An Automated Pipeline for Differential Cell Counts on Whole-Slide Bone Marrow Aspirate Smears

The pathologic diagnosis of bone marrow disorders relies in part on the microscopic analysis of bone marrow aspirate (BMA) smears and the manual counting of marrow nucleated cells to obtain a differential cell count (DCC). This manual process has significant limitations, including the analysis of on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Modern pathology 2023-02, Vol.36 (2), p.100003-100003, Article 100003
Hauptverfasser: Lewis, Joshua E., Shebelut, Conrad W., Drumheller, Bradley R., Zhang, Xuebao, Shanmugam, Nithya, Attieh, Michel, Horwath, Michael C., Khanna, Anurag, Smith, Geoffrey H., Gutman, David A., Aljudi, Ahmed, Cooper, Lee A.D., Jaye, David L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 100003
container_issue 2
container_start_page 100003
container_title Modern pathology
container_volume 36
creator Lewis, Joshua E.
Shebelut, Conrad W.
Drumheller, Bradley R.
Zhang, Xuebao
Shanmugam, Nithya
Attieh, Michel
Horwath, Michael C.
Khanna, Anurag
Smith, Geoffrey H.
Gutman, David A.
Aljudi, Ahmed
Cooper, Lee A.D.
Jaye, David L.
description The pathologic diagnosis of bone marrow disorders relies in part on the microscopic analysis of bone marrow aspirate (BMA) smears and the manual counting of marrow nucleated cells to obtain a differential cell count (DCC). This manual process has significant limitations, including the analysis of only a small subset of optimal slide areas and nucleated cells, as well as interobserver variability due to differences in cell selection and classification. To address these shortcomings, we developed an automated machine learning-based pipeline for obtaining 11-component DCCs on whole-slide BMAs. This pipeline uses a sequential process of identifying optimal BMA regions with high proportions of marrow nucleated cells, detecting individual cells within these optimal areas, and classifying these cells into 1 of 11 DCC components. Convolutional neural network models were trained on 396,048 BMA region, 28,914 cell boundary, and 1,510,976 cell class images from manual annotations. The resulting automated pipeline produced 11-component DCCs that demonstrated a high statistical and diagnostic concordance with manual DCCs among a heterogeneous group of testing BMA slides with varying pathologies and cellularities. Additionally, we demonstrated that an automated analysis can reduce the intraslide variance in DCCs by analyzing the whole slide and marrow nucleated cells within all optimal regions. Finally, the pipeline outputs of region classification, cell detection, and cell classification can be visualized using whole-slide image analysis software. This study demonstrates the feasibility of a fully automated pipeline for generating DCCs on scanned whole-slide BMA images, with the potential for improving the current standard of practice for utilizing BMA smears in the laboratory analysis of hematologic disorders.
doi_str_mv 10.1016/j.modpat.2022.100003
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10310355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893395222000035</els_id><sourcerecordid>2780767367</sourcerecordid><originalsourceid>FETCH-LOGICAL-c464t-6743a3a88cd276241cfc2fad1dc7d28125a0485e3c6a8215300bd3d1d8722f3c3</originalsourceid><addsrcrecordid>eNp9UU1LJDEQDbKis6P_QCTHvfRsPjrdmYsyjqsrKAoqniTEpHrN0N1pk27Ff2-GVlkvhiIFqfdeVeUhtEfJjBJa_F7NGm873c8YYSw9pcM30IQKTjLCpPiBJkTOecbngm2jnzGuCKG5kGwLbfNCCl7Oiwm6X7R4MfS-0T1YfOU6qF0LuPIBH7uqggBt73SNl1Cnyw9tH7Fv8d2jryG7rp0FfOQT4UKH4F_wInYuJCl83YAOcQdtVrqOsPuep-j25M_N8m92fnl6tlycZyYv8j4rypxrrqU0lpUFy6mpDKu0pdaUlknKhCa5FMBNoSVbb0geLE9lWTJWccOn6HDU7YaHBqxJQwddqy64RodX5bVTXyute1T__LOihKcQIin8elcI_mmA2KvGRZOW1i34ISpWSlIWJU8xRfkINcHHGKD67EOJWlujVmq0Rq2tUaM1ibb__4yfpA8vEuBgBED6qWcHQUXjoDVgXQDTK-vd9x3eAICyoeU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2780767367</pqid></control><display><type>article</type><title>An Automated Pipeline for Differential Cell Counts on Whole-Slide Bone Marrow Aspirate Smears</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><creator>Lewis, Joshua E. ; Shebelut, Conrad W. ; Drumheller, Bradley R. ; Zhang, Xuebao ; Shanmugam, Nithya ; Attieh, Michel ; Horwath, Michael C. ; Khanna, Anurag ; Smith, Geoffrey H. ; Gutman, David A. ; Aljudi, Ahmed ; Cooper, Lee A.D. ; Jaye, David L.