Single-cell chromatin accessibility profiling reveals a self-renewing muscle satellite cell state
A balance between self-renewal and differentiation is critical for the regenerative capacity of tissue-resident stem cells. In skeletal muscle, successful regeneration requires the orchestrated activation, proliferation, and differentiation of muscle satellite cells (MuSCs) that are normally quiesce...
Gespeichert in:
Veröffentlicht in: | The Journal of cell biology 2023-08, Vol.222 (8), p.1 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | 1 |
container_title | The Journal of cell biology |
container_volume | 222 |
creator | Okafor, Arinze E Lin, Xin Situ, Chenghao Wei, Xiaolin Xiang, Yu Wei, Xiuqing Wu, Zhenguo Diao, Yarui |
description | A balance between self-renewal and differentiation is critical for the regenerative capacity of tissue-resident stem cells. In skeletal muscle, successful regeneration requires the orchestrated activation, proliferation, and differentiation of muscle satellite cells (MuSCs) that are normally quiescent. A subset of MuSCs undergoes self-renewal to replenish the stem cell pool, but the features that identify and define self-renewing MuSCs remain to be elucidated. Here, through single-cell chromatin accessibility analysis, we reveal the self-renewal versus differentiation trajectories of MuSCs over the course of regeneration in vivo. We identify Betaglycan as a unique marker of self-renewing MuSCs that can be purified and efficiently contributes to regeneration after transplantation. We also show that SMAD4 and downstream genes are genetically required for self-renewal in vivo by restricting differentiation. Our study unveils the identity and mechanisms of self-renewing MuSCs, while providing a key resource for comprehensive analysis of muscle regeneration. |
doi_str_mv | 10.1083/jcb.202211073 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10309185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2831297957</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-cf285ddcc27357ad8d5c57a1590e66835f2651acbe514c05f5fe84680cdc05703</originalsourceid><addsrcrecordid>eNpdkU1PGzEQhq0KRFLKkStaiQuXDTP2eu09oSqiHxISB-jZcryzwdF-BHsXlH9fp9Co5TQe-_Ejj1_GzhEWCFpcb9xqwYFzRFDiE5ujLCDXWMARmwNwzCvJ5Yx9jnEDAIUqxAmbCSU0L7maM_vg-3VLuaO2zdxTGDo7-j6zzlGMfuVbP-6ybRiatOrXWaAXsm3MbBapbfJAPb3u97spupayaMfk8SNlf3xxTP0XdtykK3T2Xk_Zr2-3j8sf-d3995_Lr3e5K7Acc9dwLevaOa6EVLbWtXSpoqyAylIL2fBSonUrklg4kI1sSBelBlenToE4ZTdv3u206qh21I_BtmYbfGfDzgzWm_9Pev9k1sOLQRBQoZbJcPVuCMPzRHE0nY_7QWxPwxQN1wJ5pSqpEnr5Ad0MU-jTfIlKn6w14l6Yv1EuDDEGag6vQTD79ExKzxzSS_zFvyMc6L9xid-tAJcx</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2847488115</pqid></control><display><type>article</type><title>Single-cell chromatin accessibility profiling reveals a self-renewing muscle satellite cell state</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Okafor, Arinze E ; Lin, Xin ; Situ, Chenghao ; Wei, Xiaolin ; Xiang, Yu ; Wei, Xiuqing ; Wu, Zhenguo ; Diao, Yarui</creator><creatorcontrib>Okafor, Arinze E ; Lin, Xin ; Situ, Chenghao ; Wei, Xiaolin ; Xiang, Yu ; Wei, Xiuqing ; Wu, Zhenguo ; Diao, Yarui</creatorcontrib><description>A balance between self-renewal and differentiation is critical for the regenerative capacity of tissue-resident stem cells. In skeletal muscle, successful regeneration requires the orchestrated activation, proliferation, and differentiation of muscle satellite cells (MuSCs) that are normally quiescent. A subset of MuSCs undergoes self-renewal to replenish the stem cell pool, but the features that identify and define self-renewing MuSCs remain to