In vivo bone marrow microenvironment siRNA delivery using lipid-polymer nanoparticles for multiple myeloma therapy

Multiple myeloma (MM), a hematologic malignancy that preferentially colonizes the bone marrow, remains incurable with a survival rate of 3 to 6 mo for those with advanced disease despite great efforts to develop effective therapies. Thus, there is an urgent clinical need for innovative and more effe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2023-06, Vol.120 (25), p.e2215711120-e2215711120
Hauptverfasser: Guimarães, Pedro P G, Figueroa-Espada, Christian G, Riley, Rachel S, Gong, Ningqiang, Xue, Lulu, Sewastianik, Tomasz, Dennis, Peter S, Loebel, Claudia, Chung, Amanda, Shepherd, Sarah J, Haley, Rebecca M, Hamilton, Alex G, El-Mayta, Rakan, Wang, Karin, Langer, Robert, Anderson, Daniel G, Carrasco, Ruben D, Mitchell, Michael J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e2215711120
container_issue 25
container_start_page e2215711120
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 120
creator Guimarães, Pedro P G
Figueroa-Espada, Christian G
Riley, Rachel S
Gong, Ningqiang
Xue, Lulu
Sewastianik, Tomasz
Dennis, Peter S
Loebel, Claudia
Chung, Amanda
Shepherd, Sarah J
Haley, Rebecca M
Hamilton, Alex G
El-Mayta, Rakan
Wang, Karin
Langer, Robert
Anderson, Daniel G
Carrasco, Ruben D
Mitchell, Michael J
description Multiple myeloma (MM), a hematologic malignancy that preferentially colonizes the bone marrow, remains incurable with a survival rate of 3 to 6 mo for those with advanced disease despite great efforts to develop effective therapies. Thus, there is an urgent clinical need for innovative and more effective MM therapeutics. Insights suggest that endothelial cells within the bone marrow microenvironment play a critical role. Specifically, cyclophilin A (CyPA), a homing factor secreted by bone marrow endothelial cells (BMECs), is critical to MM homing, progression, survival, and chemotherapeutic resistance. Thus, inhibition of CyPA provides a potential strategy to simultaneously inhibit MM progression and sensitize MM to chemotherapeutics, improving therapeutic response. However, inhibiting factors from the bone marrow endothelium remains challenging due to delivery barriers. Here, we utilize both RNA interference (RNAi) and lipid-polymer nanoparticles to engineer a potential MM therapy, which targets CyPA within blood vessels of the bone marrow. We used combinatorial chemistry and high-throughput in vivo screening methods to engineer a nanoparticle platform for small interfering RNA (siRNA) delivery to bone marrow endothelium. We demonstrate that our strategy inhibits CyPA in BMECs, preventing MM cell extravasation in vitro. Finally, we show that siRNA-based silencing of CyPA in a murine xenograft model of MM, either alone or in combination with the Food and Drug Administration (FDA)-approved MM therapeutic bortezomib, reduces tumor burden and extends survival. This nanoparticle platform may provide a broadly enabling technology to deliver nucleic acid therapeutics to other malignancies that home to bone marrow.
