Shaping eukaryotic epigenetic systems by horizontal gene transfer

DNA methylation constitutes one of the pillars of epigenetics, relying on covalent bonds for addition and/or removal of chemically distinct marks within the major groove of the double helix. DNA methyltransferases, enzymes which introduce methyl marks, initially evolved in prokaryotes as components...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BioEssays 2023-07, Vol.45 (7), p.e2200232-n/a
Hauptverfasser: Arkhipova, Irina R., Yushenova, Irina A., Rodriguez, Fernando
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 7
container_start_page e2200232
container_title BioEssays
container_volume 45
creator Arkhipova, Irina R.
Yushenova, Irina A.
Rodriguez, Fernando
description DNA methylation constitutes one of the pillars of epigenetics, relying on covalent bonds for addition and/or removal of chemically distinct marks within the major groove of the double helix. DNA methyltransferases, enzymes which introduce methyl marks, initially evolved in prokaryotes as components of restriction‐modification systems protecting host genomes from bacteriophages and other invading foreign DNA. In early eukaryotic evolution, DNA methyltransferases were horizontally transferred from bacteria into eukaryotes several times and independently co‐opted into epigenetic regulatory systems, primarily via establishing connections with the chromatin environment. While C5‐methylcytosine is the cornerstone of plant and animal epigenetics and has been investigated in much detail, the epigenetic role of other methylated bases is less clear. The recent addition of N4‐methylcytosine of bacterial origin as a metazoan DNA modification highlights the prerequisites for foreign gene co‐option into the host regulatory networks, and challenges the existing paradigms concerning the origin and evolution of eukaryotic regulatory systems. Three major types of DNA methylation from bacteria to eukaryotes, with an example of recruitment of a horizontally transferred bacterial N4C‐methyltransferase into a eukaryotic epigenetic silencing system involving histone modifications. Cross‐talk between DNA and histone epigenetic layers is mediated by catalytic (“write”) and recognition (“read”) domains of DNA and histone methyltransferases.
doi_str_mv 10.1002/bies.202200232
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10287040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2827779000</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4692-814b8cb1abbee9f59549a720ebb6a64eaead93f796d15ac66fec059ed889e65c3</originalsourceid><addsrcrecordid>eNqFkb1v2zAQxYkiQeO4XTsGArJ0kUNSEj-mwAmSxoCBDm5ngqRPNlNZdEgphfvXl4Jd52PpxCPudw_v7iH0heAJwZheGQdxQjGl6VPQD2hEKkpyIrg4QSNMWZVLWvIzdB7jI8ZYMlp-RGcFLwopKB2h6WKtt65dZdD_0mHnO2cz2LoVtDCUcRc72MTM7LK1D-6PbzvdZEM364JuYw3hEzqtdRPh8-Edo5_3dz9uH_L592-z2-k8tyWTNBekNMIaoo0BkHUlq1JqTjEYwzQrQYNeyqLmki1JpS1jNVhcSVgKIYFVthij673utjcbWFpok4NGbYPbJOPKa6fedlq3Viv_rAimguMSJ4WvB4Xgn3qIndq4aKFpdAu-j4oKKop0IMYTevkOffR9aNN-A8U5l-mYiZrsKRt8jAHqoxuC1RCPGuJRx3jSwMXrHY74vzwSIPfAb9fA7j9y6mZ2t3gR_wtlRp4E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2827779000</pqid></control><display><type>article</type><title>Shaping eukaryotic epigenetic systems by horizontal gene transfer</title><source>Wiley-Blackwell Journals</source><source>MEDLINE</source><creator>Arkhipova, Irina R. ; Yushenova, Irina A. ; Rodriguez, Fernando</creator><creatorcontrib>Arkhipova, Irina R. ; Yushenova, Irina A. ; Rodriguez, Fernando</creatorcontrib><description>DNA methylation constitutes one of the pillars of epigenetics, relying on covalent bonds for addition and/or removal of chemically distinct marks within the major groove of the double helix. DNA methyltransferases, enzymes which introduce methyl marks, initially evolved in prokaryotes as components of restriction‐modification