Quantum Chemical Exploration of A−π1–D1–π2–D2‑Type Compounds for the Exploration of Chemical Reactivity, Optoelectronic, and Third-order Nonlinear Optical Properties

Organic compounds exhibit significant nonlinear optical (NLO) properties and can be utilized in various areas like optical parameters, fiber optics, and optical communication. Herein, a series of chromophores (DBTD1–DBTD6) with an A−π1–D1–π2–D2 framework was derived from a prepared compound (DBTR) b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS omega 2023-06, Vol.8 (25), p.22673-22683
Hauptverfasser: Mustafa, Ghulam, Shafiq, Iqra, Shaikh, Qurat-ul-ain, Mustafa, Ayesha, Zahid, Romaisa, Rasool, Faiz, Asghar, Muhammad Adnan, Baby, Rabia, Alshehri, Saad M., Haroon, Muhammad
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22683
container_issue 25
container_start_page 22673
container_title ACS omega
container_volume 8
creator Mustafa, Ghulam
Shafiq, Iqra
Shaikh, Qurat-ul-ain
Mustafa, Ayesha
Zahid, Romaisa
Rasool, Faiz
Asghar, Muhammad Adnan
Baby, Rabia
Alshehri, Saad M.
Haroon, Muhammad
description Organic compounds exhibit significant nonlinear optical (NLO) properties and can be utilized in various areas like optical parameters, fiber optics, and optical communication. Herein, a series of chromophores (DBTD1–DBTD6) with an A−π1–D1–π2–D2 framework was derived from a prepared compound (DBTR) by varying the structure of π-spacer and terminal acceptor. The DBTR and its investigated compounds were optimized at the M06/6-311G­(d,p) level of theory. Frontier molecular orbitals (FMOs), nonlinear optical (NLO) properties, global reactivity parameters (GRPs), natural bonding orbital (NBO), transition density matrix (TDM), molecular electrostatic potential (MEP), and natural population analysis (NPA) were accomplished at the abovementioned level to describe the NLO findings. DBTD6 has the lowermost band gap (2.131 eV) among all of the derived compounds. The decreasing order of highest occupied molecular orbital–lowest unoccupied molecular orbital (HOMO–LUMO) energy gap values was DBTR > DBTD1 > DBTD2 > DBTD3 > DBTD4 > DBTD5 > DBTD6. The NBO analysis was carried out to describe noncovalent interactions such as conjugative interactions and electron delocalization. From all of the examined substances, DBTD5 showed the highest λmax value at 593.425 nm (in the gaseous phase) and 630.578 nm (in chloroform solvent). Moreover, the βtot and ⟨γ⟩ amplitudes of DBTD5 were noticed to be relatively greater at 1.140 × 10–27 and 1.331 × 10–32 esu, respectively. So, these outcomes disclosed that DBTD5 depicted the highest linear and nonlinear properties in comparison to the other designed compounds, which underlines that it could make a significant contribution to hi-tech NLO devices.
doi_str_mv 10.1021/acsomega.3c01472
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10308399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2832839450</sourcerecordid><originalsourceid>FETCH-LOGICAL-a323t-330d5fbd04772d101cf5914b47f28a80e53d45c54ae72c3511e289d242f5141d3</originalsourceid><addsrcrecordid>eNpdkc9O3DAQxqOqlYqAe48-9rAB_wtJThXaAq2ESkHbs-W1J6xR4kltB7G3PXJteZI-Ce_Ak5CFLSqVRjOfNN_8pNGXZR8Y3WOUs31tInZwqfeEoUyW_E22xWVJcyakePuPfp_txnhFKWUHFa_4wVb253zQPg0dmS6gc0a35OimbzHo5NATbMjhw-3v-xV7WN19Xrf7FV_Lsf2aLXsgU-x6HLyNpMFA0gL-v3_hXoA2yV27tJyQsz4htGBSQO_MhGhvyWzhgs0xWAjkG_rWedBh7Xy6_h6wh5AcxJ3sXaPbCLubuZ39OD6aTb_kp2cnX6eHp7kWXKRcCGqLZm6pLEtuGWWmKWom57JseKUrCoWwsjCF1FByIwrGgFe15ZI3BZPMiu3s0zO3H-YdWAM-Bd2qPrhOh6VC7dTrjXcLdYnXilFBK1HXI-HjhhDw5wAxqc5FA22rPeAQFa_EWLUs6GidPFvHJNUVDsGPr40ktY5X_Y1XbeIVj017ozU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2832839450</pqid></control><display><type>article</type><title>Quantum Chemical Exploration of A−π1–D1–π2–D2‑Type Compounds for the Exploration of Chemical Reactivity, Optoelectronic, and Third-order Nonlinear Optical