Chromosome‐scale genome assembly‐assisted identification of Mi‐9 gene in Solanum arcanum accession LA2157, conferring heat‐stable resistance to Meloidogyne incognita

Summary Root‐knot nematodes (RKNs) are infamous plant pathogens in tomato production, causing considerable losses in agriculture worldwide. Mi‐1 is the only commercially available RKN‐resistance gene; however, the resistance is inactivated when the soil temperature is over 28 °C. Mi‐9 in wild tomato...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant biotechnology journal 2023-07, Vol.21 (7), p.1496-1509
Hauptverfasser: Jiang, Lijun, Ling, Jian, Zhao, Jianlong, Yang, Yu, Yang, Yuhong, Li, Yan, Jiao, Yang, Mao, Zhenchuan, Wang, Yunsheng, Xie, Bingyan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1509
container_issue 7
container_start_page 1496
container_title Plant biotechnology journal
container_volume 21
creator Jiang, Lijun
Ling, Jian
Zhao, Jianlong
Yang, Yu
Yang, Yuhong
Li, Yan
Jiao, Yang
Mao, Zhenchuan
Wang, Yunsheng
Xie, Bingyan
description Summary Root‐knot nematodes (RKNs) are infamous plant pathogens in tomato production, causing considerable losses in agriculture worldwide. Mi‐1 is the only commercially available RKN‐resistance gene; however, the resistance is inactivated when the soil temperature is over 28 °C. Mi‐9 in wild tomato (Solanum arcanum LA2157) has stable resistance to RKNs under high temperature but has not been cloned and applied. In this study, a chromosome‐scale genome assembly of S. arcanum LA2157 was constructed through Nanopore and Hi‐C sequencing. Based on molecular markers of Mi‐9 and comparative genomic analysis, the localization region and candidate Mi‐9 genes cluster consisting of seven nucleotide‐binding sites and leucine‐rich repeat (NBS‐LRR) genes were located. Transcriptional expression profiles confirmed that five of the seven candidate genes were expressed in root tissue. Moreover, virus‐induced gene silencing of the Sarc_034200 gene resulted in increased susceptibility of S. arcanum LA2157 to Meloidogyne incognita, and genetic transformation of the Sarc_034200 gene in susceptible Solanum pimpinellifolium conferred significant resistance to M. incognita at 25 °C and 30 °C and showed hypersensitive responses at nematode infection sites. This suggested that Sarc_034200 is the Mi‐9 gene. In summary, we cloned, confirmed and applied the heat‐stable RKN‐resistance gene Mi‐9, which is of great significance to tomato breeding for nematode resistance.
doi_str_mv 10.1111/pbi.14055
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10281608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2803331294</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4445-4d417ac965bcc14dbb803471fba2194b9b0d3d8aa0afbc37b88c3e7262b171083</originalsourceid><addsrcrecordid>eNp1ks1u1DAQxy0EoqVw4AWQJS5UYlt_JU5OqKz4qLQVSMDZsp1J1lVib-2Eam88Ai_CS_EkeDdlBUj4MrbnN_-ZsQehp5Sc0bzON8adUUGK4h46pqKUC1kW7P5hL8QRepTSNSGMlkX5EB1xSaSQhTxGP5brGIaQwgA_v31PVveAO_D5iHVKMJh-m-_z1qURGuwa8KNrndWjCx6HFl-57K93MYCdx59Cr_00YB3tbK2FHJzZ1QWjhXyJbfAtxOh8h9egx13WUZucNsIuifYW8BjwFfTBNaHb7nVt6Lwb9WP0oNV9gid39gR9efvm8_L9YvXh3eXyYrWwQohiIRpBpbZ1WRhrqWiMqQgXkrZGM1oLUxvS8KbSmujWWC5NVVkOkpXMUElJxU_Qq1l3M5kBGpubjrpXm-gGHbcqaKf-9ni3Vl34qihhFS33Ci_uFGK4mSCNanDJQp9fB8KUFMsVcU5ZLTL6_B_0OkzR5_4yxaSkJa-LTJ3OlI0hpQjtoRpK1G4KVJ4CtZ-CzD77s_wD-fvbM3A-A7euh-3_ldTH15ez5C9O58OX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2827716395</pqid></control><display><type>article</type><title>Chromosome‐scale genome assembly‐assisted identification of Mi‐9 gene in Solanum arcanum accession LA2157, conferring heat‐stable resistance to Meloidogyne incognita</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley-Blackwell Open Access Titles</source><source>Wiley Online Library All Journals</source><creator>Jiang, Lijun ; Ling, Jian ; Zhao, Jianlong ; Yang, Yu ; Yang, Yuhong ; Li, Yan ; Jiao, Yang ; Mao, Zhenchuan ; Wang, Yunsheng ; Xie, Bingyan</creator><creatorcontrib>Jiang, Lijun ; Ling, Jian ; Zhao, Jianlong ; Yang, Yu ; Yang, Yuhong ; Li, Yan ; Jiao, Yang ; Mao, Zhenchuan ; Wang, Yunsheng ; Xie, Bingyan</creatorcontrib><description>Summary Root‐knot nematodes (RKNs) are infamous plant pathogens in tomato production, causing considerable losses in agriculture worldwide. Mi‐1 is the only commercially available RKN‐resistance gene; however, the resistance is inactivated when the soil temperature is over 28 °C. Mi‐9 in wild tomato (Solanum arcanum LA2157) has stable resistance to RKNs under high temperature but has not been cloned and applied. In this study, a chromosome‐scale genome assembly of S. arcanum LA2157 was constructed through Nanopore and Hi‐C sequencing. Based on molecular markers of Mi‐9 and comparative genomic analysis, the localization region and candidate Mi‐9 genes cluster consisting of seven nucleotide‐binding sites and leucine‐rich repeat (NBS‐LRR) genes were located. Transcriptional expression profiles confirmed that five of the seven candidate genes were expressed in root tissue. Moreover, virus‐induced gene silencing of the Sarc_034200 gene resulted in increased susceptibility of S. arcanum LA2157 to Meloidogyne incognita, and genetic transformation of the Sarc_034200 gene in susceptible Solanum pimpinellifolium conferred significant resistance to M. incognita at 25 °C and 30 °C and showed hypersensitive responses at nematode infection sites. This suggested that Sarc_034200 is the Mi‐9 gene. In summary, we cloned, confirmed and applied the heat‐stable RKN‐resistance gene Mi‐9, which is of great significance to tomato breeding for nematode resistance.</description><identifier>ISSN: 1467-7644</identifier><identifier>EISSN: 1467-7652</identifier><identifier>DOI: 10.1111/pbi.14055</identifier><identifier>PMID: 37074757</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>Agricultural production ; Animals ; Artificial chromosomes ; Assembly ; Binding sites ; Chromosomes ; Chromosomes - metabolism ; Cloning ; Flowers &amp; plants ; Gene expression ; Gene silencing ; Genes ; genome assembly ; Genomes ; Genomic analysis ; Genomics ; Heat ; Heat resistance ; High temperature ; Hi‐C ; Hot Temperature ; Leucine ; Localization ; Meloidogyne incognita ; Mi‐9 ; NBS-LRR gene ; Nematodes ; Nucleotides ; Pest resistance ; Plant Breeding ; Plant Diseases - genetics ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plant Roots - genetics ; Plant tissues ; Soil temperature ; Solanum - genetics ; Solanum arcanum ; Solanum arcanum LA2157 ; Solanum lycopersicum - genetics ; Thermal stability ; tomato genetic transformation ; Tomatoes ; Tylenchoidea ; VIGS</subject><ispartof>Plant biotechnology journal, 2023-07, Vol.21 (7), p.1496-1509</ispartof><rights>2023 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley &amp; Sons Ltd.</rights><rights>2023 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley &amp; Sons Ltd.</rights><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4445-4d417ac965bcc14dbb803471fba2194b9b0d3d8aa0afbc37b88c3e7262b171083</citedby><cites>FETCH-LOGICAL-c4445-4d417ac965bcc14dbb803471fba2194b9b0d3d8aa0afbc37b88c3e7262b171083</cites><orcidid>0000-0002-1035-7711 ; 0000-0002-6667-1179 ; 0000-0001-5003-4434 ; 0000-0002-8831-6020 ; 0000-0001-9640-8956 ; 0000-0002-4841-9543 ; 0000-0002-5311-8809 ; 0000-0002-8179-6885 ; 0000-0002-7605-5732</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fpbi.14055$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fpbi.14055$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,864,885,1417,11562,27924,27925,45574,45575,46052,46476</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37074757$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Lijun</creatorcontrib><creatorcontrib>Ling, Jian</creatorcontrib><creatorcontrib>Zhao, Jianlong</creatorcontrib><creatorcontrib>Yang, Yu</creatorcontrib><creatorcontrib>Yang, Yuhong</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Jiao, Yang</creatorcontrib><creatorcontrib>Mao, Zhenchuan</creatorcontrib><creatorcontrib>Wang, Yunsheng</creatorcontrib><creatorcontrib>Xie, Bingyan</creatorcontrib><title>Chromosome‐scale