ppGpp and RNA-polymerase backtracking guide antibiotic-induced mutable gambler cells
Antibiotic resistance is a global health threat and often results from new mutations. Antibiotics can induce mutations via mechanisms activated by stress responses, which both reveal environmental cues of mutagenesis and are weak links in mutagenesis networks. Network inhibition could slow the evolu...
Gespeichert in:
Veröffentlicht in: | Molecular cell 2023-04, Vol.83 (8), p.1298-1310.e4 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1310.e4 |
---|---|
container_issue | 8 |
container_start_page | 1298 |
container_title | Molecular cell |
container_volume | 83 |
creator | Zhai, Yin Minnick, P.J. Pribis, John P. Garcia-Villada, Libertad Hastings, P.J. Herman, Christophe Rosenberg, Susan M. |
description | Antibiotic resistance is a global health threat and often results from new mutations. Antibiotics can induce mutations via mechanisms activated by stress responses, which both reveal environmental cues of mutagenesis and are weak links in mutagenesis networks. Network inhibition could slow the evolution of resistance during antibiotic therapies. Despite its pivotal importance, few identities and fewer functions of stress responses in mutagenesis are clear. Here, we identify the Escherichia coli stringent starvation response in fluoroquinolone-antibiotic ciprofloxacin-induced mutagenesis. Binding of response-activator ppGpp to RNA polymerase (RNAP) at two sites leads to an antibiotic-induced mutable gambler-cell subpopulation. Each activates a stress response required for mutagenic DNA-break repair: surprisingly, ppGpp-site-1-RNAP triggers the DNA-damage response, and ppGpp-site-2-RNAP induces σS-response activity. We propose that RNAP regulates DNA-damage processing in transcribed regions. The data demonstrate a critical node in ciprofloxacin-induced mutagenesis, imply RNAP-regulation of DNA-break repair, and identify promising targets for resistance-resisting drugs.
[Display omitted]
•Stringent starvation response leads to mutable gambler-cell subpopulation•RNA polymerase (RNAP)-(p)ppGpp-site-1 triggers the SOS DNA-damage response•Antibiotic → SOS → reactive oxygen+ cells → stringent-on cells → σS response-on gamblers•(p)ppGpp-RNAPs play two roles: backtracking/SOS, then inducing sRNAs → σS activity
Binding of starvation-response activator ppGpp to RNA polymerase (RNAP) at two sites leads to an antibiotic-induced mutable gambler-cell subpopulation. Each activates a stress response required for mutagenic DNA-break repair: backtracked RNAP-ppGpp-site-1 triggers SOS, and ppGpp-site-2-RNAP induces σS-response activity. The two cause mutations, some of which confer resistance to new antibiotics. |
doi_str_mv | 10.1016/j.molcel.2023.03.003 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10317147</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1097276523001600</els_id><sourcerecordid>36965481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-b58091dc3d0c6ce44d9844ba87f9a4b111204186e1fcf1a48868467a8283b8093</originalsourceid><addsrcrecordid>eNp9kN9KwzAUxoMobk7fQKQv0JrTpGl6o4yhUxgKMq9DmqQ1s_9Iu8He3oxO0RvhkBPI933n5IfQNeAIMLDbTVS3lTJVFOOYRNgXJidoCjhLQwqMnh7vccqSCbro-w3GQBOenaMJYRlLKIcpWnfdsusC2ejg7WUedm21r42TvQlyqT4H5w_blEG5tdp41WBz2w5WhbbRW2V0UG8HmVcmKGXtmwv8QlV_ic4KWfXm6thn6P3xYb14Clevy-fFfBUqSmAI84TjDLQiGiumDKU645TmkqdFJmkOADGmwJmBQhUgKeeMU5ZKHnOSeyuZofsxt9vmtdHKNH7hSnTO1tLtRSut-PvS2A9RtjsBmEAKNPUJdExQru17Z4ofM2BxwCw2YsQsDpgF9oWJt938Hvxj-ubqBXejwPjv76xxolfWNJ6YdUYNQrf2_wlfjrKRxA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>ppGpp and RNA-polymerase backtracking guide antibiotic-induced mutable gambler cells</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Zhai, Yin ; Minnick, P.J. ; Pribis, John P. ; Garcia-Villada, Libertad ; Hastings, P.J. ; Herman, Christophe ; Rosenberg, Susan M.</creator><creatorcontrib>Zhai, Yin ; Minnick, P.J. ; Pribis, John P. ; Garcia-Villada, Libertad ; Hastings, P.J. ; Herman, Christophe ; Rosenberg, Susan M.</creatorcontrib><description>Antibiotic resistance is a global health threat and often results from new mutations. Antibiotics can induce mutations via mechanisms activated by stress responses, which both reveal environmental cues of mutagenesis and are weak links in mutagenesis networks. Network inhibition could slow the evolution of resistance during antibiotic therapies. Despite its pivotal importance, few identities and fewer functions of stress responses in mutagenesis are clear. Here, we identify the Escherichia coli stringent starvation response in fluoroquinolone-antibiotic ciprofloxacin-induced mutagenesis. Binding of response-activator ppGpp to RNA polymerase (RNAP) at two sites leads to an antibiotic-induced mutable gambler-cell subpopulation. Each activates a stress response required for mutagenic DNA-break repair: surprisingly, ppGpp-site-1-RNAP triggers the DNA-damage response, and ppGpp-site-2-RNAP induces σS-response activity. We propose that RNAP regulates DNA-damage processing in transcribed regions. The data demonstrate a critical node in ciprofloxacin-induced mutagenesis, imply RNAP-regulation of DNA-break repair, and identify promising targets for resistance-resisting drugs.