</creator><creatorcontrib>Lewis, Joshua E. ; Shebelut, Conrad W. ; Drumheller, Bradley R. ; Zhang, Xuebao ; Shanmugam, Nithya ; Attieh, Michel ; Horwath, Michael C. ; Khanna, Anurag ; Smith, Geoffrey H. ; Gutman, David A. ; Aljudi, Ahmed ; Cooper, Lee A.D. ; Jaye, David L.</creatorcontrib><description>The pathologic diagnosis of bone marrow disorders relies in part on the microscopic analysis of bone marrow aspirate (BMA) smears and the manual counting of marrow nucleated cells to obtain a differential cell count (DCC). This manual process has significant limitations, including the analysis of only a small subset of optimal slide areas and nucleated cells, as well as interobserver variability due to differences in cell selection and classification. To address these shortcomings, we developed an automated machine learning-based pipeline for obtaining 11-component DCCs on whole-slide BMAs. This pipeline uses a sequential process of identifying optimal BMA regions with high proportions of marrow nucleated cells, detecting individual cells within these optimal areas, and classifying these cells into 1 of 11 DCC components. Convolutional neural network models were trained on 396,048 BMA region, 28,914 cell boundary, and 1,510,976 cell class images from manual annotations. The resulting automated pipeline produced 11-component DCCs that demonstrated a high statistical and diagnostic concordance with manual DCCs among a heterogeneous group of testing BMA slides with varying pathologies and cellularities. Additionally, we demonstrated that an automated analysis can reduce the intraslide variance in DCCs by analyzing the whole slide and marrow nucleated cells within all optimal regions. Finally, the pipeline outputs of region classification, cell detection, and cell classification can be visualized using whole-slide image analysis software. This study demonstrates the feasibility of a fully automated pipeline for generating DCCs on scanned whole-slide BMA images, with the potential for improving the current standard of practice for utilizing BMA smears in the laboratory analysis of hematologic disorders.</description><identifier>ISSN: 0893-3952</identifier><identifier>EISSN: 1530-0285</identifier><identifier>DOI: 10.1016/j.modpat.2022.100003</identifier><identifier>PMID: 36853796</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>aspirate ; Bone Marrow ; Cell Count ; differential ; Humans ; Image Processing, Computer-Assisted ; Machine Learning ; Neural Networks, Computer ; whole-slide imaging</subject><ispartof>Modern pathology, 2023-02, Vol.36 (2), p.100003-100003, Article 100003</ispartof><rights>2022 United States &amp; Canadian Academy of Pathology</rights><rights>Copyright © 2022 United States &amp; Canadian Academy of Pathology. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c464t-6743a3a88cd276241cfc2fad1dc7d28125a0485e3c6a8215300bd3d1d8722f3c3</citedby><cites>FETCH-LOGICAL-c464t-6743a3a88cd276241cfc2fad1dc7d28125a0485e3c6a8215300bd3d1d8722f3c3</cites><orcidid>0000-0001-7977-6909</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904,64363</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36853796$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lewis, Joshua E.</creatorcontrib><creatorcontrib>Shebelut, Conrad W.</creatorcontrib><creatorcontrib>Drumheller, Bradley R.</creatorcontrib><creatorcontrib>Zhang, Xuebao</creatorcontrib><creatorcontrib>Shanmugam, Nithya</creatorcontrib><creatorcontrib>Attieh, Michel</creatorcontrib><creatorcontrib>Horwath, Michael C.</creatorcontrib><creatorcontrib>Khanna, Anurag</creatorcontrib><creatorcontrib>Smith, Geoffrey H.</creatorcontrib><creatorcontrib>Gutman, David A.</creatorcontrib><creatorcontrib>Aljudi, Ahmed</creatorcontrib><creatorcontrib>Cooper, Lee A.D.</creatorcontrib><creatorcontrib>Jaye, David L.