ppGpp and RNA-polymerase backtracking guide antibiotic-induced mutable gambler cells

Antibiotic resistance is a global health threat and often results from new mutations. Antibiotics can induce mutations via mechanisms activated by stress responses, which both reveal environmental cues of mutagenesis and are weak links in mutagenesis networks. Network inhibition could slow the evolu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular cell 2023-04, Vol.83 (8), p.1298-1310.e4
Hauptverfasser: Zhai, Yin, Minnick, P.J., Pribis, John P., Garcia-Villada, Libertad, Hastings, P.J., Herman, Christophe, Rosenberg, Susan M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1310.e4
container_issue 8
container_start_page 1298
container_title Molecular cell
container_volume 83
creator Zhai, Yin
Minnick, P.J.
Pribis, John P.
Garcia-Villada, Libertad
Hastings, P.J.
Herman, Christophe
Rosenberg, Susan M.
description Antibiotic resistance is a global health threat and often results from new mutations. Antibiotics can induce mutations via mechanisms activated by stress responses, which both reveal environmental cues of mutagenesis and are weak links in mutagenesis networks. Network inhibition could slow the evolution of resistance during antibiotic therapies. Despite its pivotal importance, few identities and fewer functions of stress responses in mutagenesis are clear. Here, we identify the Escherichia coli stringent starvation response in fluoroquinolone-antibiotic ciprofloxacin-induced mutagenesis. Binding of response-activator ppGpp to RNA polymerase (RNAP) at two sites leads to an antibiotic-induced mutable gambler-cell subpopulation. Each activates a stress response required for mutagenic DNA-break repair: surprisingly, ppGpp-site-1-RNAP triggers the DNA-damage response, and ppGpp-site-2-RNAP induces σS-response activity. We propose that RNAP regulates DNA-damage processing in transcribed regions. The data demonstrate a critical node in ciprofloxacin-induced mutagenesis, imply RNAP-regulation of DNA-break repair, and identify promising targets for resistance-resisting drugs. [Display omitted] •Stringent starvation response leads to mutable gambler-cell subpopulation•RNA polymerase (RNAP)-(p)ppGpp-site-1 triggers the SOS DNA-damage response•Antibiotic → SOS → reactive oxygen+ cells → stringent-on cells → σS response-on gamblers•(p)ppGpp-RNAPs play two roles: backtracking/SOS, then inducing sRNAs → σS activity Binding of starvation-response activator ppGpp to RNA polymerase (RNAP) at two sites leads to an antibiotic-induced mutable gambler-cell subpopulation. Each activates a stress response required for mutagenic DNA-break repair: backtracked RNAP-ppGpp-site-1 triggers SOS, and ppGpp-site-2-RNAP induces σS-response activity. The two cause mutations, some of which confer resistance to new antibiotics.
doi_str_mv 10.1016/j.molcel.2023.03.003
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10317147</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1097276523001600</els_id><sourcerecordid>36965481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-b58091dc3d0c6ce44d9844ba87f9a4b111204186e1fcf1a48868467a8283b8093</originalsourceid><addsrcrecordid>eNp9kN9KwzAUxoMobk7fQKQv0JrTpGl6o4yhUxgKMq9DmqQ1s_9Iu8He3oxO0RvhkBPI933n5IfQNeAIMLDbTVS3lTJVFOOYRNgXJidoCjhLQwqMnh7vccqSCbro-w3GQBOenaMJYRlLKIcpWnfdsusC2ejg7WUedm21r42TvQlyqT4H5w_blEG5tdp41WBz2w5WhbbRW2V0UG8HmVcmKGXtmwv8QlV_ic4KWfXm6thn6P3xYb14Clevy-fFfBUqSmAI84TjDLQiGiumDKU645TmkqdFJmkOADGmwJmBQhUgKeeMU5ZKHnOSeyuZofsxt9vmtdHKNH7hSnTO1tLtRSut-PvS2A9RtjsBmEAKNPUJdExQru17Z4ofM2BxwCw2YsQsDpgF9oWJt938Hvxj-ubqBXejwPjv76xxolfWNJ6YdUYNQrf2_wlfjrKRxA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>ppGpp and RNA-polymerase backtracking guide antibiotic-induced mutable gambler cells</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Zhai, Yin ; Minnick, P.J. ; Pribis, John P. ; Garcia-Villada, Libertad ; Hastings, P.J. ; Herman, Christophe ; Rosenberg, Susan M.</creator><creatorcontrib>Zhai, Yin ; Minnick, P.J. ; Pribis, John P. ; Garcia-Villada, Libertad ; Hastings, P.J. ; Herman, Christophe ; Rosenberg, Susan M.