[Display omitted]
•Stringent starvation response leads to mutable gambler-cell subpopulation•RNA polymerase (RNAP)-(p)ppGpp-site-1 triggers the SOS DNA-damage response•Antibiotic → SOS → reactive oxygen+ cells → stringent-on cells → σS response-on gamblers•(p)ppGpp-RNAPs play two roles: backtracking/SOS, then inducing sRNAs → σS activity
Binding of starvation-response activator ppGpp to RNA polymerase (RNAP) at two sites leads to an antibiotic-induced mutable gambler-cell subpopulation. Each activates a stress response required for mutagenic DNA-break repair: backtracked RNAP-ppGpp-site-1 triggers SOS, and ppGpp-site-2-RNAP induces σS-response activity. The two cause mutations, some of which confer resistance to new antibiotics.</description><identifier>ISSN: 1097-2765</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/j.molcel.2023.03.003</identifier><identifier>PMID: 36965481</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Anti-Bacterial Agents - metabolism ; Anti-Bacterial Agents - pharmacology ; antibiotic resistance ; Ciprofloxacin - pharmacology ; DNA - metabolism ; DNA-Directed RNA Polymerases - metabolism ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Escherichia coli Proteins - metabolism ; evolution ; fluoroquinolones ; Gene Expression Regulation, Bacterial ; general stress response ; Guanosine Tetraphosphate - metabolism ; mutagenic break repair ; mutations ; ppGpp ; reactive oxygen species ; RNA - metabolism ; stress-induced mutagenesis ; stringent response</subject><ispartof>Molecular cell, 2023-04, Vol.83 (8), p.1298-1310.e4</ispartof><rights>2023 Elsevier Inc.</rights><rights>Copyright © 2023 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-b58091dc3d0c6ce44d9844ba87f9a4b111204186e1fcf1a48868467a8283b8093</citedby><cites>FETCH-LOGICAL-c431t-b58091dc3d0c6ce44d9844ba87f9a4b111204186e1fcf1a48868467a8283b8093</cites><orcidid>0000-0003-1444-473X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1097276523001600$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36965481$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhai, Yin</creatorcontrib><creatorcontrib>Minnick, P.J.</creatorcontrib><creatorcontrib>Pribis, John P.</creatorcontrib><creatorcontrib>Garcia-Villada, Libertad</creatorcontrib><creatorcontrib>Hastings, P.J.</creatorcontrib><creatorcontrib>Herman, Christophe</creatorcontrib><creatorcontrib>Rosenberg, Susan M.</creatorcontrib><title>ppGpp and RNA-polymerase backtracking guide antibiotic-induced mutable gambler cells</title><title>Molecular cell</title><addtitle>Mol Cell</addtitle><description>Antibiotic resistance is a global health threat and often results from new mutations. Antibiotics can induce mutations via mechanisms activated by stress responses, which both reveal environmental cues of mutagenesis and are weak links in mutagenesis networks. Network inhibition could slow the evolution of resistance during antibiotic therapies. Despite its pivotal importance, few identities and fewer functions of stress responses in mutagenesis are clear. Here, we identify the Escherichia coli stringent starvation response in fluoroquinolone-antibiotic ciprofloxacin-induced mutagenesis. Binding of response-activator ppGpp to RNA polymerase (RNAP) at two sites leads to an antibiotic-induced mutable gambler-cell subpopulation. Each activates a stress response required for mutagenic DNA-break repair: surprisingly, ppGpp-site-1-RNAP triggers the DNA-damage response, and ppGpp-site-2-RNAP induces σS-response activity. We propose that RNAP regulates DNA-damage processing in transcribed regions. The data demonstrate a critical node in ciprofloxacin-induced mutagenesis, imply RNAP-regulation of DNA-break repair, and identify promising targets for resistance-resisting drugs.
