Electron transfer and ROS production in brain mitochondria of intertidal and subtidal triplefin fish (Tripterygiidae)

While oxygen is essential for oxidative phosphorylation, O 2 can form reactive species (ROS) when interacting with electrons of mitochondrial electron transport system. ROS is dependent on O 2 pressure (PO 2 ) and has traditionally been assessed in O 2 saturated media, PO 2 at which mitochondria do...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology Biochemical, systemic, and environmental physiology, 2023-08, Vol.193 (4), p.413-424
Hauptverfasser: Devaux, Jules B. L., Hedges, Chris P., Birch, Nigel, Herbert, Neill, Renshaw, Gillian M. C., Hickey, Anthony J. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 424
container_issue 4
container_start_page 413
container_title Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology
container_volume 193
creator Devaux, Jules B. L.
Hedges, Chris P.
Birch, Nigel
Herbert, Neill
Renshaw, Gillian M. C.
Hickey, Anthony J. R.
description While oxygen is essential for oxidative phosphorylation, O 2 can form reactive species (ROS) when interacting with electrons of mitochondrial electron transport system. ROS is dependent on O 2 pressure (PO 2 ) and has traditionally been assessed in O 2 saturated media, PO 2 at which mitochondria do not typically function in vivo. Mitochondrial ROS can be significantly elevated by the respiratory complex II substrate succinate, which can accumulate within hypoxic tissues, and this is exacerbated further with reoxygenation. Intertidal species are repetitively exposed to extreme O 2 fluctuations, and have likely evolved strategies to avoid excess ROS production. We evaluated mitochondrial electron leakage and ROS production in permeabilized brain of intertidal and subtidal triplefin fish species from hyperoxia to anoxia, and assessed the effect of anoxia reoxygenation and the influence of increasing succinate concentrations. At typical intracellular PO 2 , net ROS production was similar among all species; however at elevated PO 2 , brain tissues of the intertidal triplefin fish released less ROS than subtidal species. In addition, following in vitro anoxia reoxygenation, electron transfer mediated by succinate titration was better directed to respiration, and not to ROS production for intertidal species. Overall, these data indicate that intertidal triplefin fish species better manage electrons within the ETS, from hypoxic–hyperoxic transitions.
doi_str_mv 10.1007/s00360-023-01495-4
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10299943</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2829956228</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-2fe919064043e76eb410afdc3b734556ed0e45689f63ab0a3b5e2bd3e4a3f2283</originalsourceid><addsrcrecordid>eNp9kc1rFTEUxYMo9ln9B1zIgJu6GL35nMlKpNQPKBS0gruQmbl5L2Ve8kwyQv97006tHws3CeH8zsm9HEKeU3hNAbo3GYAraIHxFqjQshUPyIYKzlrK1beHZAO0Ey2VXX9EnuR8BQCC9uIxOeIdFZIrvSHL2YxjSTE0JdmQHabGhqn5fPGlOaQ4LWPxVfOhGZKt596XOO5imJK3TXRVKJiKn-x8a8vLsD5K8ocZXXU4n3fNyWV9V_J666uMr56SR87OGZ_d3cfk6_uzy9OP7fnFh0-n787bUXSytMyhphqUAMGxUzgICtZNIx86LqRUOAEKqXrtFLcDWD5IZMPEUVjuGOv5MXm75h6WYY_TiKFuOZtD8nubrk203vytBL8z2_jDUGBaa8FrwsldQorfF8zF7H0ecZ5twLhkw3oKmjHd36Av_0Gv4pJC3a9SNU6qdSS2UmOKOSd099NQMDe1mrVWU2s1t7UaUU0v_tzj3vKrxwrwFchVCltMv__-T-xPx0-vvg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2829956228</pqid></control><display><type>article</type><title>Electron transfer and ROS production in brain mitochondria of intertidal and subtidal triplefin fish (Tripterygiidae)</title><source>Springer Nature - Complete Springer Journals</source><creator>Devaux, Jules B. L. ; Hedges, Chris P. ; Birch, Nigel ; Herbert, Neill ; Renshaw, Gillian M. C. ; Hickey, Anthony J. R.</creator><creatorcontrib>Devaux, Jules B. L. ; Hedges, Chris P. ; Birch, Nigel ; Herbert, Neill ; Renshaw, Gillian M. C. ; Hickey, Anthony J. R.