</creatorcontrib><description>Antibiotic resistance is a global health threat and often results from new mutations. Antibiotics can induce mutations via mechanisms activated by stress responses, which both reveal environmental cues of mutagenesis and are weak links in mutagenesis networks. Network inhibition could slow the evolution of resistance during antibiotic therapies. Despite its pivotal importance, few identities and fewer functions of stress responses in mutagenesis are clear. Here, we identify the Escherichia coli stringent starvation response in fluoroquinolone-antibiotic ciprofloxacin-induced mutagenesis. Binding of response-activator ppGpp to RNA polymerase (RNAP) at two sites leads to an antibiotic-induced mutable gambler-cell subpopulation. Each activates a stress response required for mutagenic DNA-break repair: surprisingly, ppGpp-site-1-RNAP triggers the DNA-damage response, and ppGpp-site-2-RNAP induces σS-response activity. We propose that RNAP regulates DNA-damage processing in transcribed regions. The data demonstrate a critical node in ciprofloxacin-induced mutagenesis, imply RNAP-regulation of DNA-break repair, and identify promising targets for resistance-resisting drugs. [Display omitted] •Stringent starvation response leads to mutable gambler-cell subpopulation•RNA polymerase (RNAP)-(p)ppGpp-site-1 triggers the SOS DNA-damage response•Antibiotic → SOS → reactive oxygen+ cells → stringent-on cells → σS response-on gamblers•(p)ppGpp-RNAPs play two roles: backtracking/SOS, then inducing sRNAs → σS activity Binding of starvation-response activator ppGpp to RNA polymerase (RNAP) at two sites leads to an antibiotic-induced mutable gambler-cell subpopulation. Each activates a stress response required for mutagenic DNA-break repair: backtracked RNAP-ppGpp-site-1 triggers SOS, and ppGpp-site-2-RNAP induces σS-response activity. The two cause mutations, some of which confer resistance to new antibiotics.</description><identifier>ISSN: 1097-2765</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/j.molcel.2023.03.003</identifier><identifier>PMID: 36965481</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Anti-Bacterial Agents - metabolism ; Anti-Bacterial Agents - pharmacology ; antibiotic resistance ; Ciprofloxacin - pharmacology ; DNA - metabolism ; DNA-Directed RNA Polymerases - metabolism ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Escherichia coli Proteins - metabolism ; evolution ; fluoroquinolones ; Gene Expression Regulation, Bacterial ; general stress response ; Guanosine Tetraphosphate - metabolism ; mutagenic break repair ; mutations ; ppGpp ; reactive oxygen species ; RNA - metabolism ; stress-induced mutagenesis ; stringent response</subject><ispartof>Molecular cell, 2023-04, Vol.83 (8), p.1298-1310.e4</ispartof><rights>2023 Elsevier Inc.</rights><rights>Copyright © 2023 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-b58091dc3d0c6ce44d9844ba87f9a4b111204186e1fcf1a48868467a8283b8093</citedby><cites>FETCH-LOGICAL-c431t-b58091dc3d0c6ce44d9844ba87f9a4b111204186e1fcf1a48868467a8283b8093</cites><orcidid>0000-0003-1444-473X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1097276523001600$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36965481$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhai, Yin</creatorcontrib><creatorcontrib>Minnick, P.J.</creatorcontrib><creatorcontrib>Pribis, John P.</creatorcontrib><creatorcontrib>Garcia-Villada, Libertad</creatorcontrib><creatorcontrib>Hastings, P.J.</creatorcontrib><creatorcontrib>Herman, Christophe</creatorcontrib><creatorcontrib>Rosenberg, Susan M.</creatorcontrib><title>ppGpp and RNA-polymerase backtracking guide antibiotic-induced mutable gambler cells</title><title>Molecular cell</title><addtitle>Mol Cell</addtitle><description>Antibiotic resistance is a global health threat and often results from new mutations. Antibiotics can induce mutations via mechanisms activated by stress responses, which both reveal environmental cues of mutagenesis and are weak links in mutagenesis networks. Network inhibition could slow the evolution of resistance during antibiotic therapies. Despite its pivotal importance, few identities and fewer functions of stress responses in mutagenesis are clear. Here, we identify the Escherichia coli stringent starvation response in fluoroquinolone-antibiotic ciprofloxacin-induced mutagenesis. Binding of response-activator ppGpp to RNA polymerase (RNAP) at two sites