systems protecting host genomes from bacteriophages and other invading foreign DNA. In early eukaryotic evolution, DNA methyltransferases were horizontally transferred from bacteria into eukaryotes several times and independently co‐opted into epigenetic regulatory systems, primarily via establishing connections with the chromatin environment. While C5‐methylcytosine is the cornerstone of plant and animal epigenetics and has been investigated in much detail, the epigenetic role of other methylated bases is less clear. The recent addition of N4‐methylcytosine of bacterial origin as a metazoan DNA modification highlights the prerequisites for foreign gene co‐option into the host regulatory networks, and challenges the existing paradigms concerning the origin and evolution of eukaryotic regulatory systems. Three major types of DNA methylation from bacteria to eukaryotes, with an example of recruitment of a horizontally transferred bacterial N4C‐methyltransferase into a eukaryotic epigenetic silencing system involving histone modifications. Cross‐talk between DNA and histone epigenetic layers is mediated by catalytic (“write”) and recognition (“read”) domains of DNA and histone methyltransferases.</description><identifier>ISSN: 0265-9247</identifier><identifier>ISSN: 1521-1878</identifier><identifier>EISSN: 1521-1878</identifier><identifier>DOI: 10.1002/bies.202200232</identifier><identifier>PMID: 37339822</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>amino‐methyltransferase ; Animals ; Bacteria ; Chromatin ; Covalent bonds ; Deoxyribonucleic acid ; DNA ; DNA methylation ; DNA Methylation - genetics ; Epigenesis, Genetic ; epigenetic silencing ; Epigenetics ; Eukaryota - genetics ; Eukaryota - metabolism ; Eukaryotes ; Evolution ; Gene transfer ; Gene Transfer, Horizontal ; Genomes ; Grooves ; Horizontal transfer ; lateral gene transfer ; Methyltransferases - genetics ; N4‐methylcytosine ; Phages ; Prokaryotes ; regulatory evolution ; transposable elements</subject><ispartof>BioEssays, 2023-07, Vol.45 (7), p.e2200232-n/a</ispartof><rights>2023 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4692-814b8cb1abbee9f59549a720ebb6a64eaead93f796d15ac66fec059ed889e65c3</citedby><cites>FETCH-LOGICAL-c4692-814b8cb1abbee9f59549a720ebb6a64eaead93f796d15ac66fec059ed889e65c3</cites><orcidid>0000-0003-4044-8734 ; 0000-0001-6291-6215 ; 0000-0002-4805-1339</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbies.202200232$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbies.202200232$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1416,27915,27916,45565,45566</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37339822$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Arkhipova, Irina R.</creatorcontrib><creatorcontrib>Yushenova, Irina A.</creatorcontrib><creatorcontrib>Rodriguez, Fernando</creatorcontrib><title>Shaping eukaryotic epigenetic systems by horizontal gene transfer</title><title>BioEssays</title><addtitle>Bioessays</addtitle><description>DNA methylation constitutes one of the pillars of epigenetics, relying on covalent bonds for addition and/or removal of chemically distinct marks within the major groove of the double helix. DNA methyltransferases, enzymes which introduce methyl marks, initially evolved in prokaryotes as components of restriction‐modification systems protecting host genomes from bacteriophages and other invading foreign DNA. In early eukaryotic evolution, DNA methyltransferases were horizontally transferred from bacteria into eukaryotes several times and independently co‐opted into epigenetic regulatory systems, primarily via establishing connections with the chromatin environment. While C5‐methylcytosine is the cornerstone of plant and animal epigenetics and has been investigated in much detail, the epigenetic role of other methylated bases is less clear. The