Properties</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>American Chemical Society (ACS) Open Access</source><source>PubMed Central</source><creator>Mustafa, Ghulam ; Shafiq, Iqra ; Shaikh, Qurat-ul-ain ; Mustafa, Ayesha ; Zahid, Romaisa ; Rasool, Faiz ; Asghar, Muhammad Adnan ; Baby, Rabia ; Alshehri, Saad M. ; Haroon, Muhammad</creator><creatorcontrib>Mustafa, Ghulam ; Shafiq, Iqra ; Shaikh, Qurat-ul-ain ; Mustafa, Ayesha ; Zahid, Romaisa ; Rasool, Faiz ; Asghar, Muhammad Adnan ; Baby, Rabia ; Alshehri, Saad M. ; Haroon, Muhammad</creatorcontrib><description>Organic compounds exhibit significant nonlinear optical (NLO) properties and can be utilized in various areas like optical parameters, fiber optics, and optical communication. Herein, a series of chromophores (DBTD1–DBTD6) with an A−π1–D1–π2–D2 framework was derived from a prepared compound (DBTR) by varying the structure of π-spacer and terminal acceptor. The DBTR and its investigated compounds were optimized at the M06/6-311G­(d,p) level of theory. Frontier molecular orbitals (FMOs), nonlinear optical (NLO) properties, global reactivity parameters (GRPs), natural bonding orbital (NBO), transition density matrix (TDM), molecular electrostatic potential (MEP), and natural population analysis (NPA) were accomplished at the abovementioned level to describe the NLO findings. DBTD6 has the lowermost band gap (2.131 eV) among all of the derived compounds. The decreasing order of highest occupied molecular orbital–lowest unoccupied molecular orbital (HOMO–LUMO) energy gap values was DBTR &gt; DBTD1 &gt; DBTD2 &gt; DBTD3 &gt; DBTD4 &gt; DBTD5 &gt; DBTD6. The NBO analysis was carried out to describe noncovalent interactions such as conjugative interactions and electron delocalization. From all of the examined substances, DBTD5 showed the highest λmax value at 593.425 nm (in the gaseous phase) and 630.578 nm (in chloroform solvent). Moreover, the βtot and ⟨γ⟩ amplitudes of DBTD5 were noticed to be relatively greater at 1.140 × 10–27 and 1.331 × 10–32 esu, respectively. So, these outcomes disclosed that DBTD5 depicted the highest linear and nonlinear properties in comparison to the other designed compounds, which underlines that it could make a significant contribution to hi-tech NLO devices.</description><identifier>ISSN: 2470-1343</identifier><identifier>EISSN: 2470-1343</identifier><identifier>DOI: 10.1021/acsomega.3c01472</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS omega, 2023-06, Vol.8 (25), p.22673-22683</ispartof><rights>2023 The Authors. Published by American Chemical Society</rights><rights>2023 The Authors. Published by American Chemical Society 2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7825-9667</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsomega.3c01472$$EPDF$$P50$$Gacs$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsomega.3c01472$$EHTML$$P50$$Gacs$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27057,27901,27902,53766,53768,56737,56787</link.rule.ids></links><search><creatorcontrib>Mustafa, Ghulam</creatorcontrib><creatorcontrib>Shafiq, Iqra</creatorcontrib><creatorcontrib>Shaikh, Qurat-ul-ain</creatorcontrib><creatorcontrib>Mustafa, Ayesha</creatorcontrib><creatorcontrib>Zahid, Romaisa</creatorcontrib><creatorcontrib>Rasool, Faiz</creatorcontrib><creatorcontrib>Asghar, Muhammad Adnan</creatorcontrib><creatorcontrib>Baby, Rabia</creatorcontrib><creatorcontrib>Alshehri, Saad M.