</creatorcontrib><title>An Automated Pipeline for Differential Cell Counts on Whole-Slide Bone Marrow Aspirate Smears</title><title>Modern pathology</title><addtitle>Mod Pathol</addtitle><description>The pathologic diagnosis of bone marrow disorders relies in part on the microscopic analysis of bone marrow aspirate (BMA) smears and the manual counting of marrow nucleated cells to obtain a differential cell count (DCC). This manual process has significant limitations, including the analysis of only a small subset of optimal slide areas and nucleated cells, as well as interobserver variability due to differences in cell selection and classification. To address these shortcomings, we developed an automated machine learning-based pipeline for obtaining 11-component DCCs on whole-slide BMAs. This pipeline uses a sequential process of identifying optimal BMA regions with high proportions of marrow nucleated cells, detecting individual cells within these optimal areas, and classifying these cells into 1 of 11 DCC components. Convolutional neural network models were trained on 396,048 BMA region, 28,914 cell boundary, and 1,510,976 cell class images from manual annotations. The resulting automated pipeline produced 11-component DCCs that demonstrated a high statistical and diagnostic concordance with manual DCCs among a heterogeneous group of testing BMA slides with varying pathologies and cellularities. Additionally, we demonstrated that an automated analysis can reduce the intraslide variance in DCCs by analyzing the whole slide and marrow nucleated cells within all optimal regions. Finally, the pipeline outputs of region classification, cell detection, and cell classification can be visualized using whole-slide image analysis software. This study demonstrates the feasibility of a fully automated pipeline for generating DCCs on scanned whole-slide BMA images, with the potential for improving the current standard of practice for utilizing BMA smears in the laboratory analysis of hematologic disorders.</description><subject>aspirate</subject><subject>Bone Marrow</subject><subject>Cell Count</subject><subject>differential</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Machine Learning</subject><subject>Neural Networks, Computer</subject><subject>whole-slide imaging</subject><issn>0893-3952</issn><issn>1530-0285</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UU1LJDEQDbKis6P_QCTHvfRsPjrdmYsyjqsrKAoqniTEpHrN0N1pk27Ff2-GVlkvhiIFqfdeVeUhtEfJjBJa_F7NGm873c8YYSw9pcM30IQKTjLCpPiBJkTOecbngm2jnzGuCKG5kGwLbfNCCl7Oiwm6X7R4MfS-0T1YfOU6qF0LuPIBH7uqggBt73SNl1Cnyw9tH7Fv8d2jryG7rp0FfOQT4UKH4F_wInYuJCl83YAOcQdtVrqOsPuep-j25M_N8m92fnl6tlycZyYv8j4rypxrrqU0lpUFy6mpDKu0pdaUlknKhCa5FMBNoSVbb0geLE9lWTJWccOn6HDU7YaHBqxJQwddqy64RodX5bVTXyute1T__LOihKcQIin8elcI_mmA2KvGRZOW1i34ISpWSlIWJU8xRfkINcHHGKD67EOJWlujVmq0Rq2tUaM1ibb__4yfpA8vEuBgBED6qWcHQUXjoDVgXQDTK-vd9x3eAICyoeU</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Lewis, Joshua E.</creator><creator>Shebelut, Conrad W.</creator><creator>Drumheller, Bradley R.</creator><creator>Zhang, Xuebao</creator><creator>Shanmugam, Nithya</creator><creator>Attieh, Michel</creator><creator>Horwath, Michael C.</creator><creator>Khanna, Anurag</creator><creator>Smith, Geoffrey H.</creator><creator>Gutman, David A.</creator><creator>Aljudi, Ahmed</creator><creator>Cooper, Lee A.D.</creator><creator>Jaye, David L.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7977-6909</orcidid></search><sort><creationdate>20230201</creationdate><title>An Automated Pipeline for Differential Cell Counts on Whole-Slide Bone Marrow Aspirate Smears</title><author>Lewis, Joshua E. ; Shebelut, Conrad W. ; Drumheller, Bradley R. ; Zhang, Xuebao ; Shanmugam, Nithya ; Attieh, Michel ; Horwath, Michael C. ; Khanna, Anurag ; Smith, Geoffrey H. ; Gutman, David A. ; Aljudi, Ahmed ; Cooper, Lee A.D. ; Jaye, David L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c464t-6743a3a88cd276241cfc2fad1dc7d28125a0485e3c6a8215300bd3d1d8722f3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>aspirate</topic><topic>Bone Marrow</topic><topic>Cell Count</topic><topic>differential</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Machine Learning</topic><topic>Neural Networks, Computer</topic><topic>whole-slide imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lewis, Joshua E.</creatorcontrib><creatorcontrib>Shebelut, Conrad W.</creatorcontrib><creatorcontrib>Drumheller, Bradley R.</creatorcontrib><creatorcontrib>Zhang, Xuebao</creatorcontrib><creatorcontrib>Shanmugam, Nithya</creatorcontrib><creatorcontrib>Attieh, Michel</creatorcontrib><creatorcontrib>Horwath, Michael C.</creatorcontrib><creatorcontrib>Khanna, Anurag</creatorcontrib><creatorcontrib>Smith, Geoffrey H.