recent addition of N4‐methylcytosine of bacterial origin as a metazoan DNA modification highlights the prerequisites for foreign gene co‐option into the host regulatory networks, and challenges the existing paradigms concerning the origin and evolution of eukaryotic regulatory systems. Three major types of DNA methylation from bacteria to eukaryotes, with an example of recruitment of a horizontally transferred bacterial N4C‐methyltransferase into a eukaryotic epigenetic silencing system involving histone modifications. Cross‐talk between DNA and histone epigenetic layers is mediated by catalytic (“write”) and recognition (“read”) domains of DNA and histone methyltransferases.</description><subject>amino‐methyltransferase</subject><subject>Animals</subject><subject>Bacteria</subject><subject>Chromatin</subject><subject>Covalent bonds</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA methylation</subject><subject>DNA Methylation - genetics</subject><subject>Epigenesis, Genetic</subject><subject>epigenetic silencing</subject><subject>Epigenetics</subject><subject>Eukaryota - genetics</subject><subject>Eukaryota - metabolism</subject><subject>Eukaryotes</subject><subject>Evolution</subject><subject>Gene transfer</subject><subject>Gene Transfer, Horizontal</subject><subject>Genomes</subject><subject>Grooves</subject><subject>Horizontal transfer</subject><subject>lateral gene transfer</subject><subject>Methyltransferases - genetics</subject><subject>N4‐methylcytosine</subject><subject>Phages</subject><subject>Prokaryotes</subject><subject>regulatory evolution</subject><subject>transposable elements</subject><issn>0265-9247</issn><issn>1521-1878</issn><issn>1521-1878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkb1v2zAQxYkiQeO4XTsGArJ0kUNSEj-mwAmSxoCBDm5ngqRPNlNZdEgphfvXl4Jd52PpxCPudw_v7iH0heAJwZheGQdxQjGl6VPQD2hEKkpyIrg4QSNMWZVLWvIzdB7jI8ZYMlp-RGcFLwopKB2h6WKtt65dZdD_0mHnO2cz2LoVtDCUcRc72MTM7LK1D-6PbzvdZEM364JuYw3hEzqtdRPh8-Edo5_3dz9uH_L592-z2-k8tyWTNBekNMIaoo0BkHUlq1JqTjEYwzQrQYNeyqLmki1JpS1jNVhcSVgKIYFVthij673utjcbWFpok4NGbYPbJOPKa6fedlq3Viv_rAimguMSJ4WvB4Xgn3qIndq4aKFpdAu-j4oKKop0IMYTevkOffR9aNN-A8U5l-mYiZrsKRt8jAHqoxuC1RCPGuJRx3jSwMXrHY74vzwSIPfAb9fA7j9y6mZ2t3gR_wtlRp4E</recordid><startdate>202307</startdate><enddate>202307</enddate><creator>Arkhipova, Irina R.</creator><creator>Yushenova, Irina A.</creator><creator>Rodriguez, Fernando</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4044-8734</orcidid><orcidid>https://orcid.org/0000-0001-6291-6215</orcidid><orcidid>https://orcid.org/0000-0002-4805-1339</orcidid></search><sort><creationdate>202307</creationdate><title>Shaping eukaryotic epigenetic systems by horizontal gene transfer</title><author>Arkhipova, Irina R. ; Yushenova, Irina A. ; Rodriguez, Fernando</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4692-814b8cb1abbee9f59549a720ebb6a64eaead93f796d15ac66fec059ed889e65c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>amino‐methyltransferase</topic><topic>Animals</topic><topic>Bacteria</topic><topic>Chromatin</topic><topic>Covalent bonds</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA methylation</topic><topic>DNA Methylation - genetics</topic><topic>Epigenesis, Genetic</topic><topic>epigenetic silencing</topic><topic>Epigenetics</topic><topic>Eukaryota - genetics</topic><topic>Eukaryota - metabolism</topic><topic>Eukaryotes</topic><topic>Evolution</topic><topic>Gene transfer</topic><topic>Gene Transfer, Horizontal</topic><topic>Genomes</topic><topic>Grooves</topic><topic>Horizontal transfer</topic><topic>lateral gene transfer</topic><topic>Methyltransferases - genetics</topic><topic>N4‐methylcytosine</topic><topic>Phages</topic><topic>Prokaryotes</topic><topic>regulatory evolution</topic><topic>transposable elements</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arkhipova, Irina R.