doi_str_mv 10.1073/pnas.2215711120
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10288566</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2829259748</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-3185d8292dd5c13e280b837b247c0172465ca84207d63055ee2da4b083d213333</originalsourceid><addsrcrecordid>eNpdkU1v1TAQRS0Eoq-FNTtkiQ2btGM7jp0VqioolSqQEKwtJ5nXunLsYCep8u_xU0v58GYWPr6a40vIGwanDJQ4m4LNp5wzqRhjHJ6RHYOWVU3dwnOyA-Cq0jWvj8hxzncA0EoNL8mRUKJwrdqRdBXo6tZIuxiQjjaleE9H16eIYXUphhHDTLP79uWcDujdimmjS3bhhno3uaGaot9GTDTYECebZtd7zHQfEx0XP7vJl9QNfRwtnW8x2Wl7RV7src_4-nGekB-fPn6_-Fxdf728uji_rvqa87kSTMtB85YPg-yZQK6h00J1vFY9MMXrRva2yIEaGgFSIvLB1h1oMXAmyjkhHx5yp6UbceiLSLLeTMkVzc1E68y_N8Hdmpu4GgZca9k0JeH9Y0KKPxfMsxld7tF7GzAu2XDNpS49aFXQd_-hd3FJofgdqJbLVtW6UGcPVPnfnBPun7ZhYA6FmkOh5k-h5cXbvyWe-N8Nil92lp4p</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2829259748</pqid></control><display><type>article</type><title>In vivo bone marrow microenvironment siRNA delivery using lipid-polymer nanoparticles for multiple myeloma therapy</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Guimarães, Pedro P G ; Figueroa-Espada, Christian G ; Riley, Rachel S ; Gong, Ningqiang ; Xue, Lulu ; Sewastianik, Tomasz ; Dennis, Peter S ; Loebel, Claudia ; Chung, Amanda ; Shepherd, Sarah J ; Haley, Rebecca M ; Hamilton, Alex G ; El-Mayta, Rakan ; Wang, Karin ; Langer, Robert ; Anderson, Daniel G ; Carrasco, Ruben D ; Mitchell, Michael J</creator><creatorcontrib>Guimarães, Pedro P G ; Figueroa-Espada, Christian G ; Riley, Rachel S ; Gong, Ningqiang ; Xue, Lulu ; Sewastianik, Tomasz ; Dennis, Peter S ; Loebel, Claudia ; Chung, Amanda ; Shepherd, Sarah J ; Haley, Rebecca M ; Hamilton, Alex G ; El-Mayta, Rakan ; Wang, Karin ; Langer, Robert ; Anderson, Daniel G ; Carrasco, Ruben D ; Mitchell, Michael J</creatorcontrib><description>Multiple myeloma (MM), a hematologic malignancy that preferentially colonizes the bone marrow, remains incurable with a survival rate of 3 to 6 mo for those with advanced disease despite great efforts to develop effective therapies. Thus, there is an urgent clinical need for innovative and more effective MM therapeutics. Insights suggest that endothelial cells within the bone marrow microenvironment play a critical role. Specifically, cyclophilin A (CyPA), a homing factor secreted by bone marrow endothelial cells (BMECs), is critical to MM homing, progression, survival, and chemotherapeutic resistance. Thus, inhibition of CyPA provides a potential strategy to simultaneously inhibit MM progression and sensitize MM to chemotherapeutics, improving therapeutic response. However, inhibiting factors from the bone marrow endothelium remains challenging due to delivery barriers. Here, we utilize both RNA interference (RNAi) and lipid-polymer nanoparticles to engineer a potential MM therapy, which targets CyPA within blood vessels of the bone marrow. We used combinatorial chemistry and high-throughput in vivo screening methods to engineer a nanoparticle platform for small interfering RNA (siRNA) delivery to bone marrow endothelium. We demonstrate that our strategy inhibits CyPA in BMECs, preventing MM cell extravasation in vitro. Finally, we show that siRNA-based silencing of CyPA in a murine xenograft model of MM, either alone or in combination with the Food and Drug Administration (FDA)-approved MM therapeutic bortezomib, reduces tumor burden and extends survival. This nanoparticle platform may provide a broadly enabling technology to deliver nucleic acid therapeutics to other malignancies that home to bone marrow.