</creatorcontrib><creatorcontrib>Haroon, Muhammad</creatorcontrib><title>Quantum Chemical Exploration of A−π1–D1–π2–D2‑Type Compounds for the Exploration of Chemical Reactivity, Optoelectronic, and Third-order Nonlinear Optical Properties</title><title>ACS omega</title><addtitle>ACS Omega</addtitle><description>Organic compounds exhibit significant nonlinear optical (NLO) properties and can be utilized in various areas like optical parameters, fiber optics, and optical communication. Herein, a series of chromophores (DBTD1–DBTD6) with an A−π1–D1–π2–D2 framework was derived from a prepared compound (DBTR) by varying the structure of π-spacer and terminal acceptor. The DBTR and its investigated compounds were optimized at the M06/6-311G­(d,p) level of theory. Frontier molecular orbitals (FMOs), nonlinear optical (NLO) properties, global reactivity parameters (GRPs), natural bonding orbital (NBO), transition density matrix (TDM), molecular electrostatic potential (MEP), and natural population analysis (NPA) were accomplished at the abovementioned level to describe the NLO findings. DBTD6 has the lowermost band gap (2.131 eV) among all of the derived compounds. The decreasing order of highest occupied molecular orbital–lowest unoccupied molecular orbital (HOMO–LUMO) energy gap values was DBTR &gt; DBTD1 &gt; DBTD2 &gt; DBTD3 &gt; DBTD4 &gt; DBTD5 &gt; DBTD6. The NBO analysis was carried out to describe noncovalent interactions such as conjugative interactions and electron delocalization. From all of the examined substances, DBTD5 showed the highest λmax value at 593.425 nm (in the gaseous phase) and 630.578 nm (in chloroform solvent). Moreover, the βtot and ⟨γ⟩ amplitudes of DBTD5 were noticed to be relatively greater at 1.140 × 10–27 and 1.331 × 10–32 esu, respectively. So, these outcomes disclosed that DBTD5 depicted the highest linear and nonlinear properties in comparison to the other designed compounds, which underlines that it could make a significant contribution to hi-tech NLO devices.</description><issn>2470-1343</issn><issn>2470-1343</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>N~.</sourceid><recordid>eNpdkc9O3DAQxqOqlYqAe48-9rAB_wtJThXaAq2ESkHbs-W1J6xR4kltB7G3PXJteZI-Ce_Ak5CFLSqVRjOfNN_8pNGXZR8Y3WOUs31tInZwqfeEoUyW_E22xWVJcyakePuPfp_txnhFKWUHFa_4wVb253zQPg0dmS6gc0a35OimbzHo5NATbMjhw-3v-xV7WN19Xrf7FV_Lsf2aLXsgU-x6HLyNpMFA0gL-v3_hXoA2yV27tJyQsz4htGBSQO_MhGhvyWzhgs0xWAjkG_rWedBh7Xy6_h6wh5AcxJ3sXaPbCLubuZ39OD6aTb_kp2cnX6eHp7kWXKRcCGqLZm6pLEtuGWWmKWom57JseKUrCoWwsjCF1FByIwrGgFe15ZI3BZPMiu3s0zO3H-YdWAM-Bd2qPrhOh6VC7dTrjXcLdYnXilFBK1HXI-HjhhDw5wAxqc5FA22rPeAQFa_EWLUs6GidPFvHJNUVDsGPr40ktY5X_Y1XbeIVj017ozU</recordid><startdate>20230627</startdate><enddate>20230627</enddate><creator>Mustafa, Ghulam</creator><creator>Shafiq, Iqra</creator><creator>Shaikh, Qurat-ul-ain</creator><creator>Mustafa, Ayesha</creator><creator>Zahid, Romaisa</creator><creator>Rasool, Faiz</creator><creator>Asghar, Muhammad Adnan</creator><creator>Baby, Rabia</creator><creator>Alshehri, Saad M.</creator><creator>Haroon, Muhammad</creator><general>American Chemical Society</general><scope>N~.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7825-9667</orcidid></search><sort><creationdate>20230627</creationdate><title>Quantum Chemical Exploration of A−π1–D1–π2–D2‑Type Compounds for the Exploration of Chemical Reactivity, Optoelectronic, and Third-order Nonlinear Optical Properties</title><author>Mustafa, Ghulam ; Shafiq, Iqra ; Shaikh, Qurat-ul-ain ; Mustafa, Ayesha ; Zahid, Romaisa ; Rasool, Faiz ; Asghar, Muhammad Adnan ; Baby, Rabia ; Alshehri, Saad M. ; Haroon, Muhammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a323t-330d5fbd04772d101cf5914b47f28a80e53d45c54ae72c3511e289d242f5141d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mustafa, Ghulam</creatorcontrib><creatorcontrib>Shafiq, Iqra</creatorcontrib><creatorcontrib>Shaikh, Qurat-ul-ain</creatorcontrib><creatorcontrib>Mustafa, Ayesha</creatorcontrib><creatorcontrib>Zahid, Romaisa</creatorcontrib><creatorcontrib>Rasool, Faiz</creatorcontrib><creatorcontrib>Asghar, Muhammad Adnan</creatorcontrib><creatorcontrib>Baby, Rabia</creatorcontrib><creatorcontrib>Alshehri, Saad M.