</creatorcontrib><creatorcontrib>Gutman, David A.</creatorcontrib><creatorcontrib>Aljudi, Ahmed</creatorcontrib><creatorcontrib>Cooper, Lee A.D.</creatorcontrib><creatorcontrib>Jaye, David L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Modern pathology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lewis, Joshua E.</au><au>Shebelut, Conrad W.</au><au>Drumheller, Bradley R.</au><au>Zhang, Xuebao</au><au>Shanmugam, Nithya</au><au>Attieh, Michel</au><au>Horwath, Michael C.</au><au>Khanna, Anurag</au><au>Smith, Geoffrey H.</au><au>Gutman, David A.</au><au>Aljudi, Ahmed</au><au>Cooper, Lee A.D.</au><au>Jaye, David L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Automated Pipeline for Differential Cell Counts on Whole-Slide Bone Marrow Aspirate Smears</atitle><jtitle>Modern pathology</jtitle><addtitle>Mod Pathol</addtitle><date>2023-02-01</date><risdate>2023</risdate><volume>36</volume><issue>2</issue><spage>100003</spage><epage>100003</epage><pages>100003-100003</pages><artnum>100003</artnum><issn>0893-3952</issn><eissn>1530-0285</eissn><abstract>The pathologic diagnosis of bone marrow disorders relies in part on the microscopic analysis of bone marrow aspirate (BMA) smears and the manual counting of marrow nucleated cells to obtain a differential cell count (DCC). This manual process has significant limitations, including the analysis of only a small subset of optimal slide areas and nucleated cells, as well as interobserver variability due to differences in cell selection and classification. To address these shortcomings, we developed an automated machine learning-based pipeline for obtaining 11-component DCCs on whole-slide BMAs. This pipeline uses a sequential process of identifying optimal BMA regions with high proportions of marrow nucleated cells, detecting individual cells within these optimal areas, and classifying these cells into 1 of 11 DCC components. Convolutional neural network models were trained on 396,048 BMA region, 28,914 cell boundary, and 1,510,976 cell class images from manual annotations. The resulting automated pipeline produced 11-component DCCs that demonstrated a high statistical and diagnostic concordance with manual DCCs among a heterogeneous group of testing BMA slides with varying pathologies and cellularities. Additionally, we demonstrated that an automated analysis can reduce the intraslide variance in DCCs by analyzing the whole slide and marrow nucleated cells within all optimal regions. Finally, the pipeline outputs of region classification, cell detection, and cell classification can be visualized using whole-slide image analysis software. This study demonstrates the feasibility of a fully automated pipeline for generating DCCs on scanned whole-slide BMA images, with the potential for improving the current standard of practice for utilizing BMA smears in the laboratory analysis of hematologic disorders.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>36853796</pmid><doi>10.1016/j.modpat.2022.100003</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7977-6909</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0893-3952
ispartof Modern pathology, 2023-02, Vol.36 (2), p.100003-100003, Article 100003
issn 0893-3952
1530-0285
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10310355
source MEDLINE; EZB-FREE-00999 freely available EZB journals; ProQuest Central UK/Ireland; Alma/SFX Local Collection
subjects aspirate
Bone Marrow
Cell Count
differential
Humans
Image Processing, Computer-Assisted
Machine Learning
Neural Networks, Computer
whole-slide imaging
title An Automated Pipeline for Differential Cell Counts on Whole-Slide Bone Marrow Aspirate Smears
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T08%3A19%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Automated%20Pipeline%20for%20Differential%20Cell%20Counts%20on%20Whole-Slide%20Bone%20Marrow%20Aspirate%20Smears&rft.jtitle=Modern%20pathology&rft.au=Lewis,%20Joshua%20E.&rft.date=2023-02-01&rft.volume=36&rft.issue=2&rft.spage=100003&rft.epage=100003&rft.pages=100003-100003&rft.artnum=100003&rft.issn=0893-3952&rft.eissn=1530-0285&rft_id=info:doi/10.1016/j.modpat.2022.100003&rft_dat=%3Cproquest_pubme%3E2780767367%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2780767367&rft_id=info:pmid/36853796&rft_els_id=S0893395222000035&rfr_iscdi=true