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2215711120</identifier><identifier>PMID: 37310997</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Biological Sciences ; Blood vessels ; Bone Marrow ; Bortezomib ; Chemoresistance ; Combinatorial analysis ; Combinatorial chemistry ; Cyclophilin A ; Endothelial Cells ; Endothelium ; Engineers ; Extravasation ; Gene expression ; Homing ; Humans ; In vivo methods and tests ; Lipids ; Malignancy ; Mice ; Microenvironments ; Multiple myeloma ; Multiple Myeloma - drug therapy ; Multiple Myeloma - genetics ; Nanoparticles ; Nucleic acids ; Physical Sciences ; Polymers ; Ribonucleic acid ; RNA ; RNA, Small Interfering - genetics ; RNA-mediated interference ; siRNA ; Survival ; Tumor Microenvironment ; United States ; Xenotransplantation</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2023-06, Vol.120 (25), p.e2215711120-e2215711120</ispartof><rights>Copyright National Academy of Sciences Jun 20, 2023</rights><rights>Copyright © 2023 the Author(s). Published by PNAS. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-3185d8292dd5c13e280b837b247c0172465ca84207d63055ee2da4b083d213333</citedby><orcidid>0000-0003-2700-7678 ; 0000-0003-4255-0492 ; 0000-0002-9810-5630 ; 0000-0003-4534-2779 ; 0000-0002-5855-233X ; 0000-0001-7322-7829 ; 0000-0001-6849-1852 ; 0000-0002-3628-2244 ; 0000-0001-5719-1336 ; 0000-0003-4603-8517</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10288566/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10288566/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37310997$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guimarães, Pedro P G</creatorcontrib><creatorcontrib>Figueroa-Espada, Christian G</creatorcontrib><creatorcontrib>Riley, Rachel S</creatorcontrib><creatorcontrib>Gong, Ningqiang</creatorcontrib><creatorcontrib>Xue, Lulu</creatorcontrib><creatorcontrib>Sewastianik, Tomasz</creatorcontrib><creatorcontrib>Dennis, Peter S</creatorcontrib><creatorcontrib>Loebel, Claudia</creatorcontrib><creatorcontrib>Chung, Amanda</creatorcontrib><creatorcontrib>Shepherd, Sarah J</creatorcontrib><creatorcontrib>Haley, Rebecca M</creatorcontrib><creatorcontrib>Hamilton, Alex G</creatorcontrib><creatorcontrib>El-Mayta, Rakan</creatorcontrib><creatorcontrib>Wang, Karin</creatorcontrib><creatorcontrib>Langer, Robert</creatorcontrib><creatorcontrib>Anderson, Daniel G</creatorcontrib><creatorcontrib>Carrasco, Ruben D</creatorcontrib><creatorcontrib>Mitchell, Michael J</creatorcontrib><title>In vivo bone marrow microenvironment siRNA delivery using lipid-polymer nanoparticles for multiple myeloma therapy</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Multiple myeloma (MM), a hematologic malignancy that preferentially colonizes the bone marrow, remains incurable with a survival rate of 3 to 6 mo for those with advanced disease despite great efforts to develop effective therapies. Thus, there is an urgent clinical need for innovative and more effective MM therapeutics. Insights suggest that endothelial cells within the bone marrow microenvironment play a critical role. Specifically, cyclophilin A (CyPA), a homing factor secreted by bone marrow endothelial cells (BMECs), is critical to MM homing, progression, survival, and chemotherapeutic resistance. Thus, inhibition of CyPA provides a potential strategy to simultaneously inhibit MM progression and sensitize MM to chemotherapeutics, improving therapeutic response. However, inhibiting factors from the bone marrow endothelium remains challenging due to delivery barriers. Here, we utilize both RNA interference (RNAi) and lipid-polymer nanoparticles to engineer a potential MM therapy, which targets CyPA within blood vessels of the bone marrow. We used combinatorial chemistry and high-throughput in vivo screening methods to engineer a nanoparticle platform for small interfering RNA (siRNA) delivery to bone marrow endothelium. We demonstrate that our strategy inhibits CyPA in BMECs, preventing MM cell extravasation in vitro. Finally, we show that siRNA-based silencing of CyPA in a murine xenograft model of MM, either alone or in combination with the Food and Drug Administration (FDA)-approved MM therapeutic bortezomib, reduces tumor burden and extends survival. This nanoparticle platform may provide a broadly enabling technology to deliver nucleic acid therapeutics to other malignancies that home to bone marrow.