</creatorcontrib><creatorcontrib>Haroon, Muhammad</creatorcontrib><collection>American Chemical Society (ACS) Open Access</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS omega</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mustafa, Ghulam</au><au>Shafiq, Iqra</au><au>Shaikh, Qurat-ul-ain</au><au>Mustafa, Ayesha</au><au>Zahid, Romaisa</au><au>Rasool, Faiz</au><au>Asghar, Muhammad Adnan</au><au>Baby, Rabia</au><au>Alshehri, Saad M.</au><au>Haroon, Muhammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum Chemical Exploration of A−π1–D1–π2–D2‑Type Compounds for the Exploration of Chemical Reactivity, Optoelectronic, and Third-order Nonlinear Optical Properties</atitle><jtitle>ACS omega</jtitle><addtitle>ACS Omega</addtitle><date>2023-06-27</date><risdate>2023</risdate><volume>8</volume><issue>25</issue><spage>22673</spage><epage>22683</epage><pages>22673-22683</pages><issn>2470-1343</issn><eissn>2470-1343</eissn><abstract>Organic compounds exhibit significant nonlinear optical (NLO) properties and can be utilized in various areas like optical parameters, fiber optics, and optical communication. Herein, a series of chromophores (DBTD1–DBTD6) with an A−π1–D1–π2–D2 framework was derived from a prepared compound (DBTR) by varying the structure of π-spacer and terminal acceptor. The DBTR and its investigated compounds were optimized at the M06/6-311G­(d,p) level of theory. Frontier molecular orbitals (FMOs), nonlinear optical (NLO) properties, global reactivity parameters (GRPs), natural bonding orbital (NBO), transition density matrix (TDM), molecular electrostatic potential (MEP), and natural population analysis (NPA) were accomplished at the abovementioned level to describe the NLO findings. DBTD6 has the lowermost band gap (2.131 eV) among all of the derived compounds. The decreasing order of highest occupied molecular orbital–lowest unoccupied molecular orbital (HOMO–LUMO) energy gap values was DBTR &gt; DBTD1 &gt; DBTD2 &gt; DBTD3 &gt; DBTD4 &gt; DBTD5 &gt; DBTD6. The NBO analysis was carried out to describe noncovalent interactions such as conjugative interactions and electron delocalization. From all of the examined substances, DBTD5 showed the highest λmax value at 593.425 nm (in the gaseous phase) and 630.578 nm (in chloroform solvent). Moreover, the βtot and ⟨γ⟩ amplitudes of DBTD5 were noticed to be relatively greater at 1.140 × 10–27 and 1.331 × 10–32 esu, respectively. So, these outcomes disclosed that DBTD5 depicted the highest linear and nonlinear properties in comparison to the other designed compounds, which underlines that it could make a significant contribution to hi-tech NLO devices.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsomega.3c01472</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7825-9667</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2470-1343
ispartof ACS omega, 2023-06, Vol.8 (25), p.22673-22683
issn 2470-1343
2470-1343
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10308399
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; American Chemical Society (ACS) Open Access; PubMed Central
title Quantum Chemical Exploration of A−π1–D1–π2–D2‑Type Compounds for the Exploration of Chemical Reactivity, Optoelectronic, and Third-order Nonlinear Optical Properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A45%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20Chemical%20Exploration%20of%20A%E2%88%92%CF%801%E2%80%93D1%E2%80%93%CF%802%E2%80%93D2%E2%80%91Type%20Compounds%20for%20the%20Exploration%20of%20Chemical%20Reactivity,%20Optoelectronic,%20and%20Third-order%20Nonlinear%20Optical%20Properties&rft.jtitle=ACS%20omega&rft.au=Mustafa,%20Ghulam&rft.date=2023-06-27&rft.volume=8&rft.issue=25&rft.spage=22673&rft.epage=22683&rft.pages=22673-22683&rft.issn=2470-1343&rft.eissn=2470-1343&rft_id=info:doi/10.1021/acsomega.3c01472&rft_dat=%3Cproquest_pubme%3E2832839450%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2832839450&rft_id=info:pmid/&rfr_iscdi=true