genome assembly‐assisted identification of Mi‐9 gene in Solanum arcanum accession LA2157, conferring heat‐stable resistance to Meloidogyne incognita</title><title>Plant biotechnology journal</title><addtitle>Plant Biotechnol J</addtitle><description>Summary Root‐knot nematodes (RKNs) are infamous plant pathogens in tomato production, causing considerable losses in agriculture worldwide. Mi‐1 is the only commercially available RKN‐resistance gene; however, the resistance is inactivated when the soil temperature is over 28 °C. Mi‐9 in wild tomato (Solanum arcanum LA2157) has stable resistance to RKNs under high temperature but has not been cloned and applied. In this study, a chromosome‐scale genome assembly of S. arcanum LA2157 was constructed through Nanopore and Hi‐C sequencing. Based on molecular markers of Mi‐9 and comparative genomic analysis, the localization region and candidate Mi‐9 genes cluster consisting of seven nucleotide‐binding sites and leucine‐rich repeat (NBS‐LRR) genes were located. Transcriptional expression profiles confirmed that five of the seven candidate genes were expressed in root tissue. Moreover, virus‐induced gene silencing of the Sarc_034200 gene resulted in increased susceptibility of S. arcanum LA2157 to Meloidogyne incognita, and genetic transformation of the Sarc_034200 gene in susceptible Solanum pimpinellifolium conferred significant resistance to M. incognita at 25 °C and 30 °C and showed hypersensitive responses at nematode infection sites. This suggested that Sarc_034200 is the Mi‐9 gene. In summary, we cloned, confirmed and applied the heat‐stable RKN‐resistance gene Mi‐9, which is of great significance to tomato breeding for nematode resistance.</description><subject>Agricultural production</subject><subject>Animals</subject><subject>Artificial chromosomes</subject><subject>Assembly</subject><subject>Binding sites</subject><subject>Chromosomes</subject><subject>Chromosomes - metabolism</subject><subject>Cloning</subject><subject>Flowers &amp; plants</subject><subject>Gene expression</subject><subject>Gene silencing</subject><subject>Genes</subject><subject>genome assembly</subject><subject>Genomes</subject><subject>Genomic analysis</subject><subject>Genomics</subject><subject>Heat</subject><subject>Heat resistance</subject><subject>High temperature</subject><subject>Hi‐C</subject><subject>Hot Temperature</subject><subject>Leucine</subject><subject>Localization</subject><subject>Meloidogyne incognita</subject><subject>Mi‐9</subject><subject>NBS-LRR gene</subject><subject>Nematodes</subject><subject>Nucleotides</subject><subject>Pest resistance</subject><subject>Plant Breeding</subject><subject>Plant Diseases - genetics</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plant Roots - genetics</subject><subject>Plant tissues</subject><subject>Soil temperature</subject><subject>Solanum - genetics</subject><subject>Solanum arcanum</subject><subject>Solanum arcanum LA2157</subject><subject>Solanum lycopersicum - genetics</subject><subject>Thermal stability</subject><subject>tomato genetic transformation</subject><subject>Tomatoes</subject><subject>Tylenchoidea</subject><subject>VIGS</subject><issn>1467-7644</issn><issn>1467-7652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1ks1u1DAQxy0EoqVw4AWQJS5UYlt_JU5OqKz4qLQVSMDZsp1J1lVib-2Eam88Ai_CS_EkeDdlBUj4MrbnN_-ZsQehp5Sc0bzON8adUUGK4h46pqKUC1kW7P5hL8QRepTSNSGMlkX5EB1xSaSQhTxGP5brGIaQwgA_v31PVveAO_D5iHVKMJh-m-_z1qURGuwa8KNrndWjCx6HFl-57K93MYCdx59Cr_00YB3tbK2FHJzZ1QWjhXyJbfAtxOh8h9egx13WUZucNsIuifYW8BjwFfTBNaHb7nVt6Lwb9WP0oNV9gid39gR9efvm8_L9YvXh3eXyYrWwQohiIRpBpbZ1WRhrqWiMqQgXkrZGM1oLUxvS8KbSmujWWC5NVVkOkpXMUElJxU_Qq1l3M5kBGpubjrpXm-gGHbcqaKf-9ni3Vl34qihhFS33Ci_uFGK4mSCNanDJQp9fB8KUFMsVcU5ZLTL6_B_0OkzR5_4yxaSkJa-LTJ3OlI0hpQjtoRpK1G4KVJ4CtZ-CzD77s_wD-fvbM3A-A7euh-3_ldTH15ez5C9O58OX</recordid><startdate>202307</startdate><enddate>202307</enddate><creator>Jiang, Lijun</creator><creator>Ling, Jian</creator><creator>Zhao, Jianlong</creator><creator>Yang, Yu</creator><creator>Yang, Yuhong</creator><creator>Li, Yan</creator><creator>Jiao, Yang</creator><creator>Mao, Zhenchuan</creator><creator>Wang, Yunsheng</creator><creator>Xie, Bingyan</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1035-7711</orcidid><orcidid>https://orcid.org/0000-0002-6667-1179</orcidid><orcidid>https://orcid.org/0000-0001-5003-4434</orcidid><orcidid>https://orcid.org/0000-0002-8831-6020</orcidid><orcidid>https://orcid.org/0000-0001-9640-8956</orcidid><orcidid>https://orcid.org/0000-0002-4841-9543</orcidid><orcidid>https://orcid.org/0000-0002-5311-8809</orcidid><orcidid>https://orcid.org/0000-0002-8179-6885</orcidid><orcidid>https://orcid.org/0000-0002-7605-5732</orcidid></search><sort><creationdate>202307</creationdate><title>Chromosome‐scale genome assembly‐assisted identification of Mi‐9 gene in Solanum arcanum accession LA2157, conferring heat‐stable resistance to Meloidogyne incognita</title><author>Jiang, Lijun ; Ling, Jian ; Zhao, Jianlong ; Yang, Yu ; Yang, Yuhong ; Li, Yan ; Jiao, Yang ; Mao, Zhenchuan ; Wang, Yunsheng ; Xie, Bingyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4445-4d417ac965bcc14dbb803471fba2194b9b0d3d8aa0afbc37b88c3e7262b171083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Agricultural production</topic><topic>Animals</topic><topic>Artificial chromosomes</topic><topic>Assembly</topic><topic>Binding sites</topic><topic>Chromosomes</topic><topic>Chromosomes - metabolism</topic><topic>Cloning</topic><topic>Flowers &amp; plants</topic><topic>Gene expression</topic><topic>Gene silencing</topic><topic>Genes</topic><topic>genome assembly</topic><topic>Genomes</topic><topic>Genomic analysis</topic><topic>Genomics</topic><topic>Heat</topic><topic>Heat resistance</topic><topic>High temperature</topic><topic>Hi‐C</topic><topic>Hot Temperature</topic><topic>Leucine</topic><topic>Localization</topic><topic>Meloidogyne incognita</topic><topic>Mi‐9</topic><topic>NBS-LRR gene</topic><topic>Nematodes</topic><topic>Nucleotides</topic><topic>Pest resistance</topic><topic>Plant Breeding</topic><topic>Plant Diseases - genetics</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plant Roots - genetics</topic><topic>Plant tissues</topic><topic>Soil temperature</topic><topic>Solanum - genetics</topic><topic>Solanum arcanum</topic><topic>Solanum arcanum LA2157</topic><topic>Solanum lycopersicum - genetics</topic><topic>Thermal stability</topic><topic>tomato genetic transformation</topic><topic>Tomatoes</topic><topic>Tylenchoidea</topic><topic>VIGS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Lijun</creatorcontrib><creatorcontrib>Ling, Jian</creatorcontrib><creatorcontrib>Zhao, Jianlong</creatorcontrib><creatorcontrib>Yang, Yu</creatorcontrib><creatorcontrib>Yang, Yuhong</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Jiao, Yang</creatorcontrib><creatorcontrib>Mao, Zhenchuan</creatorcontrib><creatorcontrib>Wang, Yunsheng</creatorcontrib><creatorcontrib>Xie, Bingyan</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant biotechnology journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Lijun</au><au>Ling, Jian</au><au>Zhao, Jianlong</au><au>Yang, Yu</au><au>Yang, Yuhong</au><au>Li, Yan</au><au>Jiao, Yang</au><au>Mao, Zhenchuan</au><au>Wang, Yunsheng</au><au>Xie, Bingyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chromosome‐scale genome assembly‐assisted identification of Mi‐9 gene in Solanum arcanum accession LA2157, conferring heat‐stable resistance to Meloidogyne incognita</atitle><jtitle>Plant biotechnology journal</jtitle><addtitle>Plant Biotechnol J</addtitle><date>2023-07</date><risdate>2023</risdate><volume>21</volume><issue>7</issue><spage>1496</spage><epage>1509</epage><pages>1496-1509</pages><issn>1467-7644</issn><eissn>1467-7652</eissn><abstract>Summary Root‐knot nematodes (RKNs) are infamous plant pathogens in tomato production, causing considerable losses in agriculture worldwide. Mi‐1 is the only commercially available RKN‐resistance gene; however, the resistance is inactivated when the soil temperature is over 28 °C. Mi‐9 in wild tomato (Solanum arcanum LA2157) has stable resistance to RKNs under high temperature but has not been cloned and applied. In this study, a chromosome‐scale genome assembly of S. arcanum LA2157 was constructed through Nanopore and Hi‐C sequencing. Based on molecular markers of Mi‐9 and comparative genomic analysis, the localization region and candidate Mi‐9 genes cluster consisting of seven nucleotide‐binding sites and leucine‐rich repeat (NBS‐LRR) genes were located. Transcriptional expression profiles confirmed that five of the seven candidate genes were expressed in root tissue. Moreover, virus‐induced gene silencing of the Sarc_034200 gene resulted in increased susceptibility of S. arcanum LA2157 to Meloidogyne incognita, and genetic transformation of the Sarc_034200 gene in susceptible Solanum pimpinellifolium conferred significant resistance to M. incognita at 25 °C and 30 °C and showed hypersensitive responses at nematode infection sites. This suggested that Sarc_034200 is the Mi‐9 gene. In summary, we cloned, confirmed and applied the heat‐stable RKN‐resistance gene Mi‐9, which is of great significance to tomato breeding for nematode resistance.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>37074757</pmid><doi>10.1111/pbi.14055</doi><tpages>1509</tpages><orcidid>https://orcid.org/0000-0002-1035-7711</orcidid><orcidid>https://orcid.org/0000-0002-6667-1179</orcidid><orcidid>https://orcid.org/0000-0001-5003-4434</orcidid><orcidid>https://orcid.org/0000-0002-8831-6020</orcidid><orcidid>https://orcid.org/0000-0001-9640-8956</orcidid><orcidid>https://orcid.org/0000-0002-4841-9543</orcidid><orcidid>https://orcid.org/0000-0002-5311-8809</orcidid><orcidid>https://orcid.org/0000-0002-8179-6885</orcidid><orcidid>https://orcid.org/0000-0002-7605-5732</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1467-7644
ispartof Plant biotechnology journal, 2023-07, Vol.21 (7), p.1496-1509
issn 1467-7644
1467-7652
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10281608
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley-Blackwell Open Access Titles; Wiley Online Library All Journals
subjects Agricultural production
Animals
Artificial chromosomes
Assembly
Binding sites
Chromosomes
Chromosomes - metabolism
Cloning
Flowers & plants
Gene expression
Gene silencing
Genes
genome assembly
Genomes
Genomic analysis
Genomics
Heat
Heat resistance
High temperature
Hi‐C
Hot Temperature
Leucine
Localization
Meloidogyne incognita
Mi‐9
NBS-LRR gene
Nematodes
Nucleotides
Pest resistance
Plant Breeding
Plant Diseases - genetics
Plant Proteins - genetics
Plant Proteins - metabolism
Plant Roots - genetics
Plant tissues
Soil temperature
Solanum - genetics
Solanum arcanum
Solanum arcanum LA2157
Solanum lycopersicum - genetics
Thermal stability
tomato genetic transformation
Tomatoes
Tylenchoidea
VIGS
title Chromosome‐scale genome assembly‐assisted identification of Mi‐9 gene in Solanum arcanum accession LA2157, conferring heat‐stable resistance to Meloidogyne incognita
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A46%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chromosome%E2%80%90scale%20genome%20assembly%E2%80%90assisted%20identification%20of%20Mi%E2%80%909%20gene%20in%20Solanum%20arcanum%20accession%20LA2157,%20conferring%20heat%E2%80%90stable%20resistance%20to%20Meloidogyne%20incognita&rft.jtitle=Plant%20biotechnology%20journal&rft.au=Jiang,%20Lijun&rft.date=2023-07&rft.volume=21&rft.issue=7&rft.spage=1496&rft.epage=1509&rft.pages=1496-1509&rft.issn=1467-7644&rft.eissn=1467-7652&rft_id=info:doi/10.1111/pbi.14055&rft_dat=%3Cproquest_pubme%3E2803331294%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2827716395&rft_id=info:pmid/37074757&rfr_iscdi=true