Economic Order Quantity Model-Based Optimized Fuzzy Nonlinear Dynamic Mathematical Schemes

Fuzzy mathematics-informed methods are beneficial in cases when observations display uncertainty and volatility since it is of vital importance to make predictions about the future considering the stages of interpreting, planning, and strategy building. It is possible to realize this aim through acc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational intelligence and neuroscience 2022-07, Vol.2022, p.3881265-9
Hauptverfasser: Kalaichelvan, Kalaiarasi, Kausar, Nasreen, Kousar, Sajida, Karaca, Yeliz, Pamucar, Dragan, Salman, Mohammed Abdullah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue
container_start_page 3881265
container_title Computational intelligence and neuroscience
container_volume 2022
creator Kalaichelvan, Kalaiarasi
Kausar, Nasreen
Kousar, Sajida
Karaca, Yeliz
Pamucar, Dragan
Salman, Mohammed Abdullah
description Fuzzy mathematics-informed methods are beneficial in cases when observations display uncertainty and volatility since it is of vital importance to make predictions about the future considering the stages of interpreting, planning, and strategy building. It is possible to realize this aim through accurate, reliable, and realistic data and information analysis, emerging from past to present time. The principal expenditures are treated as fuzzy numbers in this article, which includes a blurry categorial prototype with pattern-diverse stipulation and collapse with salvation worth. Multiple parameters such as a shortage, ordering, and degrading cost are not fixed in nature due to uncertainty in the marketplace. Obtaining an accurate estimate of such expenditures is challenging. Accordingly, in this research, we develop an adaptive and integrative economic order quantity model with a fuzzy method and present an appropriate structure to manage such uncertain parameters, boosting the inventory system’s exactness, and computing efficiency. The major goal of the study was to assess a set of changes to the company current inventory processes that allowed an achievement in its inventory costs optimization and system development in optimizing inventory costs for better control and monitoring. The approach of graded mean integration is used to determine the most efficient actual solution. The evidence-based model is illustrated with the help of appropriate numerical and sensitivity analysis through the related visual graphical depictions. The proposed method in our study aims at investigating the economic order quantity (EOQ), as the optimal order quantity, which is significant in inventory management to minimize the total costs related to ordering, receiving, and holding inventory in the dynamic domains with nonlinear features of the complex dynamic and nonlinear systems as well as structures.
doi_str_mv 10.1155/2022/3881265
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10292942</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2830669509</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-68ce349d0052d400b5cef8bd117a71a3a5e57e4e05665cf4d76d7af59d0af5803</originalsourceid><addsrcrecordid>eNp9kc1v1DAQxa0K1C9641xF4oJU0vojtpNTBaUtlVpWiPbCxfLak66rxF7sBLT719er3a6AA5eZJ81vnmb0EHpL8CkhnJ9RTOkZq2tCBd9B-0TUsuRUsldbLfgeOkjpCWMuOaa7aI9JJqWs5D76cWmCD70zxSRaiMW3UfvBDYviLljoyk86gS0m88H1bpnV1bhcLoqvwXfOg47F54XXq-U7Pcyg14Mzuiu-m6whvUGvW90lONr0Q_RwdXl_8aW8nVzfXHy8LQ2TzVCK2gCrGpuvo7bCeMoNtPXUEiK1JJppDlxCBZgLwU1bWSms1C3PG7nWmB2i87XvfJz2YA34IepOzaPrdVyooJ36e-LdTD2GX4pg2tCmotnh_cYhhp8jpEH1LhnoOu0hjEnRmmEhGo6bjL77B30KY_T5vxVFCSWSVpn6sKZMDClFaLfXEKxWqalVamqTWsaP__xgC7_ElIGTNTBz3urf7v92z3ovn6c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2832121724</pqid></control><display><type>article</type><title>Economic Order Quantity Model-Based Optimized Fuzzy Nonlinear Dynamic Mathematical Schemes</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>Wiley Online Library Open Access</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Kalaichelvan, Kalaiarasi ; Kausar, Nasreen ; Kousar, Sajida ; Karaca, Yeliz ; Pamucar, Dragan ; Salman, Mohammed Abdullah</creator><contributor>Zhang, Dalin ; Dalin Zhang</contributor><creatorcontrib>Kalaichelvan, Kalaiarasi ; Kausar, Nasreen ; Kousar, Sajida ; Karaca, Yeliz ; Pamucar, Dragan ; Salman, Mohammed Abdullah ; Zhang, Dalin ; Dalin Zhang</creatorcontrib><description>Fuzzy mathematics-informed methods are beneficial in cases when observations display uncertainty and volatility since it is of vital importance to make predictions about the future considering the stages of interpreting, planning, and strategy building. It is possible to realize this aim through