</creatorcontrib><creatorcontrib>Yushenova, Irina A.</creatorcontrib><creatorcontrib>Rodriguez, Fernando</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BioEssays</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arkhipova, Irina R.</au><au>Yushenova, Irina A.</au><au>Rodriguez, Fernando</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shaping eukaryotic epigenetic systems by horizontal gene transfer</atitle><jtitle>BioEssays</jtitle><addtitle>Bioessays</addtitle><date>2023-07</date><risdate>2023</risdate><volume>45</volume><issue>7</issue><spage>e2200232</spage><epage>n/a</epage><pages>e2200232-n/a</pages><issn>0265-9247</issn><issn>1521-1878</issn><eissn>1521-1878</eissn><abstract>DNA methylation constitutes one of the pillars of epigenetics, relying on covalent bonds for addition and/or removal of chemically distinct marks within the major groove of the double helix. DNA methyltransferases, enzymes which introduce methyl marks, initially evolved in prokaryotes as components of restriction‐modification systems protecting host genomes from bacteriophages and other invading foreign DNA. In early eukaryotic evolution, DNA methyltransferases were horizontally transferred from bacteria into eukaryotes several times and independently co‐opted into epigenetic regulatory systems, primarily via establishing connections with the chromatin environment. While C5‐methylcytosine is the cornerstone of plant and animal epigenetics and has been investigated in much detail, the epigenetic role of other methylated bases is less clear. The recent addition of N4‐methylcytosine of bacterial origin as a metazoan DNA modification highlights the prerequisites for foreign gene co‐option into the host regulatory networks, and challenges the existing paradigms concerning the origin and evolution of eukaryotic regulatory systems. Three major types of DNA methylation from bacteria to eukaryotes, with an example of recruitment of a horizontally transferred bacterial N4C‐methyltransferase into a eukaryotic epigenetic silencing system involving histone modifications. Cross‐talk between DNA and histone epigenetic layers is mediated by catalytic (“write”) and recognition (“read”) domains of DNA and histone methyltransferases.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37339822</pmid><doi>10.1002/bies.202200232</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-4044-8734</orcidid><orcidid>https://orcid.org/0000-0001-6291-6215</orcidid><orcidid>https://orcid.org/0000-0002-4805-1339</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0265-9247
ispartof BioEssays, 2023-07, Vol.45 (7), p.e2200232-n/a
issn 0265-9247
1521-1878
1521-1878
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10287040
source Wiley-Blackwell Journals; MEDLINE
subjects amino‐methyltransferase
Animals
Bacteria
Chromatin
Covalent bonds
Deoxyribonucleic acid
DNA
DNA methylation
DNA Methylation - genetics
Epigenesis, Genetic
epigenetic silencing
Epigenetics
Eukaryota - genetics
Eukaryota - metabolism
Eukaryotes
Evolution
Gene transfer
Gene Transfer, Horizontal
Genomes
Grooves
Horizontal transfer
lateral gene transfer
Methyltransferases - genetics
N4‐methylcytosine
Phages
Prokaryotes
regulatory evolution
transposable elements
title Shaping eukaryotic epigenetic systems by horizontal gene transfer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T00%3A27%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shaping%20eukaryotic%20epigenetic%20systems%20by%20horizontal%20gene%20transfer&rft.jtitle=BioEssays&rft.au=Arkhipova,%20Irina%20R.&rft.date=2023-07&rft.volume=45&rft.issue=7&rft.spage=e2200232&rft.epage=n/a&rft.pages=e2200232-n/a&rft.issn=0265-9247&rft.eissn=1521-1878&rft_id=info:doi/10.1002/bies.202200232&rft_dat=%3Cproquest_pubme%3E2827779000%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2827779000&rft_id=info:pmid/37339822&rfr_iscdi=true