</description><subject>Animals</subject><subject>Biological Sciences</subject><subject>Blood vessels</subject><subject>Bone Marrow</subject><subject>Bortezomib</subject><subject>Chemoresistance</subject><subject>Combinatorial analysis</subject><subject>Combinatorial chemistry</subject><subject>Cyclophilin A</subject><subject>Endothelial Cells</subject><subject>Endothelium</subject><subject>Engineers</subject><subject>Extravasation</subject><subject>Gene expression</subject><subject>Homing</subject><subject>Humans</subject><subject>In vivo methods and tests</subject><subject>Lipids</subject><subject>Malignancy</subject><subject>Mice</subject><subject>Microenvironments</subject><subject>Multiple myeloma</subject><subject>Multiple Myeloma - drug therapy</subject><subject>Multiple Myeloma - genetics</subject><subject>Nanoparticles</subject><subject>Nucleic acids</subject><subject>Physical Sciences</subject><subject>Polymers</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA, Small Interfering - genetics</subject><subject>RNA-mediated interference</subject><subject>siRNA</subject><subject>Survival</subject><subject>Tumor Microenvironment</subject><subject>United States</subject><subject>Xenotransplantation</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU1v1TAQRS0Eoq-FNTtkiQ2btGM7jp0VqioolSqQEKwtJ5nXunLsYCep8u_xU0v58GYWPr6a40vIGwanDJQ4m4LNp5wzqRhjHJ6RHYOWVU3dwnOyA-Cq0jWvj8hxzncA0EoNL8mRUKJwrdqRdBXo6tZIuxiQjjaleE9H16eIYXUphhHDTLP79uWcDujdimmjS3bhhno3uaGaot9GTDTYECebZtd7zHQfEx0XP7vJl9QNfRwtnW8x2Wl7RV7src_4-nGekB-fPn6_-Fxdf728uji_rvqa87kSTMtB85YPg-yZQK6h00J1vFY9MMXrRva2yIEaGgFSIvLB1h1oMXAmyjkhHx5yp6UbceiLSLLeTMkVzc1E68y_N8Hdmpu4GgZca9k0JeH9Y0KKPxfMsxld7tF7GzAu2XDNpS49aFXQd_-hd3FJofgdqJbLVtW6UGcPVPnfnBPun7ZhYA6FmkOh5k-h5cXbvyWe-N8Nil92lp4p</recordid><startdate>20230620</startdate><enddate>20230620</enddate><creator>Guimarães, Pedro P G</creator><creator>Figueroa-Espada, Christian G</creator><creator>Riley, Rachel S</creator><creator>Gong, Ningqiang</creator><creator>Xue, Lulu</creator><creator>Sewastianik, Tomasz</creator><creator>Dennis, Peter S</creator><creator>Loebel, Claudia</creator><creator>Chung, Amanda</creator><creator>Shepherd, Sarah J</creator><creator>Haley, Rebecca M</creator><creator>Hamilton, Alex G</creator><creator>El-Mayta, Rakan</creator><creator>Wang, Karin</creator><creator>Langer, Robert</creator><creator>Anderson, Daniel G</creator><creator>Carrasco, Ruben D</creator><creator>Mitchell, Michael J</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2700-7678</orcidid><orcidid>https://orcid.org/0000-0003-4255-0492</orcidid><orcidid>https://orcid.org/0000-0002-9810-5630</orcidid><orcidid>https://orcid.org/0000-0003-4534-2779</orcidid><orcidid>https://orcid.org/0000-0002-5855-233X</orcidid><orcidid>https://orcid.org/0000-0001-7322-7829</orcidid><orcidid>https://orcid.org/0000-0001-6849-1852</orcidid><orcidid>https://orcid.org/0000-0002-3628-2244</orcidid><orcidid>https://orcid.org/0000-0001-5719-1336</orcidid><orcidid>https://orcid.org/0000-0003-4603-8517</orcidid></search><sort><creationdate>20230620</creationdate><title>In vivo bone marrow microenvironment siRNA delivery using lipid-polymer