accurate, reliable, and realistic data and information analysis, emerging from past to present time. The principal expenditures are treated as fuzzy numbers in this article, which includes a blurry categorial prototype with pattern-diverse stipulation and collapse with salvation worth. Multiple parameters such as a shortage, ordering, and degrading cost are not fixed in nature due to uncertainty in the marketplace. Obtaining an accurate estimate of such expenditures is challenging. Accordingly, in this research, we develop an adaptive and integrative economic order quantity model with a fuzzy method and present an appropriate structure to manage such uncertain parameters, boosting the inventory system’s exactness, and computing efficiency. The major goal of the study was to assess a set of changes to the company current inventory processes that allowed an achievement in its inventory costs optimization and system development in optimizing inventory costs for better control and monitoring. The approach of graded mean integration is used to determine the most efficient actual solution. The evidence-based model is illustrated with the help of appropriate numerical and sensitivity analysis through the related visual graphical depictions. The proposed method in our study aims at investigating the economic order quantity (EOQ), as the optimal order quantity, which is significant in inventory management to minimize the total costs related to ordering, receiving, and holding inventory in the dynamic domains with nonlinear features of the complex dynamic and nonlinear systems as well as structures.</description><identifier>ISSN: 1687-5265</identifier><identifier>EISSN: 1687-5273</identifier><identifier>DOI: 10.1155/2022/3881265</identifier><identifier>PMID: 37377747</identifier><language>eng</language><publisher>United States: Hindawi</publisher><subject>Algorithms ; Automation ; Cluster analysis ; Clustering ; Costs ; Data analysis ; Datasets ; Dynamical systems ; Economic models ; Expenditures ; Informatics ; Information management ; Inventory ; Inventory management ; Knowledge discovery ; Mathematical models ; Mathematics ; Models, Economic ; Neural networks ; Nonlinear Dynamics ; Nonlinear systems ; Optimization ; Optimization techniques ; Order quantity ; Parameter uncertainty ; Pattern recognition ; Sensitivity analysis ; Uncertainty</subject><ispartof>Computational intelligence and neuroscience, 2022-07, Vol.2022, p.3881265-9</ispartof><rights>Copyright © 2022 Kalaiarasi Kalaichelvan et al.</rights><rights>Copyright © 2022 Kalaiarasi Kalaichelvan et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><rights>Copyright © 2022 Kalaiarasi Kalaichelvan et al. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-68ce349d0052d400b5cef8bd117a71a3a5e57e4e05665cf4d76d7af59d0af5803</citedby><cites>FETCH-LOGICAL-c379t-68ce349d0052d400b5cef8bd117a71a3a5e57e4e05665cf4d76d7af59d0af5803</cites><orcidid>0000-0001-8522-1942 ; 0000-0002-2300-6283 ; 0000-0001-8725-6719 ; 0000-0002-3616-1514 ; 0000-0001-8157-7909 ; 0000-0001-6705-5354</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10292942/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10292942/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37377747$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Zhang, Dalin</contributor><contributor>Dalin Zhang</contributor><creatorcontrib>Kalaichelvan, Kalaiarasi</creatorcontrib><creatorcontrib>Kausar, Nasreen</creatorcontrib><creatorcontrib>Kousar, Sajida</creatorcontrib><creatorcontrib>Karaca, Yeliz</creatorcontrib><creatorcontrib>Pamucar, Dragan</creatorcontrib><creatorcontrib>Salman, Mohammed Abdullah</creatorcontrib><title>Economic Order Quantity Model-Based Optimized Fuzzy Nonlinear Dynamic Mathematical Schemes</title><title>Computational intelligence and neuroscience</title><addtitle>Comput Intell Neurosci</addtitle><description>Fuzzy mathematics-informed methods are beneficial in cases when observations display uncertainty and volatility since it is of vital importance to make predictions about the future considering the stages of interpreting, planning, and strategy building. It is possible to realize this aim through accurate, reliable, and realistic data and information analysis, emerging from past to present time. The principal expenditures are treated as fuzzy numbers in this article, which includes a blurry categorial prototype with pattern-diverse stipulation and collapse with salvation worth. Multiple parameters such as a shortage, ordering, and degrading cost are not fixed in nature due to uncertainty in the marketplace. Obtaining an accurate estimate of such expenditures is challenging. Accordingly, in