</creatorcontrib><description>While oxygen is essential for oxidative phosphorylation, O 2 can form reactive species (ROS) when interacting with electrons of mitochondrial electron transport system. ROS is dependent on O 2 pressure (PO 2 ) and has traditionally been assessed in O 2 saturated media, PO 2 at which mitochondria do not typically function in vivo. Mitochondrial ROS can be significantly elevated by the respiratory complex II substrate succinate, which can accumulate within hypoxic tissues, and this is exacerbated further with reoxygenation. Intertidal species are repetitively exposed to extreme O 2 fluctuations, and have likely evolved strategies to avoid excess ROS production. We evaluated mitochondrial electron leakage and ROS production in permeabilized brain of intertidal and subtidal triplefin fish species from hyperoxia to anoxia, and assessed the effect of anoxia reoxygenation and the influence of increasing succinate concentrations. At typical intracellular PO 2 , net ROS production was similar among all species; however at elevated PO 2 , brain tissues of the intertidal triplefin fish released less ROS than subtidal species. In addition, following in vitro anoxia reoxygenation, electron transfer mediated by succinate titration was better directed to respiration, and not to ROS production for intertidal species. Overall, these data indicate that intertidal triplefin fish species better manage electrons within the ETS, from hypoxic–hyperoxic transitions.</description><identifier>ISSN: 0174-1578</identifier><identifier>EISSN: 1432-136X</identifier><identifier>DOI: 10.1007/s00360-023-01495-4</identifier><identifier>PMID: 37145369</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Animal Physiology ; Anoxia ; Bioaccumulation ; Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Brain ; Electron transfer ; Electron transport ; Fish ; Human Physiology ; Hyperoxia ; Hypoxia ; Life Sciences ; Mitochondria ; Original Paper ; Oxidative phosphorylation ; Phosphorylation ; Pressure dependence ; Species ; Substrates ; Titration ; Transportation systems ; Zoology</subject><ispartof>Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology, 2023-08, Vol.193 (4), p.413-424</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-2fe919064043e76eb410afdc3b734556ed0e45689f63ab0a3b5e2bd3e4a3f2283</citedby><cites>FETCH-LOGICAL-c475t-2fe919064043e76eb410afdc3b734556ed0e45689f63ab0a3b5e2bd3e4a3f2283</cites><orcidid>0000-0002-5280-3871</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00360-023-01495-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00360-023-01495-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37145369$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Devaux, Jules B. L.</creatorcontrib><creatorcontrib>Hedges, Chris P.</creatorcontrib><creatorcontrib>Birch, Nigel</creatorcontrib><creatorcontrib>Herbert, Neill</creatorcontrib><creatorcontrib>Renshaw, Gillian M. C.</creatorcontrib><creatorcontrib>Hickey, Anthony J. R.</creatorcontrib><title>Electron transfer and ROS production in brain mitochondria of intertidal and subtidal triplefin fish (Tripterygiidae)</title><title>Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology</title><addtitle>J Comp Physiol B</addtitle><addtitle>J Comp Physiol B</addtitle><description>While oxygen is essential for oxidative phosphorylation, O 2 can form reactive species (ROS) when interacting with electrons of mitochondrial electron transport system. ROS is dependent on O 2 pressure (PO 2 ) and has traditionally been assessed in O 2 saturated media, PO 2 at which mitochondria do not typically function in vivo. Mitochondrial ROS can be significantly elevated by the respiratory complex II substrate succinate, which can accumulate within hypoxic tissues, and this is exacerbated further with reoxygenation. Intertidal species are repetitively exposed to extreme O 2 fluctuations, and