Automatic Optimization of Lipid Models in the Martini Force Field Using SwarmCG

After two decades of continued development of the Martini coarse-grained force field (CG FF), further refinment of the already rather accurate Martini lipid models has become a demanding task that could benefit from integrative data-driven methods. Automatic approaches are increasingly used in the d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical information and modeling 2023-06, Vol.63 (12), p.3827-3838
Hauptverfasser: Empereur-mot, Charly, Pedersen, Kasper B., Capelli, Riccardo, Crippa, Martina, Caruso, Cristina, Perrone, Mattia, Souza, Paulo C. T., Marrink, Siewert J., Pavan, Giovanni M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3838
container_issue 12
container_start_page 3827
container_title Journal of chemical information and modeling
container_volume 63
creator Empereur-mot, Charly
Pedersen, Kasper B.
Capelli, Riccardo
Crippa, Martina
Caruso, Cristina
Perrone, Mattia
Souza, Paulo C. T.
Marrink, Siewert J.
Pavan, Giovanni M.
description After two decades of continued development of the Martini coarse-grained force field (CG FF), further refinment of the already rather accurate Martini lipid models has become a demanding task that could benefit from integrative data-driven methods. Automatic approaches are increasingly used in the development of accurate molecular models, but they typically make use of specifically designed interaction potentials that transfer poorly to molecular systems or conditions different than those used for model calibration. As a proof of concept, here, we employ SwarmCG, an automatic multiobjective optimization approach facilitating the development of lipid force fields, to refine specifically the bonded interaction parameters in building blocks of lipid models within the framework of the general Martini CG FF. As targets of the optimization procedure, we employ both experimental observables (top-down references: area per lipid and bilayer thickness) and all-atom molecular dynamics simulations (bottom-up reference), which respectively inform on the supra-molecular structure of the lipid bilayer systems and on their submolecular dynamics. In our training sets, we simulate at different temperatures in the liquid and gel phases up to 11 homogeneous lamellar bilayers composed of phosphatidylcholine lipids spanning various tail lengths and degrees of (un)­saturation. We explore different CG representations of the molecules and evaluate improvements a posteriori using additional simulation temperatures and a portion of the phase diagram of a DOPC/DPPC mixture. Successfully optimizing up to ∼80 model parameters within still limited computational budgets, we show that this protocol allows the obtainment of improved transferable Martini lipid models. In particular, the results of this study demonstrate how a fine-tuning of the representation and parameters of the models may improve their accuracy and how automatic approaches, such as SwarmCG, may be very useful to this end.
doi_str_mv 10.1021/acs.jcim.3c00530
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10302490</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2829871478</sourcerecordid><originalsourceid>FETCH-LOGICAL-a496t-a3fc1f386a67f7edf143ab9a70d305ef85c7d711da1e24f50975c4b238d964903</originalsourceid><addsrcrecordid>eNp1kc1vEzEQxS1ERUvhzglZ4gISCeOPXa9PVRSRtlKqHKASN8vxR-Nodx3s3SL469mwSUUr9eSR_XtvPPMQekdgSoCSL9rk6daEZsoMQMHgBTojBZcTWcKPl8e6kOUpep3zFoAxWdJX6JQJKiQBcYZWs76Lje6CwatdF5rwZ6hji6PHy7ALFt9E6-qMQ4u7jcM3OnWhDXgRk3F4EVxt8W0O7R3-9kunZn75Bp14XWf39nCeo9vF1-_zq8lydXk9ny0nmsuym2jmDfGsKnUpvHDWE870WmoBlkHhfFUYYQUhVhNHuS9AisLwNWWVlSWXwM7Rxei769eNs8a1XdK12qXQ6PRbRR3U45c2bNRdvFcEGNDR4dPosHmiu5ot1f4OOJWloHBPBvbjoVuKP3uXO9WEbFxd69bFPitaUcZlxbgY0A9P0G3sUzvsYk_JShAuqoGCkTIp5pycf_gBAbWPVg3Rqn206hDtIHn__8QPgmOWA_B5BP5Jj02f9fsLrdWueg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2829871478</pqid></control><display><type>article</type><title>Automatic Optimization of Lipid Models in the Martini Force Field Using SwarmCG</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Empereur-mot, Charly ; Pedersen, Kasper B. ; Capelli, Riccardo ; Crippa, Martina ; Caruso, Cristina ; Perrone, Mattia ; Souza, Paulo C. T. ; Marrink, Siewert J. ; Pavan, Giovanni M.</creator><creatorcontrib>Empereur-mot, Charly ; Pedersen, Kasper B. ; Capelli, Riccardo ; Crippa, Martina ; Caruso, Cristina ; Perrone, Mattia ; Souza, Paulo C. T. ; Marrink, Siewert J. ; Pavan, Giovanni M.