[Display omitted]
•Stringent starvation response leads to mutable gambler-cell subpopulation•RNA polymerase (RNAP)-(p)ppGpp-site-1 triggers the SOS DNA-damage response•Antibiotic → SOS → reactive oxygen+ cells → stringent-on cells → σS response-on gamblers•(p)ppGpp-RNAPs play two roles: backtracking/SOS, then inducing sRNAs → σS activity
Binding of starvation-response activator ppGpp to RNA polymerase (RNAP) at two sites leads to an antibiotic-induced mutable gambler-cell subpopulation. Each activates a stress response required for mutagenic DNA-break repair: backtracked RNAP-ppGpp-site-1 triggers SOS, and ppGpp-site-2-RNAP induces σS-response activity. The two cause mutations, some of which confer resistance to new antibiotics.</description><subject>Anti-Bacterial Agents - metabolism</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>antibiotic resistance</subject><subject>Ciprofloxacin - pharmacology</subject><subject>DNA - metabolism</subject><subject>DNA-Directed RNA Polymerases - metabolism</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>evolution</subject><subject>fluoroquinolones</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>general stress response</subject><subject>Guanosine Tetraphosphate - metabolism</subject><subject>mutagenic break repair</subject><subject>mutations</subject><subject>ppGpp</subject><subject>reactive oxygen species</subject><subject>RNA - metabolism</subject><subject>stress-induced mutagenesis</subject><subject>stringent response</subject><issn>1097-2765</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kN9KwzAUxoMobk7fQKQv0JrTpGl6o4yhUxgKMq9DmqQ1s_9Iu8He3oxO0RvhkBPI933n5IfQNeAIMLDbTVS3lTJVFOOYRNgXJidoCjhLQwqMnh7vccqSCbro-w3GQBOenaMJYRlLKIcpWnfdsusC2ejg7WUedm21r42TvQlyqT4H5w_blEG5tdp41WBz2w5WhbbRW2V0UG8HmVcmKGXtmwv8QlV_ic4KWfXm6thn6P3xYb14Clevy-fFfBUqSmAI84TjDLQiGiumDKU645TmkqdFJmkOADGmwJmBQhUgKeeMU5ZKHnOSeyuZofsxt9vmtdHKNH7hSnTO1tLtRSut-PvS2A9RtjsBmEAKNPUJdExQru17Z4ofM2BxwCw2YsQsDpgF9oWJt938Hvxj-ubqBXejwPjv76xxolfWNJ6YdUYNQrf2_wlfjrKRxA</recordid><startdate>20230420</startdate><enddate>20230420</enddate><creator>Zhai, Yin</creator><creator>Minnick, P.J.</creator><creator>Pribis, John P.</creator><creator>Garcia-Villada, Libertad</creator><creator>Hastings, P.J.</creator><creator>Herman, Christophe</creator><creator>Rosenberg, Susan M.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1444-473X</orcidid></search><sort><creationdate>20230420</creationdate><title>ppGpp and RNA-polymerase backtracking guide antibiotic-induced mutable gambler cells</title><author>Zhai, Yin ; Minnick, P.J. ; Pribis, John P. ; Garcia-Villada, Libertad ; Hastings, P.J. ; Herman, Christophe ; Rosenberg, Susan M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-b58091dc3d0c6ce44d9844ba87f9a4b111204186e1fcf1a48868467a8283b8093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anti-Bacterial Agents - metabolism</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>antibiotic resistance</topic><topic>Ciprofloxacin - pharmacology</topic><topic>DNA - metabolism</topic><topic>DNA-Directed RNA Polymerases - metabolism</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>evolution</topic><topic>fluoroquinolones</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>general stress response</topic><topic>Guanosine Tetraphosphate - metabolism</topic><topic>mutagenic break repair</topic><topic>mutations</topic><topic>ppGpp</topic><topic>reactive oxygen species</topic><topic>RNA - metabolism</topic><topic>stress-induced mutagenesis</topic><topic>stringent response</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhai, Yin</creatorcontrib><creatorcontrib>Minnick, P.J.</creatorcontrib><creatorcontrib>Pribis, John P.</creatorcontrib><creatorcontrib>Garcia-Villada, Libertad</creatorcontrib><creatorcontrib>Hastings, P.J.</creatorcontrib><creatorcontrib>Herman, Christophe</creatorcontrib><creatorcontrib>Rosenberg, Susan M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhai, Yin</au><au>Minnick, P.J.</au><au>Pribis, John P.</au><au>Garcia-Villada, Libertad</au><au>Hastings, P.J.