be elucidated. Here, through single-cell chromatin accessibility analysis, we reveal the self-renewal versus differentiation trajectories of MuSCs over the course of regeneration in vivo. We identify Betaglycan as a unique marker of self-renewing MuSCs that can be purified and efficiently contributes to regeneration after transplantation. We also show that SMAD4 and downstream genes are genetically required for self-renewal in vivo by restricting differentiation. Our study unveils the identity and mechanisms of self-renewing MuSCs, while providing a key resource for comprehensive analysis of muscle regeneration.</description><identifier>ISSN: 0021-9525</identifier><identifier>EISSN: 1540-8140</identifier><identifier>DOI: 10.1083/jcb.202211073</identifier><identifier>PMID: 37382627</identifier><language>eng</language><publisher>United States: Rockefeller University Press</publisher><subject>Accessibility ; Cell Cycle and Division ; Cell Differentiation ; Cell Division ; Cell proliferation ; Cell self-renewal ; Chromatin ; Chromatin - genetics ; Chromatin or Epigenetics ; Development ; Differentiation ; In vivo methods and tests ; Muscle, Skeletal ; Muscles ; Regeneration ; Satellite cells ; Satellite Cells, Skeletal Muscle ; Skeletal muscle ; Smad4 protein ; Stem Cells ; Transplantation</subject><ispartof>The Journal of cell biology, 2023-08, Vol.222 (8), p.1</ispartof><rights>2023 Okafor et al.</rights><rights>Copyright Rockefeller University Press Aug 2023</rights><rights>2023 Okafor et al. 2023 Okafor et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-cf285ddcc27357ad8d5c57a1590e66835f2651acbe514c05f5fe84680cdc05703</citedby><cites>FETCH-LOGICAL-c416t-cf285ddcc27357ad8d5c57a1590e66835f2651acbe514c05f5fe84680cdc05703</cites><orcidid>0000-0001-6313-7790 ; 0000-0003-1376-3456 ; 0000-0003-3049-8324 ; 0000-0002-2034-6928 ; 0000-0002-0637-0323 ; 0000-0001-8333-0782 ; 0000-0002-3416-1350 ; 0000-0001-5842-4082</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37382627$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Okafor, Arinze E</creatorcontrib><creatorcontrib>Lin, Xin</creatorcontrib><creatorcontrib>Situ, Chenghao</creatorcontrib><creatorcontrib>Wei, Xiaolin</creatorcontrib><creatorcontrib>Xiang, Yu</creatorcontrib><creatorcontrib>Wei, Xiuqing</creatorcontrib><creatorcontrib>Wu, Zhenguo</creatorcontrib><creatorcontrib>Diao, Yarui</creatorcontrib><title>Single-cell chromatin accessibility profiling reveals a self-renewing muscle satellite cell state</title><title>The Journal of cell biology</title><addtitle>J Cell Biol</addtitle><description>A balance between self-renewal and differentiation is critical for the regenerative capacity of tissue-resident stem cells. In skeletal muscle, successful regeneration requires the orchestrated activation, proliferation, and differentiation of muscle satellite cells (MuSCs) that are normally quiescent. A subset of MuSCs undergoes self-renewal to replenish the stem cell pool, but the features that identify and define self-renewing MuSCs remain to be elucidated. Here, through single-cell chromatin accessibility analysis, we reveal the self-renewal versus differentiation trajectories of MuSCs over the course of regeneration in vivo. We identify Betaglycan as a unique marker of self-renewing MuSCs that can be purified and efficiently contributes to regeneration after transplantation. We also show that SMAD4 and downstream genes are genetically required for self-renewal in vivo by restricting differentiation. Our study unveils the identity and mechanisms of self-renewing MuSCs, while providing a key resource for comprehensive analysis of muscle regeneration.