</creatorcontrib><description>After two decades of continued development of the Martini coarse-grained force field (CG FF), further refinment of the already rather accurate Martini lipid models has become a demanding task that could benefit from integrative data-driven methods. Automatic approaches are increasingly used in the development of accurate molecular models, but they typically make use of specifically designed interaction potentials that transfer poorly to molecular systems or conditions different than those used for model calibration. As a proof of concept, here, we employ SwarmCG, an automatic multiobjective optimization approach facilitating the development of lipid force fields, to refine specifically the bonded interaction parameters in building blocks of lipid models within the framework of the general Martini CG FF. As targets of the optimization procedure, we employ both experimental observables (top-down references: area per lipid and bilayer thickness) and all-atom molecular dynamics simulations (bottom-up reference), which respectively inform on the supra-molecular structure of the lipid bilayer systems and on their submolecular dynamics. In our training sets, we simulate at different temperatures in the liquid and gel phases up to 11 homogeneous lamellar bilayers composed of phosphatidylcholine lipids spanning various tail lengths and degrees of (un)­saturation. We explore different CG representations of the molecules and evaluate improvements a posteriori using additional simulation temperatures and a portion of the phase diagram of a DOPC/DPPC mixture. Successfully optimizing up to ∼80 model parameters within still limited computational budgets, we show that this protocol allows the obtainment of improved transferable Martini lipid models. In particular, the results of this study demonstrate how a fine-tuning of the representation and parameters of the models may improve their accuracy and how automatic approaches, such as SwarmCG, may be very useful to this end.</description><identifier>ISSN: 1549-9596</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.3c00530</identifier><identifier>PMID: 37279107</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Chemical Sciences ; Computational Chemistry ; Computer Science ; Interaction parameters ; Lipid Bilayers - chemistry ; Lipids ; Mathematical models ; Modeling and Simulation ; Molecular dynamics ; Molecular Dynamics Simulation ; Molecular structure ; Multiple objective analysis ; Optimization ; or physical chemistry ; Phase diagrams ; Phosphatidylcholine ; Phosphatidylcholines - chemistry ; Representations ; Simulation ; Temperature ; Theoretical and</subject><ispartof>Journal of chemical information and modeling, 2023-06, Vol.63 (12), p.3827-3838</ispartof><rights>2023 The Authors. Published by American Chemical Society</rights><rights>Copyright American Chemical Society Jun 26, 2023</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2023 The Authors. Published by American Chemical Society 2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a496t-a3fc1f386a67f7edf143ab9a70d305ef85c7d711da1e24f50975c4b238d964903</citedby><cites>FETCH-LOGICAL-a496t-a3fc1f386a67f7edf143ab9a70d305ef85c7d711da1e24f50975c4b238d964903</cites><orcidid>0000-0001-9522-3132 ; 0000-0002-6682-0015 ; 0000-0003-0660-1301 ; 0000-0001-8423-5277 ; 0000-0002-3473-8471 ; 0000-0001-6972-8225</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jcim.3c00530$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jcim.3c00530$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37279107$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04296720$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Empereur-mot, Charly</creatorcontrib><creatorcontrib>Pedersen, Kasper B.</creatorcontrib><creatorcontrib>Capelli, Riccardo</creatorcontrib><creatorcontrib>Crippa, Martina</creatorcontrib><creatorcontrib>Caruso, Cristina</creatorcontrib><creatorcontrib>Perrone, Mattia</creatorcontrib><creatorcontrib>Souza, Paulo C. T.</creatorcontrib><creatorcontrib>Marrink, Siewert J.</creatorcontrib><creatorcontrib>Pavan, Giovanni M.</creatorcontrib><title>Automatic Optimization of Lipid Models in the Martini Force Field Using SwarmCG</title><title>Journal of chemical information and modeling</title><addtitle>J. Chem. Inf. Model</addtitle><description>After two decades of continued development of the Martini coarse-grained force field (CG FF), further refinment of the already rather accurate Martini lipid models has become a demanding task that could benefit from integrative data-driven methods. Automatic approaches are increasingly used in the development of accurate molecular models, but they typically make use of specifically designed interaction potentials that transfer poorly to molecular systems or conditions different than those used for model calibration. As a proof of concept, here, we employ SwarmCG, an automatic multiobjective optimization approach facilitating the development of lipid force fields, to