leads to an antibiotic-induced mutable gambler-cell subpopulation. Each activates a stress response required for mutagenic DNA-break repair: surprisingly, ppGpp-site-1-RNAP triggers the DNA-damage response, and ppGpp-site-2-RNAP induces σS-response activity. We propose that RNAP regulates DNA-damage processing in transcribed regions. The data demonstrate a critical node in ciprofloxacin-induced mutagenesis, imply RNAP-regulation of DNA-break repair, and identify promising targets for resistance-resisting drugs. [Display omitted] •Stringent starvation response leads to mutable gambler-cell subpopulation•RNA polymerase (RNAP)-(p)ppGpp-site-1 triggers the SOS DNA-damage response•Antibiotic → SOS → reactive oxygen+ cells → stringent-on cells → σS response-on gamblers•(p)ppGpp-RNAPs play two roles: backtracking/SOS, then inducing sRNAs → σS activity Binding of starvation-response activator ppGpp to RNA polymerase (RNAP) at two sites leads to an antibiotic-induced mutable gambler-cell subpopulation. Each activates a stress response required for mutagenic DNA-break repair: backtracked RNAP-ppGpp-site-1 triggers SOS, and ppGpp-site-2-RNAP induces σS-response activity. The two cause mutations, some of which confer resistance to new antibiotics.</description><subject>Anti-Bacterial Agents - metabolism</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>antibiotic resistance</subject><subject>Ciprofloxacin - pharmacology</subject><subject>DNA - metabolism</subject><subject>DNA-Directed RNA Polymerases - metabolism</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>evolution</subject><subject>fluoroquinolones</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>general stress response</subject><subject>Guanosine Tetraphosphate - metabolism</subject><subject>mutagenic break repair</subject><subject>mutations</subject><subject>ppGpp</subject><subject>reactive oxygen species</subject><subject>RNA - metabolism</subject><subject>stress-induced mutagenesis</subject><subject>stringent response</subject><issn>1097-2765</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kN9KwzAUxoMobk7fQKQv0JrTpGl6o4yhUxgKMq9DmqQ1s_9Iu8He3oxO0RvhkBPI933n5IfQNeAIMLDbTVS3lTJVFOOYRNgXJidoCjhLQwqMnh7vccqSCbro-w3GQBOenaMJYRlLKIcpWnfdsusC2ejg7WUedm21r42TvQlyqT4H5w_blEG5tdp41WBz2w5WhbbRW2V0UG8HmVcmKGXtmwv8QlV_ic4KWfXm6thn6P3xYb14Clevy-fFfBUqSmAI84TjDLQiGiumDKU645TmkqdFJmkOADGmwJmBQhUgKeeMU5ZKHnOSeyuZofsxt9vmtdHKNH7hSnTO1tLtRSut-PvS2A9RtjsBmEAKNPUJdExQru17Z4ofM2BxwCw2YsQsDpgF9oWJt938Hvxj-ubqBXejwPjv76xxolfWNJ6YdUYNQrf2_wlfjrKRxA</recordid><startdate>20230420</startdate><enddate>20230420</enddate><creator>Zhai, Yin</creator><creator>Minnick, P.J.</creator><creator>Pribis, John P.</creator><creator>Garcia-Villada, Libertad</creator><creator>Hastings, P.J.</creator><creator>Herman, Christophe</creator><creator>Rosenberg, Susan M.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1444-473X</orcidid></search><sort><creationdate>20230420</creationdate><title>ppGpp and RNA-polymerase backtracking guide antibiotic-induced mutable gambler cells</title><author>Zhai, Yin ; Minnick, P.J. ; Pribis, John P. ; Garcia-Villada, Libertad ; Hastings, P.J. ; Herman, Christophe ; Rosenberg, Susan M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-b58091dc3d0c6ce44d9844ba87f9a4b111204186e1fcf1a48868467a8283b8093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anti-Bacterial Agents - metabolism</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>antibiotic resistance</topic><topic>Ciprofloxacin - pharmacology</topic><topic>DNA - metabolism</topic><topic>DNA-Directed RNA Polymerases - metabolism</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>evolution</topic><topic>fluoroquinolones</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>general stress response</topic><topic>Guanosine Tetraphosphate - metabolism</topic><topic>mutagenic break repair</topic><topic>mutations</topic><topic>ppGpp</topic><topic>reactive oxygen species</topic><topic>RNA - metabolism</topic><topic>stress-induced mutagenesis</topic><topic>stringent response</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhai, Yin</creatorcontrib><creatorcontrib>Minnick, P.J.</creatorcontrib><creatorcontrib>Pribis, John P.</creatorcontrib><creatorcontrib>Garcia-Villada, Libertad</creatorcontrib><creatorcontrib>Hastings, P.J.