nanoparticles for multiple myeloma therapy</title><author>Guimarães, Pedro P G ; Figueroa-Espada, Christian G ; Riley, Rachel S ; Gong, Ningqiang ; Xue, Lulu ; Sewastianik, Tomasz ; Dennis, Peter S ; Loebel, Claudia ; Chung, Amanda ; Shepherd, Sarah J ; Haley, Rebecca M ; Hamilton, Alex G ; El-Mayta, Rakan ; Wang, Karin ; Langer, Robert ; Anderson, Daniel G ; Carrasco, Ruben D ; Mitchell, Michael J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-3185d8292dd5c13e280b837b247c0172465ca84207d63055ee2da4b083d213333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>Biological Sciences</topic><topic>Blood vessels</topic><topic>Bone Marrow</topic><topic>Bortezomib</topic><topic>Chemoresistance</topic><topic>Combinatorial analysis</topic><topic>Combinatorial chemistry</topic><topic>Cyclophilin A</topic><topic>Endothelial Cells</topic><topic>Endothelium</topic><topic>Engineers</topic><topic>Extravasation</topic><topic>Gene expression</topic><topic>Homing</topic><topic>Humans</topic><topic>In vivo methods and tests</topic><topic>Lipids</topic><topic>Malignancy</topic><topic>Mice</topic><topic>Microenvironments</topic><topic>Multiple myeloma</topic><topic>Multiple Myeloma - drug therapy</topic><topic>Multiple Myeloma - genetics</topic><topic>Nanoparticles</topic><topic>Nucleic acids</topic><topic>Physical Sciences</topic><topic>Polymers</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA, Small Interfering - genetics</topic><topic>RNA-mediated interference</topic><topic>siRNA</topic><topic>Survival</topic><topic>Tumor Microenvironment</topic><topic>United States</topic><topic>Xenotransplantation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guimarães, Pedro P G</creatorcontrib><creatorcontrib>Figueroa-Espada, Christian G</creatorcontrib><creatorcontrib>Riley, Rachel S</creatorcontrib><creatorcontrib>Gong, Ningqiang</creatorcontrib><creatorcontrib>Xue, Lulu</creatorcontrib><creatorcontrib>Sewastianik, Tomasz</creatorcontrib><creatorcontrib>Dennis, Peter S</creatorcontrib><creatorcontrib>Loebel, Claudia</creatorcontrib><creatorcontrib>Chung, Amanda</creatorcontrib><creatorcontrib>Shepherd, Sarah J</creatorcontrib><creatorcontrib>Haley, Rebecca M</creatorcontrib><creatorcontrib>Hamilton, Alex G</creatorcontrib><creatorcontrib>El-Mayta, Rakan</creatorcontrib><creatorcontrib>Wang, Karin</creatorcontrib><creatorcontrib>Langer, Robert</creatorcontrib><creatorcontrib>Anderson, Daniel G</creatorcontrib><creatorcontrib>Carrasco, Ruben D</creatorcontrib><creatorcontrib>Mitchell, Michael J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guimarães, Pedro P G</au><au>Figueroa-Espada, Christian G</au><au>Riley, Rachel S</au><au>Gong, Ningqiang</au><au>Xue, Lulu</au><au>Sewastianik, Tomasz</au><au>Dennis, Peter S</au><au>Loebel, Claudia</au><au>Chung, Amanda</au><au>Shepherd, Sarah J</au><au>Haley, Rebecca M</au><au>Hamilton, Alex G</au><au>El-Mayta, Rakan</au><au>Wang, Karin</au><au>Langer, Robert</au><au>Anderson, Daniel G</au><au>Carrasco, Ruben D</au><au>Mitchell, Michael J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vivo bone marrow microenvironment siRNA delivery using lipid-polymer nanoparticles for multiple myeloma therapy</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2023-06-20</date><risdate>2023</risdate><volume>120</volume><issue>25</issue><spage>e2215711120</spage><epage>e2215711120</epage><pages>e2215711120-e2215711120</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Multiple myeloma (MM), a hematologic malignancy that preferentially colonizes the bone marrow, remains incurable with a survival rate of 3 to 6 mo for those with advanced disease despite great efforts to develop effective therapies. Thus, there is an urgent