>Carcinoma, Non-Small-Cell Lung - drug therapy</topic><topic>Carcinoma, Non-Small-Cell Lung - genetics</topic><topic>Disease Models, Animal</topic><topic>Heterografts</topic><topic>Humans</topic><topic>Lung Neoplasms - drug therapy</topic><topic>Lung Neoplasms - genetics</topic><topic>Mice</topic><topic>Models and Technologies</topic><topic>Mutation</topic><topic>Proto-Oncogene Proteins p21(ras) - genetics</topic><topic>Transplantation, Heterologous</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Catherine</creatorcontrib><creatorcontrib>Jiang, Ziyue Karen</creatorcontrib><creatorcontrib>Planken, Simon</creatorcontrib><creatorcontrib>Manzuk, Lisa K</creatorcontrib><creatorcontrib>Ortiz, Roberto</creatorcontrib><creatorcontrib>Hall, Michael</creatorcontrib><creatorcontrib>Noorbehesht, Kavon</creatorcontrib><creatorcontrib>Ram, Sripad</creatorcontrib><creatorcontrib>Affolter, Timothy</creatorcontrib><creatorcontrib>Troche, Gabriel E</creatorcontrib><creatorcontrib>Ihle, Nathan T</creatorcontrib><creatorcontrib>Johnson, Theodore</creatorcontrib><creatorcontrib>Ahn, Youngwook</creatorcontrib><creatorcontrib>Kraus, Manfred</creatorcontrib><creatorcontrib>Giddabasappa, Anand</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular cancer therapeutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Catherine</au><au>Jiang, Ziyue Karen</au><au>Planken, Simon</au><au>Manzuk, Lisa K</au><au>Ortiz, Roberto</au><au>Hall, Michael</au><au>Noorbehesht, Kavon</au><au>Ram, Sripad</au><au>Affolter, Timothy</au><au>Troche, Gabriel E</au><au>Ihle, Nathan T</au><au>Johnson, Theodore</au><au>Ahn, Youngwook</au><au>Kraus, Manfred</au><au>Giddabasappa, Anand</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficacy and Imaging-Enabled Pharmacodynamic Profiling of KRAS G12C Inhibitors in Xenograft and Genetically Engineered Mouse Models of Cancer</atitle><jtitle>Molecular cancer therapeutics</jtitle><addtitle>Mol Cancer Ther</addtitle><date>2023-07-05</date><risdate>2023</risdate><volume>22</volume><issue>7</issue><spage>891</spage><epage>900</epage><pages>891-900</pages><issn>1535-7163</issn><eissn>1538-8514</eissn><abstract>KRAS is one of the most commonly mutated oncogenes in lung, colorectal, and pancreatic cancers. Recent clinical trials directly targeting KRAS G12C presented encouraging results for a large population of non-small cell lung cancer (NSCLC), but resistance to treatment is a concern. Continued exploration of new inhibitors and preclinical models is needed to address resistance mechanisms and improve duration of patient responses. To further enable the development of KRAS G12C inhibitors, we present a preclinical framework involving translational, non-invasive imaging modalities (CT and PET) and histopathology in a conventional xenograft model and a novel KRAS G12C knock-in mouse model of NSCLC. We utilized an in-house developed KRAS G12C inhibitor (Compound A) as a tool to demonstrate the value of this framework in studying in vivo pharmacokinetic/pharmacodynamic (PK/PD) relationship and anti-tumor efficacy. We characterized the Kras G12C-driven genetically engineered mouse model (GEMM) and identify tumor growth and signaling differences compared to its Kras G12D-driven counterpart. We also find that Compound A has comparable efficacy to sotorasib in the Kras G12C-driven lung tumors arising in the GEMM, but like observations in the clinic, some tumors inevitably progress on treatment. These findings establish a foundation for evaluating future KRAS G12C inhibitors that is not limited to xenograft studies and can be applied in a translationally relevant mouse model that mirrors human disease progression and resistance.</abstract><cop>United States</cop><pub>American Association for Cancer Research</pub><pmid>37186518</pmid><doi>10.1158/1535-7163.MCT-22-0810</doi><tpages>10</tpages><orcidid>https://orcid.org/0009-0007-5008-7991</orcidid><orcidid>https://orcid.org/0009-0000-2164-5906</orcidid><orcidid>https://orcid.org/0009-0006-2991-2742</orcidid><orcidid>https://orcid.org/0009-0006-1036-3085</orcidid><orcidid>https://orcid.org/0009-0002-3979-3303</orcidid><orcidid>https://orcid.org/0000-0003-4466-0732</orcidid><orcidid>https://orcid.org/0009-0007-4158-4689</orcidid><orcidid>https://orcid.org/0000-0001-5652-5971</orcidid><orcidid>https://orcid.org/0000-0002-1546-2481</orcidid><orcidid>https://orcid.org/0000-0002-3105-3557</orcidid><orcidid>https://orcid.org/0000-0001-8901-8992</orcidid><orcidid>https://orcid.org/0009-0002-0127-0339</orcidid><orcidid>https://orcid.org/0000-0002-9770-106X</orcidid><orcidid>https://orcid.org/0000-0001-5988-7388</orcidid><orcidid>https://orcid.org/0000-0002-8387-6192</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1535-7163
ispartof Molecular cancer therapeutics, 2023-07, Vol.22 (7), p.891-900
issn 1535-7163
1538-8514
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10320479
source MEDLINE; American Association for Cancer Research; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Animals
Carcinoma, Non-Small-Cell Lung - drug therapy
Carcinoma, Non-Small-Cell Lung - genetics
Disease Models, Animal
Heterografts
Humans
Lung Neoplasms - drug therapy
Lung Neoplasms - genetics
Mice
Models and Technologies
Mutation
Proto-Oncogene Proteins p21(ras) - genetics
Transplantation, Heterologous
title Efficacy and Imaging-Enabled Pharmacodynamic Profiling of KRAS G12C Inhibitors in Xenograft and Genetically Engineered Mouse Models of Cancer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A26%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficacy%20and%20Imaging-Enabled%20Pharmacodynamic%20Profiling%20of%20KRAS%20G12C%20Inhibitors%20in%20Xenograft%20and%20Genetically%20Engineered%20Mouse%20Models%20of%20Cancer&rft.jtitle=Molecular%20cancer%20therapeutics&rft.au=Lee,%20Catherine&rft.date=2023-07-05&rft.volume=22&rft.issue=7&rft.spage=891&rft.epage=900&rft.pages=891-900&rft.issn=1535-7163&rft.eissn=1538-8514&rft_id=info:doi/10.1158/1535-7163.MCT-22-0810&rft_dat=%3Cproquest_pubme%3E2814529039%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2814529039&rft_id=info:pmid/37186518&rfr_iscdi=true