</creatorcontrib><creatorcontrib>Herman, Christophe</creatorcontrib><creatorcontrib>Rosenberg, Susan M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhai, Yin</au><au>Minnick, P.J.</au><au>Pribis, John P.</au><au>Garcia-Villada, Libertad</au><au>Hastings, P.J.</au><au>Herman, Christophe</au><au>Rosenberg, Susan M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ppGpp and RNA-polymerase backtracking guide antibiotic-induced mutable gambler cells</atitle><jtitle>Molecular cell</jtitle><addtitle>Mol Cell</addtitle><date>2023-04-20</date><risdate>2023</risdate><volume>83</volume><issue>8</issue><spage>1298</spage><epage>1310.e4</epage><pages>1298-1310.e4</pages><issn>1097-2765</issn><eissn>1097-4164</eissn><abstract>Antibiotic resistance is a global health threat and often results from new mutations. Antibiotics can induce mutations via mechanisms activated by stress responses, which both reveal environmental cues of mutagenesis and are weak links in mutagenesis networks. Network inhibition could slow the evolution of resistance during antibiotic therapies. Despite its pivotal importance, few identities and fewer functions of stress responses in mutagenesis are clear. Here, we identify the Escherichia coli stringent starvation response in fluoroquinolone-antibiotic ciprofloxacin-induced mutagenesis. Binding of response-activator ppGpp to RNA polymerase (RNAP) at two sites leads to an antibiotic-induced mutable gambler-cell subpopulation. Each activates a stress response required for mutagenic DNA-break repair: surprisingly, ppGpp-site-1-RNAP triggers the DNA-damage response, and ppGpp-site-2-RNAP induces σS-response activity. We propose that RNAP regulates DNA-damage processing in transcribed regions. The data demonstrate a critical node in ciprofloxacin-induced mutagenesis, imply RNAP-regulation of DNA-break repair, and identify promising targets for resistance-resisting drugs. [Display omitted] •Stringent starvation response leads to mutable gambler-cell subpopulation•RNA polymerase (RNAP)-(p)ppGpp-site-1 triggers the SOS DNA-damage response•Antibiotic → SOS → reactive oxygen+ cells → stringent-on cells → σS response-on gamblers•(p)ppGpp-RNAPs play two roles: backtracking/SOS, then inducing sRNAs → σS activity Binding of starvation-response activator ppGpp to RNA polymerase (RNAP) at two sites leads to an antibiotic-induced mutable gambler-cell subpopulation. Each activates a stress response required for mutagenic DNA-break repair: backtracked RNAP-ppGpp-site-1 triggers SOS, and ppGpp-site-2-RNAP induces σS-response activity. The two cause mutations, some of which confer resistance to new antibiotics.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>36965481</pmid><doi>10.1016/j.molcel.2023.03.003</doi><orcidid>https://orcid.org/0000-0003-1444-473X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1097-2765
ispartof Molecular cell, 2023-04, Vol.83 (8), p.1298-1310.e4
issn 1097-2765
1097-4164
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10317147
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry
subjects Anti-Bacterial Agents - metabolism
Anti-Bacterial Agents - pharmacology
antibiotic resistance
Ciprofloxacin - pharmacology
DNA - metabolism
DNA-Directed RNA Polymerases - metabolism
Escherichia coli - genetics
Escherichia coli - metabolism
Escherichia coli Proteins - metabolism
evolution
fluoroquinolones
Gene Expression Regulation, Bacterial
general stress response
Guanosine Tetraphosphate - metabolism
mutagenic break repair
mutations
ppGpp
reactive oxygen species
RNA - metabolism
stress-induced mutagenesis
stringent response
title ppGpp and RNA-polymerase backtracking guide antibiotic-induced mutable gambler cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A22%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ppGpp%20and%20RNA-polymerase%20backtracking%20guide%20antibiotic-induced%20mutable%20gambler%20cells&rft.jtitle=Molecular%20cell&rft.au=Zhai,%20Yin&rft.date=2023-04-20&rft.volume=83&rft.issue=8&rft.spage=1298&rft.epage=1310.e4&rft.pages=1298-1310.e4&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/j.molcel.2023.03.003&rft_dat=%3Cpubmed_cross%3E36965481%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/36965481&rft_els_id=S1097276523001600&rfr_iscdi=true