this research, we develop an adaptive and integrative economic order quantity model with a fuzzy method and present an appropriate structure to manage such uncertain parameters, boosting the inventory system’s exactness, and computing efficiency. The major goal of the study was to assess a set of changes to the company current inventory processes that allowed an achievement in its inventory costs optimization and system development in optimizing inventory costs for better control and monitoring. The approach of graded mean integration is used to determine the most efficient actual solution. The evidence-based model is illustrated with the help of appropriate numerical and sensitivity analysis through the related visual graphical depictions. The proposed method in our study aims at investigating the economic order quantity (EOQ), as the optimal order quantity, which is significant in inventory management to minimize the total costs related to ordering, receiving, and holding inventory in the dynamic domains with nonlinear features of the complex dynamic and nonlinear systems as well as structures.</description><subject>Algorithms</subject><subject>Automation</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Costs</subject><subject>Data analysis</subject><subject>Datasets</subject><subject>Dynamical systems</subject><subject>Economic models</subject><subject>Expenditures</subject><subject>Informatics</subject><subject>Information management</subject><subject>Inventory</subject><subject>Inventory management</subject><subject>Knowledge discovery</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Models, Economic</subject><subject>Neural networks</subject><subject>Nonlinear Dynamics</subject><subject>Nonlinear systems</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Order quantity</subject><subject>Parameter uncertainty</subject><subject>Pattern recognition</subject><subject>Sensitivity analysis</subject><subject>Uncertainty</subject><issn>1687-5265</issn><issn>1687-5273</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc1v1DAQxa0K1C9641xF4oJU0vojtpNTBaUtlVpWiPbCxfLak66rxF7sBLT719er3a6AA5eZJ81vnmb0EHpL8CkhnJ9RTOkZq2tCBd9B-0TUsuRUsldbLfgeOkjpCWMuOaa7aI9JJqWs5D76cWmCD70zxSRaiMW3UfvBDYviLljoyk86gS0m88H1bpnV1bhcLoqvwXfOg47F54XXq-U7Pcyg14Mzuiu-m6whvUGvW90lONr0Q_RwdXl_8aW8nVzfXHy8LQ2TzVCK2gCrGpuvo7bCeMoNtPXUEiK1JJppDlxCBZgLwU1bWSms1C3PG7nWmB2i87XvfJz2YA34IepOzaPrdVyooJ36e-LdTD2GX4pg2tCmotnh_cYhhp8jpEH1LhnoOu0hjEnRmmEhGo6bjL77B30KY_T5vxVFCSWSVpn6sKZMDClFaLfXEKxWqalVamqTWsaP__xgC7_ElIGTNTBz3urf7v92z3ovn6c</recordid><startdate>20220715</startdate><enddate>20220715</enddate><creator>Kalaichelvan, Kalaiarasi</creator><creator>Kausar, Nasreen</creator><creator>Kousar, Sajida</creator><creator>Karaca, Yeliz</creator><creator>Pamucar, Dragan</creator><creator>Salman, Mohammed Abdullah</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AL</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8522-1942</orcidid><orcidid>https://orcid.org/0000-0002-2300-6283</orcidid><orcidid>https://orcid.org/0000-0001-8725-6719</orcidid><orcidid>https://orcid.org/0000-0002-3616-1514</orcidid><orcidid>https://orcid.org/0000-0001-8157-7909</orcidid><orcidid>https://orcid.org/0000-0001-6705-5354</orcidid></search><sort><creationdate>20220715</creationdate><title>Economic Order Quantity Model-Based Optimized Fuzzy Nonlinear Dynamic Mathematical Schemes</title><author>Kalaichelvan, Kalaiarasi ; Kausar, Nasreen ; Kousar, Sajida ; Karaca, Yeliz ; Pamucar, Dragan ; Salman, Mohammed Abdullah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-68ce349d0052d400b5cef8bd117a71a3a5e57e4e05665cf4d76d7af59d0af5803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Automation</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Costs</topic><topic>Data analysis</topic><topic>Datasets</topic><topic>Dynamical systems</topic><topic>Economic models</topic><topic>Expenditures</topic><topic>Informatics</topic><topic>Information management</topic><topic>Inventory</topic><topic>Inventory management</topic><topic>Knowledge discovery</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Models, Economic</topic><topic>Neural networks</topic><topic>Nonlinear Dynamics</topic><topic>Nonlinear systems</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Order quantity</topic><topic>Parameter uncertainty</topic><topic>Pattern recognition</topic><topic>Sensitivity analysis</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kalaichelvan, Kalaiarasi</creatorcontrib><creatorcontrib>Kausar, Nasreen</creatorcontrib><creatorcontrib>Kousar, Sajida</creatorcontrib><creatorcontrib>Karaca, Yeliz</creatorcontrib><creatorcontrib>Pamucar, Dragan</creatorcontrib><creatorcontrib>Salman, Mohammed