</description><subject>Accessibility</subject><subject>Cell Cycle and Division</subject><subject>Cell Differentiation</subject><subject>Cell Division</subject><subject>Cell proliferation</subject><subject>Cell self-renewal</subject><subject>Chromatin</subject><subject>Chromatin - genetics</subject><subject>Chromatin or Epigenetics</subject><subject>Development</subject><subject>Differentiation</subject><subject>In vivo methods and tests</subject><subject>Muscle, Skeletal</subject><subject>Muscles</subject><subject>Regeneration</subject><subject>Satellite cells</subject><subject>Satellite Cells, Skeletal Muscle</subject><subject>Skeletal muscle</subject><subject>Smad4 protein</subject><subject>Stem Cells</subject><subject>Transplantation</subject><issn>0021-9525</issn><issn>1540-8140</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU1PGzEQhq0KRFLKkStaiQuXDTP2eu09oSqiHxISB-jZcryzwdF-BHsXlH9fp9Co5TQe-_Ejj1_GzhEWCFpcb9xqwYFzRFDiE5ujLCDXWMARmwNwzCvJ5Yx9jnEDAIUqxAmbCSU0L7maM_vg-3VLuaO2zdxTGDo7-j6zzlGMfuVbP-6ybRiatOrXWaAXsm3MbBapbfJAPb3u97spupayaMfk8SNlf3xxTP0XdtykK3T2Xk_Zr2-3j8sf-d3995_Lr3e5K7Acc9dwLevaOa6EVLbWtXSpoqyAylIL2fBSonUrklg4kI1sSBelBlenToE4ZTdv3u206qh21I_BtmYbfGfDzgzWm_9Pev9k1sOLQRBQoZbJcPVuCMPzRHE0nY_7QWxPwxQN1wJ5pSqpEnr5Ad0MU-jTfIlKn6w14l6Yv1EuDDEGag6vQTD79ExKzxzSS_zFvyMc6L9xid-tAJcx</recordid><startdate>20230807</startdate><enddate>20230807</enddate><creator>Okafor, Arinze E</creator><creator>Lin, Xin</creator><creator>Situ, Chenghao</creator><creator>Wei, Xiaolin</creator><creator>Xiang, Yu</creator><creator>Wei, Xiuqing</creator><creator>Wu, Zhenguo</creator><creator>Diao, Yarui</creator><general>Rockefeller University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6313-7790</orcidid><orcidid>https://orcid.org/0000-0003-1376-3456</orcidid><orcidid>https://orcid.org/0000-0003-3049-8324</orcidid><orcidid>https://orcid.org/0000-0002-2034-6928</orcidid><orcidid>https://orcid.org/0000-0002-0637-0323</orcidid><orcidid>https://orcid.org/0000-0001-8333-0782</orcidid><orcidid>https://orcid.org/0000-0002-3416-1350</orcidid><orcidid>https://orcid.org/0000-0001-5842-4082</orcidid></search><sort><creationdate>20230807</creationdate><title>Single-cell chromatin accessibility profiling reveals a self-renewing muscle satellite cell state</title><author>Okafor, Arinze E ; Lin, Xin ; Situ, Chenghao ; Wei, Xiaolin ; Xiang, Yu ; Wei, Xiuqing ; Wu, Zhenguo ; Diao, Yarui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-cf285ddcc27357ad8d5c57a1590e66835f2651acbe514c05f5fe84680cdc05703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accessibility</topic><topic>Cell Cycle and Division</topic><topic>Cell Differentiation</topic><topic>Cell Division</topic><topic>Cell proliferation</topic><topic>Cell self-renewal</topic><topic>Chromatin</topic><topic>Chromatin - genetics</topic><topic>Chromatin or Epigenetics</topic><topic>Development</topic><topic>Differentiation</topic><topic>In vivo methods and tests</topic><topic>Muscle, Skeletal</topic><topic>Muscles</topic><topic>Regeneration</topic><topic>Satellite cells</topic><topic>Satellite Cells, Skeletal Muscle</topic><topic>Skeletal muscle</topic><topic>Smad4 protein</topic><topic>Stem Cells</topic><topic>Transplantation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Okafor, Arinze E</creatorcontrib><creatorcontrib>Lin, Xin</creatorcontrib><creatorcontrib>Situ, Chenghao</creatorcontrib><creatorcontrib>Wei, Xiaolin</creatorcontrib><creatorcontrib>Xiang, Yu</creatorcontrib><creatorcontrib>Wei, Xiuqing</creatorcontrib><creatorcontrib>Wu, Zhenguo</creatorcontrib><creatorcontrib>Diao, Yarui</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Okafor, Arinze