have likely evolved strategies to avoid excess ROS production. We evaluated mitochondrial electron leakage and ROS production in permeabilized brain of intertidal and subtidal triplefin fish species from hyperoxia to anoxia, and assessed the effect of anoxia reoxygenation and the influence of increasing succinate concentrations. At typical intracellular PO 2 , net ROS production was similar among all species; however at elevated PO 2 , brain tissues of the intertidal triplefin fish released less ROS than subtidal species. In addition, following in vitro anoxia reoxygenation, electron transfer mediated by succinate titration was better directed to respiration, and not to ROS production for intertidal species. Overall, these data indicate that intertidal triplefin fish species better manage electrons within the ETS, from hypoxic–hyperoxic transitions.</description><subject>Animal Physiology</subject><subject>Anoxia</subject><subject>Bioaccumulation</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain</subject><subject>Electron transfer</subject><subject>Electron transport</subject><subject>Fish</subject><subject>Human Physiology</subject><subject>Hyperoxia</subject><subject>Hypoxia</subject><subject>Life Sciences</subject><subject>Mitochondria</subject><subject>Original Paper</subject><subject>Oxidative phosphorylation</subject><subject>Phosphorylation</subject><subject>Pressure dependence</subject><subject>Species</subject><subject>Substrates</subject><subject>Titration</subject><subject>Transportation systems</subject><subject>Zoology</subject><issn>0174-1578</issn><issn>1432-136X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kc1rFTEUxYMo9ln9B1zIgJu6GL35nMlKpNQPKBS0gruQmbl5L2Ve8kwyQv97006tHws3CeH8zsm9HEKeU3hNAbo3GYAraIHxFqjQshUPyIYKzlrK1beHZAO0Ey2VXX9EnuR8BQCC9uIxOeIdFZIrvSHL2YxjSTE0JdmQHabGhqn5fPGlOaQ4LWPxVfOhGZKt596XOO5imJK3TXRVKJiKn-x8a8vLsD5K8ocZXXU4n3fNyWV9V_J666uMr56SR87OGZ_d3cfk6_uzy9OP7fnFh0-n787bUXSytMyhphqUAMGxUzgICtZNIx86LqRUOAEKqXrtFLcDWD5IZMPEUVjuGOv5MXm75h6WYY_TiKFuOZtD8nubrk203vytBL8z2_jDUGBaa8FrwsldQorfF8zF7H0ecZ5twLhkw3oKmjHd36Av_0Gv4pJC3a9SNU6qdSS2UmOKOSd099NQMDe1mrVWU2s1t7UaUU0v_tzj3vKrxwrwFchVCltMv__-T-xPx0-vvg</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Devaux, Jules B. L.</creator><creator>Hedges, Chris P.</creator><creator>Birch, Nigel</creator><creator>Herbert, Neill</creator><creator>Renshaw, Gillian M. C.</creator><creator>Hickey, Anthony J. R.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QR</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5280-3871</orcidid></search><sort><creationdate>20230801</creationdate><title>Electron transfer and ROS production in brain mitochondria of intertidal and subtidal triplefin fish (Tripterygiidae)</title><author>Devaux, Jules B. L. ; Hedges, Chris P. ; Birch, Nigel ; Herbert, Neill ; Renshaw, Gillian M. C. ; Hickey, Anthony J. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-2fe919064043e76eb410afdc3b734556ed0e45689f63ab0a3b5e2bd3e4a3f2283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animal Physiology</topic><topic>Anoxia</topic><topic>Bioaccumulation</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain</topic><topic>Electron transfer</topic><topic>Electron transport</topic><topic>Fish</topic><topic>Human Physiology</topic><topic>Hyperoxia</topic><topic>Hypoxia</topic><topic>Life Sciences</topic><topic>Mitochondria</topic><topic>Original Paper</topic><topic>Oxidative phosphorylation</topic><topic>Phosphorylation</topic><topic>Pressure dependence</topic><topic>Species</topic><topic>Substrates</topic><topic>Titration</topic><topic>Transportation systems</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Devaux, Jules B. L.</creatorcontrib><creatorcontrib>Hedges, Chris P.</creatorcontrib><creatorcontrib>Birch, Nigel</creatorcontrib><creatorcontrib>Herbert, Neill</creatorcontrib><creatorcontrib>Renshaw, Gillian M. C.