Abdullah</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational intelligence and neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kalaichelvan, Kalaiarasi</au><au>Kausar, Nasreen</au><au>Kousar, Sajida</au><au>Karaca, Yeliz</au><au>Pamucar, Dragan</au><au>Salman, Mohammed Abdullah</au><au>Zhang, Dalin</au><au>Dalin Zhang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Economic Order Quantity Model-Based Optimized Fuzzy Nonlinear Dynamic Mathematical Schemes</atitle><jtitle>Computational intelligence and neuroscience</jtitle><addtitle>Comput Intell Neurosci</addtitle><date>2022-07-15</date><risdate>2022</risdate><volume>2022</volume><spage>3881265</spage><epage>9</epage><pages>3881265-9</pages><issn>1687-5265</issn><eissn>1687-5273</eissn><abstract>Fuzzy mathematics-informed methods are beneficial in cases when observations display uncertainty and volatility since it is of vital importance to make predictions about the future considering the stages of interpreting, planning, and strategy building. It is possible to realize this aim through accurate, reliable, and realistic data and information analysis, emerging from past to present time. The principal expenditures are treated as fuzzy numbers in this article, which includes a blurry categorial prototype with pattern-diverse stipulation and collapse with salvation worth. Multiple parameters such as a shortage, ordering, and degrading cost are not fixed in nature due to uncertainty in the marketplace. Obtaining an accurate estimate of such expenditures is challenging. Accordingly, in this research, we develop an adaptive and integrative economic order quantity model with a fuzzy method and present an appropriate structure to manage such uncertain parameters, boosting the inventory system’s exactness, and computing efficiency. The major goal of the study was to assess a set of changes to the company current inventory processes that allowed an achievement in its inventory costs optimization and system development in optimizing inventory costs for better control and monitoring. The approach of graded mean integration is used to determine the most efficient actual solution. The evidence-based model is illustrated with the help of appropriate numerical and sensitivity analysis through the related visual graphical depictions. The proposed method in our study aims at investigating the economic order quantity (EOQ), as the optimal order quantity, which is significant in inventory management to minimize the total costs related to ordering, receiving, and holding inventory in the dynamic domains with nonlinear features of the complex dynamic and nonlinear systems as well as structures.</abstract><cop>United States</cop><pub>Hindawi</pub><pmid>37377747</pmid><doi>10.1155/2022/3881265</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8522-1942</orcidid><orcidid>https://orcid.org/0000-0002-2300-6283</orcidid><orcidid>https://orcid.org/0000-0001-8725-6719</orcidid><orcidid>https://orcid.org/0000-0002-3616-1514</orcidid><orcidid>https://orcid.org/0000-0001-8157-7909</orcidid><orcidid>https://orcid.org/0000-0001-6705-5354</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-5265
ispartof Computational intelligence and neuroscience, 2022-07, Vol.2022, p.3881265-9
issn 1687-5265
1687-5273
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10292942
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; Wiley Online Library Open Access; PubMed Central; Alma/SFX Local Collection
subjects Algorithms
Automation
Cluster analysis
Clustering
Costs
Data analysis
Datasets
Dynamical systems
Economic models
Expenditures
Informatics
Information management
Inventory
Inventory management
Knowledge discovery
Mathematical models
Mathematics
Models, Economic
Neural networks
Nonlinear Dynamics
Nonlinear systems
Optimization
Optimization techniques
Order quantity
Parameter uncertainty
Pattern recognition
Sensitivity analysis
Uncertainty
title Economic Order Quantity Model-Based Optimized Fuzzy Nonlinear Dynamic Mathematical Schemes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T20%3A34%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Economic%20Order%20Quantity%20Model-Based%20Optimized%20Fuzzy%20Nonlinear%20Dynamic%20Mathematical%20Schemes&rft.jtitle=Computational%20intelligence%20and%20neuroscience&rft.au=Kalaichelvan,%20Kalaiarasi&rft.date=2022-07-15&rft.volume=2022&rft.spage=3881265&rft.epage=9&rft.pages=3881265-9&rft.issn=1687-5265&rft.eissn=1687-5273&rft_id=info:doi/10.1155/2022/3881265&rft_dat=%3Cproquest_pubme%3E2830669509%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2832121724&rft_id=info:pmid/37377747&rfr_iscdi=true