E</au><au>Lin, Xin</au><au>Situ, Chenghao</au><au>Wei, Xiaolin</au><au>Xiang, Yu</au><au>Wei, Xiuqing</au><au>Wu, Zhenguo</au><au>Diao, Yarui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-cell chromatin accessibility profiling reveals a self-renewing muscle satellite cell state</atitle><jtitle>The Journal of cell biology</jtitle><addtitle>J Cell Biol</addtitle><date>2023-08-07</date><risdate>2023</risdate><volume>222</volume><issue>8</issue><spage>1</spage><pages>1-</pages><issn>0021-9525</issn><eissn>1540-8140</eissn><abstract>A balance between self-renewal and differentiation is critical for the regenerative capacity of tissue-resident stem cells. In skeletal muscle, successful regeneration requires the orchestrated activation, proliferation, and differentiation of muscle satellite cells (MuSCs) that are normally quiescent. A subset of MuSCs undergoes self-renewal to replenish the stem cell pool, but the features that identify and define self-renewing MuSCs remain to be elucidated. Here, through single-cell chromatin accessibility analysis, we reveal the self-renewal versus differentiation trajectories of MuSCs over the course of regeneration in vivo. We identify Betaglycan as a unique marker of self-renewing MuSCs that can be purified and efficiently contributes to regeneration after transplantation. We also show that SMAD4 and downstream genes are genetically required for self-renewal in vivo by restricting differentiation. Our study unveils the identity and mechanisms of self-renewing MuSCs, while providing a key resource for comprehensive analysis of muscle regeneration.</abstract><cop>United States</cop><pub>Rockefeller University Press</pub><pmid>37382627</pmid><doi>10.1083/jcb.202211073</doi><orcidid>https://orcid.org/0000-0001-6313-7790</orcidid><orcidid>https://orcid.org/0000-0003-1376-3456</orcidid><orcidid>https://orcid.org/0000-0003-3049-8324</orcidid><orcidid>https://orcid.org/0000-0002-2034-6928</orcidid><orcidid>https://orcid.org/0000-0002-0637-0323</orcidid><orcidid>https://orcid.org/0000-0001-8333-0782</orcidid><orcidid>https://orcid.org/0000-0002-3416-1350</orcidid><orcidid>https://orcid.org/0000-0001-5842-4082</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9525 |
ispartof | The Journal of cell biology, 2023-08, Vol.222 (8), p.1 |
issn | 0021-9525 1540-8140 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10309185 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Accessibility Cell Cycle and Division Cell Differentiation Cell Division Cell proliferation Cell self-renewal Chromatin Chromatin - genetics Chromatin or Epigenetics Development Differentiation In vivo methods and tests Muscle, Skeletal Muscles Regeneration Satellite cells Satellite Cells, Skeletal Muscle Skeletal muscle Smad4 protein Stem Cells Transplantation |
title | Single-cell chromatin accessibility profiling reveals a self-renewing muscle satellite cell state |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A59%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-cell%20chromatin%20accessibility%20profiling%20reveals%20a%20self-renewing%20muscle%20satellite%20cell%20state&rft.jtitle=The%20Journal%20of%20cell%20biology&rft.au=Okafor,%20Arinze%20E&rft.date=2023-08-07&rft.volume=222&rft.issue=8&rft.spage=1&rft.pages=1-&rft.issn=0021-9525&rft.eissn=1540-8140&rft_id=info:doi/10.1083/jcb.202211073&rft_dat=%3Cproquest_pubme%3E2831297957%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2847488115&rft_id=info:pmid/37382627&rfr_iscdi=true |