clinical need for innovative and more effective MM therapeutics. Insights suggest that endothelial cells within the bone marrow microenvironment play a critical role. Specifically, cyclophilin A (CyPA), a homing factor secreted by bone marrow endothelial cells (BMECs), is critical to MM homing, progression, survival, and chemotherapeutic resistance. Thus, inhibition of CyPA provides a potential strategy to simultaneously inhibit MM progression and sensitize MM to chemotherapeutics, improving therapeutic response. However, inhibiting factors from the bone marrow endothelium remains challenging due to delivery barriers. Here, we utilize both RNA interference (RNAi) and lipid-polymer nanoparticles to engineer a potential MM therapy, which targets CyPA within blood vessels of the bone marrow. We used combinatorial chemistry and high-throughput in vivo screening methods to engineer a nanoparticle platform for small interfering RNA (siRNA) delivery to bone marrow endothelium. We demonstrate that our strategy inhibits CyPA in BMECs, preventing MM cell extravasation in vitro. Finally, we show that siRNA-based silencing of CyPA in a murine xenograft model of MM, either alone or in combination with the Food and Drug Administration (FDA)-approved MM therapeutic bortezomib, reduces tumor burden and extends survival. This nanoparticle platform may provide a broadly enabling technology to deliver nucleic acid therapeutics to other malignancies that home to bone marrow.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>37310997</pmid><doi>10.1073/pnas.2215711120</doi><orcidid>https://orcid.org/0000-0003-2700-7678</orcidid><orcidid>https://orcid.org/0000-0003-4255-0492</orcidid><orcidid>https://orcid.org/0000-0002-9810-5630</orcidid><orcidid>https://orcid.org/0000-0003-4534-2779</orcidid><orcidid>https://orcid.org/0000-0002-5855-233X</orcidid><orcidid>https://orcid.org/0000-0001-7322-7829</orcidid><orcidid>https://orcid.org/0000-0001-6849-1852</orcidid><orcidid>https://orcid.org/0000-0002-3628-2244</orcidid><orcidid>https://orcid.org/0000-0001-5719-1336</orcidid><orcidid>https://orcid.org/0000-0003-4603-8517</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2023-06, Vol.120 (25), p.e2215711120-e2215711120
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10288566
source MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
Biological Sciences
Blood vessels
Bone Marrow
Bortezomib
Chemoresistance
Combinatorial analysis
Combinatorial chemistry
Cyclophilin A
Endothelial Cells
Endothelium
Engineers
Extravasation
Gene expression
Homing
Humans
In vivo methods and tests
Lipids
Malignancy
Mice
Microenvironments
Multiple myeloma
Multiple Myeloma - drug therapy
Multiple Myeloma - genetics
Nanoparticles
Nucleic acids
Physical Sciences
Polymers
Ribonucleic acid
RNA
RNA, Small Interfering - genetics
RNA-mediated interference
siRNA
Survival
Tumor Microenvironment
United States
Xenotransplantation
title In vivo bone marrow microenvironment siRNA delivery using lipid-polymer nanoparticles for multiple myeloma therapy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T15%3A44%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vivo%20bone%20marrow%20microenvironment%20siRNA%20delivery%20using%20lipid-polymer%20nanoparticles%20for%20multiple%20myeloma%20therapy&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Guimar%C3%A3es,%20Pedro%20P%20G&rft.date=2023-06-20&rft.volume=120&rft.issue=25&rft.spage=e2215711120&rft.epage=e2215711120&rft.pages=e2215711120-e2215711120&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2215711120&rft_dat=%3Cproquest_pubme%3E2829259748%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2829259748&rft_id=info:pmid/37310997&rfr_iscdi=true