refine specifically the bonded interaction parameters in building blocks of lipid models within the framework of the general Martini CG FF. As targets of the optimization procedure, we employ both experimental observables (top-down references: area per lipid and bilayer thickness) and all-atom molecular dynamics simulations (bottom-up reference), which respectively inform on the supra-molecular structure of the lipid bilayer systems and on their submolecular dynamics. In our training sets, we simulate at different temperatures in the liquid and gel phases up to 11 homogeneous lamellar bilayers composed of phosphatidylcholine lipids spanning various tail lengths and degrees of (un)­saturation. We explore different CG representations of the molecules and evaluate improvements a posteriori using additional simulation temperatures and a portion of the phase diagram of a DOPC/DPPC mixture. Successfully optimizing up to ∼80 model parameters within still limited computational budgets, we show that this protocol allows the obtainment of improved transferable Martini lipid models. In particular, the results of this study demonstrate how a fine-tuning of the representation and parameters of the models may improve their accuracy and how automatic approaches, such as SwarmCG, may be very useful to this end.</description><subject>Chemical Sciences</subject><subject>Computational Chemistry</subject><subject>Computer Science</subject><subject>Interaction parameters</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lipids</subject><subject>Mathematical models</subject><subject>Modeling and Simulation</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Molecular structure</subject><subject>Multiple objective analysis</subject><subject>Optimization</subject><subject>or physical chemistry</subject><subject>Phase diagrams</subject><subject>Phosphatidylcholine</subject><subject>Phosphatidylcholines - chemistry</subject><subject>Representations</subject><subject>Simulation</subject><subject>Temperature</subject><subject>Theoretical and</subject><issn>1549-9596</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1vEzEQxS1ERUvhzglZ4gISCeOPXa9PVRSRtlKqHKASN8vxR-Nodx3s3SL469mwSUUr9eSR_XtvPPMQekdgSoCSL9rk6daEZsoMQMHgBTojBZcTWcKPl8e6kOUpep3zFoAxWdJX6JQJKiQBcYZWs76Lje6CwatdF5rwZ6hji6PHy7ALFt9E6-qMQ4u7jcM3OnWhDXgRk3F4EVxt8W0O7R3-9kunZn75Bp14XWf39nCeo9vF1-_zq8lydXk9ny0nmsuym2jmDfGsKnUpvHDWE870WmoBlkHhfFUYYQUhVhNHuS9AisLwNWWVlSWXwM7Rxei769eNs8a1XdK12qXQ6PRbRR3U45c2bNRdvFcEGNDR4dPosHmiu5ot1f4OOJWloHBPBvbjoVuKP3uXO9WEbFxd69bFPitaUcZlxbgY0A9P0G3sUzvsYk_JShAuqoGCkTIp5pycf_gBAbWPVg3Rqn206hDtIHn__8QPgmOWA_B5BP5Jj02f9fsLrdWueg</recordid><startdate>20230626</startdate><enddate>20230626</enddate><creator>Empereur-mot, Charly</creator><creator>Pedersen, Kasper B.</creator><creator>Capelli, Riccardo</creator><creator>Crippa, Martina</creator><creator>Caruso, Cristina</creator><creator>Perrone, Mattia</creator><creator>Souza, Paulo C. T.</creator><creator>Marrink, Siewert J.</creator><creator>Pavan, Giovanni M.</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9522-3132</orcidid><orcidid>https://orcid.org/0000-0002-6682-0015</orcidid><orcidid>https://orcid.org/0000-0003-0660-1301</orcidid><orcidid>https://orcid.org/0000-0001-8423-5277</orcidid><orcidid>https://orcid.org/0000-0002-3473-8471</orcidid><orcidid>https://orcid.org/0000-0001-6972-8225</orcidid></search><sort><creationdate>20230626</creationdate><title>Automatic Optimization of Lipid Models in the Martini Force Field Using SwarmCG</title><author>Empereur-mot, Charly ; Pedersen, Kasper B. ; Capelli, Riccardo ; Crippa, Martina ; Caruso, Cristina ; Perrone, Mattia ; Souza, Paulo C. T. ; Marrink, Siewert J. ; Pavan, Giovanni M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a496t-a3fc1f386a67f7edf143ab9a70d305ef85c7d711da1e24f50975c4b238d964903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chemical Sciences</topic><topic>Computational Chemistry</topic><topic>Computer Science</topic><topic>Interaction parameters</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lipids</topic><topic>Mathematical models</topic><topic>Modeling and Simulation</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Molecular structure</topic><topic>Multiple objective analysis</topic><topic>Optimization</topic><topic>or physical chemistry</topic><topic>Phase diagrams</topic><topic>Phosphatidylcholine</topic><topic>Phosphatidylcholines - chemistry</topic><topic>Representations</topic><topic>Simulation</topic><topic>Temperature</topic><topic>Theoretical and</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Empereur-mot, Charly</creatorcontrib><creatorcontrib>Pedersen, Kasper B.