</creatorcontrib><creatorcontrib>Hickey, Anthony J. R.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Devaux, Jules B. L.</au><au>Hedges, Chris P.</au><au>Birch, Nigel</au><au>Herbert, Neill</au><au>Renshaw, Gillian M. C.</au><au>Hickey, Anthony J. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electron transfer and ROS production in brain mitochondria of intertidal and subtidal triplefin fish (Tripterygiidae)</atitle><jtitle>Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology</jtitle><stitle>J Comp Physiol B</stitle><addtitle>J Comp Physiol B</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>193</volume><issue>4</issue><spage>413</spage><epage>424</epage><pages>413-424</pages><issn>0174-1578</issn><eissn>1432-136X</eissn><abstract>While oxygen is essential for oxidative phosphorylation, O 2 can form reactive species (ROS) when interacting with electrons of mitochondrial electron transport system. ROS is dependent on O 2 pressure (PO 2 ) and has traditionally been assessed in O 2 saturated media, PO 2 at which mitochondria do not typically function in vivo. Mitochondrial ROS can be significantly elevated by the respiratory complex II substrate succinate, which can accumulate within hypoxic tissues, and this is exacerbated further with reoxygenation. Intertidal species are repetitively exposed to extreme O 2 fluctuations, and have likely evolved strategies to avoid excess ROS production. We evaluated mitochondrial electron leakage and ROS production in permeabilized brain of intertidal and subtidal triplefin fish species from hyperoxia to anoxia, and assessed the effect of anoxia reoxygenation and the influence of increasing succinate concentrations. At typical intracellular PO 2 , net ROS production was similar among all species; however at elevated PO 2 , brain tissues of the intertidal triplefin fish released less ROS than subtidal species. In addition, following in vitro anoxia reoxygenation, electron transfer mediated by succinate titration was better directed to respiration, and not to ROS production for intertidal species. Overall, these data indicate that intertidal triplefin fish species better manage electrons within the ETS, from hypoxic–hyperoxic transitions.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>37145369</pmid><doi>10.1007/s00360-023-01495-4</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5280-3871</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0174-1578
ispartof Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology, 2023-08, Vol.193 (4), p.413-424
issn 0174-1578
1432-136X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10299943
source Springer Nature - Complete Springer Journals
subjects Animal Physiology
Anoxia
Bioaccumulation
Biochemistry
Biomedical and Life Sciences
Biomedicine
Brain
Electron transfer
Electron transport
Fish
Human Physiology
Hyperoxia
Hypoxia
Life Sciences
Mitochondria
Original Paper
Oxidative phosphorylation
Phosphorylation
Pressure dependence
Species
Substrates
Titration
Transportation systems
Zoology
title Electron transfer and ROS production in brain mitochondria of intertidal and subtidal triplefin fish (Tripterygiidae)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T17%3A56%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electron%20transfer%20and%20ROS%20production%20in%20brain%20mitochondria%20of%20intertidal%20and%20subtidal%20triplefin%20fish%20(Tripterygiidae)&rft.jtitle=Journal%20of%20comparative%20physiology.%20B,%20Biochemical,%20systemic,%20and%20environmental%20physiology&rft.au=Devaux,%20Jules%20B.%20L.&rft.date=2023-08-01&rft.volume=193&rft.issue=4&rft.spage=413&rft.epage=424&rft.pages=413-424&rft.issn=0174-1578&rft.eissn=1432-136X&rft_id=info:doi/10.1007/s00360-023-01495-4&rft_dat=%3Cproquest_pubme%3E2829956228%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2829956228&rft_id=info:pmid/37145369&rfr_iscdi=true