</au><au>Herman, Christophe</au><au>Rosenberg, Susan M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ppGpp and RNA-polymerase backtracking guide antibiotic-induced mutable gambler cells</atitle><jtitle>Molecular cell</jtitle><addtitle>Mol Cell</addtitle><date>2023-04-20</date><risdate>2023</risdate><volume>83</volume><issue>8</issue><spage>1298</spage><epage>1310.e4</epage><pages>1298-1310.e4</pages><issn>1097-2765</issn><eissn>1097-4164</eissn><abstract>Antibiotic resistance is a global health threat and often results from new mutations. Antibiotics can induce mutations via mechanisms activated by stress responses, which both reveal environmental cues of mutagenesis and are weak links in mutagenesis networks. Network inhibition could slow the evolution of resistance during antibiotic therapies. Despite its pivotal importance, few identities and fewer functions of stress responses in mutagenesis are clear. Here, we identify the Escherichia coli stringent starvation response in fluoroquinolone-antibiotic ciprofloxacin-induced mutagenesis. Binding of response-activator ppGpp to RNA polymerase (RNAP) at two sites leads to an antibiotic-induced mutable gambler-cell subpopulation. Each activates a stress response required for mutagenic DNA-break repair: surprisingly, ppGpp-site-1-RNAP triggers the DNA-damage response, and ppGpp-site-2-RNAP induces σS-response activity. We propose that RNAP regulates DNA-damage processing in transcribed regions. The data demonstrate a critical node in ciprofloxacin-induced mutagenesis, imply RNAP-regulation of DNA-break repair, and identify promising targets for resistance-resisting drugs.
[Display omitted]
•Stringent starvation response leads to mutable gambler-cell subpopulation•RNA polymerase (RNAP)-(p)ppGpp-site-1 triggers the SOS DNA-damage response•Antibiotic → SOS → reactive oxygen+ cells → stringent-on cells → σS response-on gamblers•(p)ppGpp-RNAPs play two roles: backtracking/SOS, then inducing sRNAs → σS activity
Binding of starvation-response activator ppGpp to RNA polymerase (RNAP) at two sites leads to an antibiotic-induced mutable gambler-cell subpopulation. Each activates a stress response required for mutagenic DNA-break repair: backtracked RNAP-ppGpp-site-1 triggers SOS, and ppGpp-site-2-RNAP induces σS-response activity. The two cause mutations, some of which confer resistance to new antibiotics.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>36965481</pmid><doi>10.1016/j.molcel.2023.03.003</doi><orcidid>https://orcid.org/0000-0003-1444-473X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1097-2765 |
ispartof | Molecular cell, 2023-04, Vol.83 (8), p.1298-1310.e4 |
issn | 1097-2765 1097-4164 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10317147 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry |
subjects | Anti-Bacterial Agents - metabolism Anti-Bacterial Agents - pharmacology antibiotic resistance Ciprofloxacin - pharmacology DNA - metabolism DNA-Directed RNA Polymerases - metabolism Escherichia coli - genetics Escherichia coli - metabolism Escherichia coli Proteins - metabolism evolution fluoroquinolones Gene Expression Regulation, Bacterial general stress response Guanosine Tetraphosphate - metabolism mutagenic break repair mutations ppGpp reactive oxygen species RNA - metabolism stress-induced mutagenesis stringent response |
title | ppGpp and RNA-polymerase backtracking guide antibiotic-induced mutable gambler cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A22%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ppGpp%20and%20RNA-polymerase%20backtracking%20guide%20antibiotic-induced%20mutable%20gambler%20cells&rft.jtitle=Molecular%20cell&rft.au=Zhai,%20Yin&rft.date=2023-04-20&rft.volume=83&rft.issue=8&rft.spage=1298&rft.epage=1310.e4&rft.pages=1298-1310.e4&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/j.molcel.2023.03.003&rft_dat=%3Cpubmed_cross%3E36965481%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/36965481&rft_els_id=S1097276523001600&rfr_iscdi=true |