</creatorcontrib><creatorcontrib>Capelli, Riccardo</creatorcontrib><creatorcontrib>Crippa, Martina</creatorcontrib><creatorcontrib>Caruso, Cristina</creatorcontrib><creatorcontrib>Perrone, Mattia</creatorcontrib><creatorcontrib>Souza, Paulo C. T.</creatorcontrib><creatorcontrib>Marrink, Siewert J.</creatorcontrib><creatorcontrib>Pavan, Giovanni M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Empereur-mot, Charly</au><au>Pedersen, Kasper B.</au><au>Capelli, Riccardo</au><au>Crippa, Martina</au><au>Caruso, Cristina</au><au>Perrone, Mattia</au><au>Souza, Paulo C. T.</au><au>Marrink, Siewert J.</au><au>Pavan, Giovanni M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic Optimization of Lipid Models in the Martini Force Field Using SwarmCG</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J. Chem. Inf. Model</addtitle><date>2023-06-26</date><risdate>2023</risdate><volume>63</volume><issue>12</issue><spage>3827</spage><epage>3838</epage><pages>3827-3838</pages><issn>1549-9596</issn><eissn>1549-960X</eissn><abstract>After two decades of continued development of the Martini coarse-grained force field (CG FF), further refinment of the already rather accurate Martini lipid models has become a demanding task that could benefit from integrative data-driven methods. Automatic approaches are increasingly used in the development of accurate molecular models, but they typically make use of specifically designed interaction potentials that transfer poorly to molecular systems or conditions different than those used for model calibration. As a proof of concept, here, we employ SwarmCG, an automatic multiobjective optimization approach facilitating the development of lipid force fields, to refine specifically the bonded interaction parameters in building blocks of lipid models within the framework of the general Martini CG FF. As targets of the optimization procedure, we employ both experimental observables (top-down references: area per lipid and bilayer thickness) and all-atom molecular dynamics simulations (bottom-up reference), which respectively inform on the supra-molecular structure of the lipid bilayer systems and on their submolecular dynamics. In our training sets, we simulate at different temperatures in the liquid and gel phases up to 11 homogeneous lamellar bilayers composed of phosphatidylcholine lipids spanning various tail lengths and degrees of (un)­saturation. We explore different CG representations of the molecules and evaluate improvements a posteriori using additional simulation temperatures and a portion of the phase diagram of a DOPC/DPPC mixture. Successfully optimizing up to ∼80 model parameters within still limited computational budgets, we show that this protocol allows the obtainment of improved transferable Martini lipid models. In particular, the results of this study demonstrate how a fine-tuning of the representation and parameters of the models may improve their accuracy and how automatic approaches, such as SwarmCG, may be very useful to this end.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37279107</pmid><doi>10.1021/acs.jcim.3c00530</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9522-3132</orcidid><orcidid>https://orcid.org/0000-0002-6682-0015</orcidid><orcidid>https://orcid.org/0000-0003-0660-1301</orcidid><orcidid>https://orcid.org/0000-0001-8423-5277</orcidid><orcidid>https://orcid.org/0000-0002-3473-8471</orcidid><orcidid>https://orcid.org/0000-0001-6972-8225</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1549-9596
ispartof Journal of chemical information and modeling, 2023-06, Vol.63 (12), p.3827-3838
issn 1549-9596
1549-960X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10302490
source MEDLINE; American Chemical Society Journals
subjects Chemical Sciences
Computational Chemistry
Computer Science
Interaction parameters
Lipid Bilayers - chemistry
Lipids
Mathematical models
Modeling and Simulation
Molecular dynamics
Molecular Dynamics Simulation
Molecular structure
Multiple objective analysis
Optimization
or physical chemistry
Phase diagrams
Phosphatidylcholine
Phosphatidylcholines - chemistry
Representations
Simulation
Temperature
Theoretical and
title Automatic Optimization of Lipid Models in the Martini Force Field Using SwarmCG
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T18%3A43%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20Optimization%20of%20Lipid%20Models%20in%20the%20Martini%20Force%20Field%20Using%20SwarmCG&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Empereur-mot,%20Charly&rft.date=2023-06-26&rft.volume=63&rft.issue=12&rft.spage=3827&rft.epage=3838&rft.pages=3827-3838&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.3c00530&rft_dat=%3Cproquest_pubme%3E2829871478%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2829871478&rft_id=info:pmid/37279107&rfr_iscdi=true